research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 875-878

Crystal structure of catena-poly[[[tri­aqua­strontium]-di-μ2-glycinato] dibromide]

CROSSMARK_Color_square_no_text.svg

aCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli 620 023, India, bCrystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, and cBiomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
*Correspondence e-mail: balacrystalgrowth@gmail.com, thamu@scbt.sastra.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 June 2015; accepted 25 June 2015; online 30 June 2015)

In the title coordination polymer, {[Sr(C2H5NO2)2(H2O)3]Br2}n, the Sr2+ ion and one of the water mol­ecules are located on twofold rotation axes. The alkaline earth ion is nine-coordinated by three water O atoms and six O atoms of the carboxyl­ate groups of four glycine ligands, two in a chelating mode and two in a monodentate mode. The glycine mol­ecule exists in a zwitterionic form and bridges the cations into chains parallel to [001]. The Br counter-anions are located between the chains. Inter­molecular hydrogen bonds are formed between the amino and carboxyl­ate groups of neighbouring glycine ligands, generating a head-to-tail sequence. Adjacent head-to-tail sequences are further inter­connected by inter­molecular N—H⋯Br hydrogen-bonding inter­actions into sheets parallel to (100). O—H⋯Br and O—H⋯O hydrogen bonds involving the coordinating water mol­ecules are also present, consolidating the three-dimensional hydrogen-bonding network.

1. Chemical context

Research in the field of coordination polymers has undergone rapid development in recent years due to their inter­esting structures and their wide range of applications as functional materials (Lyhs et al., 2012[Lyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350-4355.]). One of the simplest amino acids is glycine and some glycine–metal complexes have been reported previously (Fleck et al., 2006[Fleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122-m125.] and references therein). The crystal structures of strontium combined with anions of amino acids are rare. As part of our ongoing investigations of the crystal and mol­ecular structures of a series of metal complexes derived from amino acids (Sathiskumar et al., 2015a[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A , 138, 187-194.],b[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217-219.]; Balakrishnan et al., 2013[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60-m61.]), we report here the crystal structure of a polymeric strontium–glycine complex, {[Sr(C2H5NO2)2(H2O)3]Br2}n, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] contains one Sr2+ ion, one glycine ligand, one and a half water mol­ecules and one bromide anion (Fig. 1[link]). The Sr2+ cation and one of the water mol­ecules (O4) are located on special positions with site symmetry 2. The bond lengths involving the carboxyl­ate atoms and the proton­ation of the amino group reveal a zwitterionic form for the glycine ligand in (I)[link]. The Sr2+ ion is nine-coordinated by three oxygen atoms [Sr—O = 2.526 (4)–2.661 (2) Å] of water mol­ecules and six carboxyl­ate oxygen atoms of four glycine ligands [Sr—O = 2.605 (2)–2.703 (2) Å]. The glycine ligands coordinate each cation in a bis-bidentate and bis-monodentate way and simultaneously bridge two alkaline earth cations. As shown in Fig. 2[link], this coordination mode leads to the formation of polymeric chains running parallel to [001]. Adjacent Sr2+ ions are separated by 4.3497 (3) Å within a chain and the shortest Sr⋯Sr distance between neighbouring chains is 9.4960 (3) Å.

[Figure 1]
Figure 1
The coordination environment of Sr2+ in the crystal structure of (I)[link]. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (a) −x, y, [{1\over 2}] − z; (b) −x, 1 − y, 1 − z; (c) x, 1 − y, −[{1\over 2}] + z].
[Figure 2]
Figure 2
The crystal packing of (I)[link] projected along [010]. H atoms have been omitted for clarity.

