metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages m145-m146

Crystal structure of catena-poly[[di­aqua­cobalt(II)]-bis­­[μ-5-(4-carb­­oxy­ylato­phenyl)picolinato]-κ3N,O2:O5;κ3O5:N,O2-[di­aqua­cobalt(II)]-μ-1-[4-(1H-imidazol-1-yl)phen­yl]-1H-imidazole-κ2N3:N3′]

CROSSMARK_Color_square_no_text.svg

aCollege of Science, China Three Gorges University, Yichang 443002, People's Republic of China, and bCollege of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: wzlsanxia@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 26 May 2015; accepted 25 June 2015; online 30 June 2015)

The asymmetric unit of the title polymeric CoII complex, [Co2(C13H7NO4)2(C12H10N4)(H2O)4]n, contains a CoII cation, a 5-(4-carboxyl­atophen­yl)picolinate dianion, two coordination water mol­ecules and half of 1-[4-(1H-imidazol-1-yl)phen­yl]-1H-imidazole ligand. The CoII cation is coordinated by two picolinate dianions, two water mol­ecules and one 1-[4-(1H-imidazol-1-yl)phen­yl]-1H-imidazole mol­ecule in a distorted N2O4 octa­hedral coordination geometry. The two picolinate dianions are related by an inversion centre and link two CoII cations, forming a binuclear unit, which is further bridged by the imidazole mol­ecules, located about an inversion centre, into the polymeric chain propagating along the [-1-11] direction. In the crystal, the three-dimensional supra­molecular architecture is constructed by O—H⋯O hydrogen bonds between the coordinating water mol­ecules and the non-coordinating carboxyl­ate O atoms of adjacent polymeric chains.

1. Related literature

For the structure of a related 5-(4-carb­oxy­phen­yl)picolinate complex, see: Meng et al. (2012[Meng, F.-J., Jia, H.-Q., Hu, N.-H. & Zhou, H. (2012). Acta Cryst. E68, m1364.]). For a related 1,4-bis­(1-imidazoly)benzene compound, see: Li et al. (2009[Li, Z.-X., Xu, Y., Zuo, Y., Li, L., Pan, Q.-H., Hu, T.-L. & Bu, X.-H. (2009). Cryst. Growth Des. 9, 3904-3909.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co2(C13H7NO4)2(C12H10N4)(H2O)4]

  • Mr = 441.28

  • Triclinic, [P \overline 1]

  • a = 7.055 (3) Å

  • b = 7.190 (3