3. Supra­molecular features

The crystal structure of (I)[link] contains an intricate network of inter­molecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds (Table 1[link]). The protonated N atom of the glycine mol­ecule is capable of forming three hydrogen-bonding inter­actions. One of them is the characteristic head-to-tail sequence in which amino acids are self-assembled through their amino and carboxyl­ate groups (Sharma et al., 2006[Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148-o152.]; Selvaraj et al., 2007[Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459-468.]; Balakrishnan et al., 2013[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60-m61.]). In (I)[link], the zwitterionic glycine mol­ecules are arranged in linear arrays that run parallel to the [110] direction (Fig. 3[link]), and adjacent glycine mol­ecules are inter­connected by an inter­molecular N1—H1A⋯O1 hydrogen bond. This inter­action can be described as a head-to-tail sequence having a C(5) graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In each array, the Br counter anions bridge neighbouring glycines. Taken together, these three inter­actions form a hydrogen-bonded sheet extending parallel to (100). One of the water mol­ecules (O3) acts as a donor for two different Br anions. These inter­molecular O—H⋯Br inter­actions result in a cyclic dibromide motif as observed in the crystal structure of N,N′-dibenzyl-N,N,N′,N′-tetra­methyl­ethylenedi­ammonium dibromide dihydrate (Srinivasan et al., 2006[Srinivasan, B. R., Dhuri, S. N., Sawant, J. V., Näther, C. & Bensch, W. (2006). J. Chem. Sci. 118, 211-218.]). Within this motif, the distance between Br anions is 5.3398 (3) Å, and the distance between water oxygen atoms (O3⋯O3′) is 3.932 (4) Å. Adjacent cylic dibromide motifs, which are parallel to [001], are inter­connected by another water mol­ecule (O4) (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 (5) 2.00 (5) 2.879 (4) 175 (4)
N1—H1B⋯Br1ii 0.88 (4) 2.58 (4) 3.450 (3) 179 (4)
N1—H1C⋯Br1iii 0.89 (4) 2.51 (4) 3.321 (3) 152 (3)
O4—H4⋯O3iv 0.83 (2) 2.01 (2) 2.828 (3) 166 (5)
O3—H3A⋯Br1ii 0.84 (5) 2.50 (5) 3.335 (3) 170 (4)
O3—H3B⋯Br1v 0.84 (2) 2.55 (3) 3.296 (3) 148 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x, y, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Zwitterionic glycine mol­ecules are inter­connected by inter­molecular N—H⋯O and N—H⋯Br hydrogen bonds into (100) sheets.
[Figure 4]
Figure 4
Cyclic dibromide motifs are inter­connected by inter­molecular O—H⋯O inter­actions.

4. Synthesis and crystallization

Crystals of (I)[link] were grown from an aqueous solution by slow solvent evaporation at room temperature. Analytical grade reagents glycine (Merck) and strontium bromide hexa­hydrate (Sigma–Aldrich) were taken in a 2:1 molar ratio, dissolved in double-distilled water and stirred well for 4 h using a temperature-controlled magnetic stirrer to yield a homogeneous mixture. The solution was finally filtered using Whatman filter paper. The beaker containing the solution was closed with a polythene sheet with two (or) three perforations and kept in a dust-free atmosphere for slow evaporation. Single crystals were harvested after a growth period of 20 days.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The positions of the amino and water H atoms were located from difference Fourier maps. The O3—H3B and O4—H4 distances of the water mol­ecules were restrained to 0.85 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å) with Uiso(H) = 1.2Ueq(C) and were constrained to ride on their parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Sr(C2H5NO2)2(H2O)3]Br2
Mr 451.63
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 16.4198 (9), 9.5438 (5), 8.2402 (4)
V3) 1291.30 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.38
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 1999)
Tmin, Tmax 0.251, 0.410
No. of measured, independent and observed [I > 2σ(I)] reflections 22178, 1564, 1244
Rint 0.070
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.14
No. of reflections 1564
No. of parameters 99
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.68
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1995[Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842-846.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

Research in the field of coordination polymers has undergone rapid development in recent years due to their inter­esting structures and their wide range of applications as functional materials (Lyhs et al., 2012). One of the simplest amino acids is glycine and some glycine–metal complexes have been reported previously (Fleck et al., 2006 and references therein). The crystal structures of strontium combined with anions of amino acids are rare. As part of our ongoing investigations of the crystal and molecular structures of a series of metal complexes derived from amino acids (Sathiskumar et al., 2015a,b; Balakrishnan et al., 2013), we report here the crystal structure of a polymeric strontium–glycine complex, {[Sr(C2H5NO2)2(H2O)3]Br2}n, (I).

Structural commentary top

The asymmetric unit of (I) contains one Sr2+ ion, one glycine ligand, one and a half water molecules and one bromide anion (Fig. 1). The Sr2+ cation and one of the water molecules (O4) are located on special positions with site symmetry 2. The bond lengths involving the carboxyl­ate atoms and the protonation of the amino group reveal a zwitterionic form for the glycine ligand in (I). The Sr2+ ion is nine-coordinated by three oxygen atoms [Sr—O = 2.526 (4)–2.661 (2) Å] of water molecules and six carboxyl­ate oxygen atoms of four glycine ligands [Sr—O = 2.605 (2)–2.703 (2) Å]. The glycine ligands coordinate each cation in a bis-bidentate and bis-monodentate way and simultaneously bridge two alkaline earth cations. As shown in Fig. 2, this coordination mode leads to the formation of polymeric chains running parallel to [001]. Adjacent Sr2+ ions are separated by 4.3497 (3) Å within a chain and the shortest Sr···Sr distance between neighbouring chains is 9.4960 (3) Å.

Supra­molecular features top

\ The crystal structure of (I) contains an intricate network of inter­molecular N—H···O, N—H···Br, O—H···O and O—H···Br hydrogen bonds (Table 1). The protonated N atom of the glycine molecule is capable of forming three hydrogen-bonding inter­actions. One of them is the characteristic head-to-tail sequence in which amino acids are self-assembled through their amino and carboxyl­ate groups (Sharma et al., 2006; Selvaraj et al., 2007; Balakrishnan et al., 2013). In (I), the zwitterionic glycine molecules are arranged in linear arrays that run parallel to the [110] direction (Fig. 3), and adjacent glycine molecules are inter­connected by an inter­molecular N1—H1A···O1 hydrogen bond. This inter­action can be described as a head-to-tail sequence having a C(5) graph-set motif (Bernstein et al., 1995). In each array, the Br- counter anions bridge neighbouring glycines. Taken together, these three inter­actions form a hydrogen-bonded sheet extending parallel to (100). One of the water molecules (O3) acts as a donor for two different Br- anions. These inter­molecular O—H···Br inter­actions result in a cyclic dibromide motif as observed in the crystal structure of N,N'-di­benzyl-N,N,N',N'-\ tetra­methyl­ethylenedi­ammonium dibromide dihydrate (Srinivasan et al., 2006). Within this motif, the distance between Br anions is 5.3398 (3) Å, and the distance between water oxygen atoms (O3···O3') is 3.932 (4) Å. Adjacent cylic dibromide motifs, which are parallel to [001], are inter­connected by another water molecule (O4) (Table 1 and Fig. 4).

Synthesis and crystallization top

Crystals of (I) were grown from an aqueous solution by slow solvent evaporation at room temperature. Analytical grade reagents glycine (Merck) and strontium bromide hexahydrate (Sigma–Aldrich) were taken in a 2:1 molar ratio, dissolved in double-distilled water and stirred well for 4 h using a temperature-controlled magnetic stirrer to yield a homogeneous mixture. The solution was finally filtered using Whatman filter paper. The beaker containing the solution was closed with a polythene sheet with two (or) three perforations and kept in a dust -ree atmosphere for slow evaporation. Single crystals were harvested after a growth period of 20 days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The positions of the amino and water H atoms were located from difference Fourier maps. The O3—H3B and O4—H4 distances of the water molecules were restrained to 0.85 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å) with Uiso(H) = 1.2Ueq(C) and were constrained to ride on their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1995); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The coordination environment of Sr2+ in the crystal structure of (I). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (a) -x, y, 1/2 - z; (b) -x, 1 - y, 1 - z; (c) x, 1 - y, -1/2 + z].
[Figure 2] Fig. 2. The crystal packing of (I) projected along [010]. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Zwitterionic glycine molecules are interconnected by intermolecular N—H···O and N—H···Br hydrogen bonds into (100) sheets.
[Figure 4] Fig. 4. Cyclic dibromide motifs are interconnected by intermolecular O—H···O interactions.
catena-Poly[[[triaquastrontium]-di-µ2-glycinato] dibromide] top
Crystal data top
[Sr(C2H5NO2)2(H2O)3]Br2Dx = 2.323 Mg m3
Mr = 451.63Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 6100 reflections
a = 16.4198 (9) Åθ = 2.5–27.8°
b = 9.5438 (5) ŵ = 10.38 mm1
c = 8.2402 (4) ÅT = 296 K
V = 1291.30 (12) Å3Block, colourless
Z = 40.15 × 0.10 × 0.10 mm
F(000) = 872
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1244 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.070
ω and ϕ scanθmax = 28.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2121
Tmin = 0.251, Tmax = 0.410k = 1212
22178 measured reflectionsl = 910
1564 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0169P)2 + 1.7773P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.86 e Å3
1564 reflectionsΔρmin = 0.67 e Å3
99 parametersExtinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0086 (3)
Crystal data top
[Sr(C2H5NO2)2(H2O)3]Br2V = 1291.30 (12) Å3
Mr = 451.63Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.4198 (9) ŵ = 10.38 mm1
b = 9.5438 (5) ÅT = 296 K
c = 8.2402 (4) Å0.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1244 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.410Rint = 0.070
22178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.86 e Å3
1564 reflectionsΔρmin = 0.67 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14184 (17)0.5997 (3)0.4781 (4)0.0178 (6)
C20.1901 (2)0.6557 (3)0.6205 (4)0.0232 (7)
H2A0.15290.69630.69890.028*
H2B0.21830.57880.67290.028*
N10.2500 (2)0.7627 (3)0.5708 (4)0.0263 (6)
O10.15044 (13)0.6537 (2)0.3416 (2)0.0224 (5)
O20.09257 (13)0.5034 (2)0.5090 (3)0.0251 (5)
O30.00732 (17)0.8029 (3)0.4322 (3)0.0308 (6)
O40.00000.3083 (4)0.25000.0331 (8)
Br10.14700 (2)0.97766 (4)0.86395 (4)0.02908 (12)
Sr20.00000.57306 (4)0.25000.01637 (12)
H1A0.279 (3)0.793 (5)0.654 (6)0.062 (15)*
H1B0.224 (2)0.830 (4)0.520 (5)0.046 (13)*
H1C0.287 (3)0.726 (4)0.505 (5)0.044 (12)*
H40.007 (3)0.264 (4)0.164 (4)0.064 (15)*
H3A0.033 (3)0.853 (5)0.404 (5)0.059 (15)*
H3B0.0497 (19)0.852 (4)0.444 (6)0.067 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (14)0.0216 (15)0.0186 (14)0.0022 (11)0.0002 (12)0.0025 (12)
C20.0231 (17)0.0283 (18)0.0183 (16)0.0036 (13)0.0017 (13)0.0028 (13)
N10.0224 (15)0.0283 (17)0.0283 (15)0.0035 (13)0.0052 (14)0.0055 (14)
O10.0204 (11)0.0284 (12)0.0184 (11)0.0046 (9)0.0007 (9)0.0022 (9)
O20.0259 (12)0.0277 (12)0.0216 (11)0.0084 (9)0.0011 (9)0.0018 (9)
O30.0295 (14)0.0273 (14)0.0356 (14)0.0015 (12)0.0082 (12)0.0045 (11)
O40.044 (2)0.031 (2)0.0248 (19)0.0000.0019 (18)0.000
Br10.02717 (19)0.0276 (2)0.0325 (2)0.00143 (14)0.00329 (15)0.00078 (14)
Sr20.01582 (19)0.0194 (2)0.01391 (19)0.0000.00064 (16)0.000
Geometric parameters (Å, º) top
C1—O11.246 (4)O2—Sr22.703 (2)
C1—O21.251 (3)O3—Sr22.661 (2)
C1—C21.513 (4)O3—H3A0.84 (5)
C1—Sr23.004 (3)O3—H3B0.842 (19)
C2—N11.477 (4)O4—Sr22.526 (4)
C2—H2A0.9700O4—H40.833 (19)
C2—H2B0.9700Sr2—O2ii2.605 (2)
N1—H1A0.88 (5)Sr2—O2i2.605 (2)
N1—H1B0.88 (4)Sr2—O3iii2.661 (2)
N1—H1C0.89 (4)Sr2—O1iii2.695 (2)
O1—Sr22.695 (2)Sr2—O2iii2.703 (2)
O2—Sr2i2.605 (2)Sr2—C1iii3.004 (3)
O1—C1—O2124.1 (3)O1iii—Sr2—O1146.83 (10)
O1—C1—C2119.7 (3)O4—Sr2—O2iii75.77 (4)
O2—C1—C2116.1 (3)O2ii—Sr2—O2iii69.96 (8)
O1—C1—Sr263.74 (15)O2i—Sr2—O2iii101.82 (7)
O2—C1—Sr264.13 (16)O3iii—Sr2—O2iii77.44 (7)
C2—C1—Sr2157.1 (2)O3—Sr2—O2iii128.53 (7)
N1—C2—C1112.2 (3)O1iii—Sr2—O2iii48.23 (6)
N1—C2—H2A109.2O1—Sr2—O2iii143.76 (6)
C1—C2—H2A109.2O4—Sr2—O275.77 (4)
N1—C2—H2B109.2O2ii—Sr2—O2101.82 (7)
C1—C2—H2B109.2O2i—Sr2—O269.96 (8)
H2A—C2—H2B107.9O3iii—Sr2—O2128.53 (7)
C2—N1—H1A111 (3)O3—Sr2—O277.44 (7)
C2—N1—H1B108 (3)O1iii—Sr2—O2143.76 (6)
H1A—N1—H1B113 (4)O1—Sr2—O248.23 (6)
C2—N1—H1C111 (3)O2iii—Sr2—O2151.53 (9)
H1A—N1—H1C104 (4)O4—Sr2—C1iii94.86 (6)
H1B—N1—H1C109 (4)O2ii—Sr2—C1iii89.95 (7)
C1—O1—Sr291.77 (17)O2i—Sr2—C1iii92.77 (7)
C1—O2—Sr2i137.62 (19)O3iii—Sr2—C1iii67.17 (8)
C1—O2—Sr291.27 (18)O3—Sr2—C1iii104.38 (8)
Sr2i—O2—Sr2110.04 (8)O1iii—Sr2—C1iii24.49 (7)
Sr2—O3—H3A106 (3)O1—Sr2—C1iii149.51 (7)
Sr2—O3—H3B124 (3)O2iii—Sr2—C1iii24.60 (7)
H3A—O3—H3B111 (4)O2—Sr2—C1iii161.97 (7)
Sr2—O4—H4120 (3)O4—Sr2—C194.86 (6)
O4—Sr2—O2ii73.73 (5)O2ii—Sr2—C192.77 (7)
O4—Sr2—O2i73.73 (5)O2i—Sr2—C189.95 (7)
O2ii—Sr2—O2i147.46 (10)O3iii—Sr2—C1104.38 (8)
O4—Sr2—O3iii145.52 (6)O3—Sr2—C167.17 (8)
O2ii—Sr2—O3iii76.97 (7)O1iii—Sr2—C1149.51 (7)
O2i—Sr2—O3iii133.43 (8)O1—Sr2—C124.49 (7)
O4—Sr2—O3145.52 (6)O2iii—Sr2—C1161.97 (7)
O2ii—Sr2—O3133.43 (8)O2—Sr2—C124.60 (7)
O2i—Sr2—O376.96 (7)C1iii—Sr2—C1170.29 (11)
O3iii—Sr2—O368.96 (11)O4—Sr2—Sr2iv71.300 (10)
O4—Sr2—O1iii106.59 (5)O2ii—Sr2—Sr2iv35.72 (5)
O2ii—Sr2—O1iii113.67 (6)O2i—Sr2—Sr2iv129.21 (5)
O2i—Sr2—O1iii76.03 (7)O3iii—Sr2—Sr2iv74.32 (6)
O3iii—Sr2—O1iii69.40 (8)O3—Sr2—Sr2iv143.02 (6)
O3—Sr2—O1iii83.18 (8)O1iii—Sr2—Sr2iv80.00 (4)
O4—Sr2—O1106.59 (5)O1—Sr2—Sr2iv110.90 (4)
O2ii—Sr2—O176.03 (7)O2iii—Sr2—Sr2iv34.24 (5)
O2i—Sr2—O1113.67 (6)O2—Sr2—Sr2iv131.99 (5)
O3iii—Sr2—O183.18 (8)C1iii—Sr2—Sr2iv55.55 (6)
O3—Sr2—O169.40 (8)C1—Sr2—Sr2iv128.31 (6)
O1—C1—C2—N16.2 (4)O1—C1—O2—Sr2i144.8 (2)
O2—C1—C2—N1176.5 (3)C2—C1—O2—Sr2i32.3 (4)
Sr2—C1—C2—N198.5 (5)Sr2—C1—O2—Sr2i122.2 (3)
O2—C1—O1—Sr222.7 (3)O1—C1—O2—Sr222.6 (3)
C2—C1—O1—Sr2154.3 (2)C2—C1—O2—Sr2154.5 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z1/2; (iii) x, y, z+1/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1v0.88 (5)2.00 (5)2.879 (4)175 (4)
N1—H1B···Br1vi0.88 (4)2.58 (4)3.450 (3)179 (4)
N1—H1C···Br1vii0.89 (4)2.51 (4)3.321 (3)152 (3)
O4—H4···O3ii0.83 (2)2.01 (2)2.828 (3)166 (5)
O3—H3A···Br1vi0.84 (5)2.50 (5)3.335 (3)170 (4)
O3—H3B···Br1viii0.84 (2)2.55 (3)3.296 (3)148 (4)
Symmetry codes: (ii) x, y+1, z1/2; (v) x+1/2, y+3/2, z+1/2; (vi) x, y+2, z1/2; (vii) x+1/2, y+3/2, z1/2; (viii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (5)2.00 (5)2.879 (4)175 (4)
N1—H1B···Br1ii0.88 (4)2.58 (4)3.450 (3)179 (4)
N1—H1C···Br1iii0.89 (4)2.51 (4)3.321 (3)152 (3)
O4—H4···O3iv0.833 (19)2.01 (2)2.828 (3)166 (5)
O3—H3A···Br1ii0.84 (5)2.50 (5)3.335 (3)170 (4)
O3—H3B···Br1v0.842 (19)2.55 (3)3.296 (3)148 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y+2, z1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y+1, z1/2; (v) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Sr(C2H5NO2)2(H2O)3]Br2
Mr451.63
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)16.4198 (9), 9.5438 (5), 8.2402 (4)
V3)1291.30 (12)
Z4
Radiation typeMo Kα
µ (mm1)10.38
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.251, 0.410
No. of measured, independent and
observed [I > 2σ(I)] reflections
22178, 1564, 1244
Rint0.070
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.14
No. of reflections1564
No. of parameters99
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.67

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1995), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

 

Acknowledgements

TB and PR acknowledge the Tamil Nadu State Council for Science and Technology, Tamil Nadu, for providing funding as a Major Research Project Scheme (TNSCST/S&T project/PS/RJ/2013–2014). ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

References

First citationAltomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842–846.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBalakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122–m125.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350–4355.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A , 138, 187–194.  CSD CrossRef CAS Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217–219.  CSD CrossRef IUCr Journals Google Scholar
First citationSelvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, B. R., Dhuri, S. N., Sawant, J. V., Näther, C. & Bensch, W. (2006). J. Chem. Sci. 118, 211–218.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 875-878
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds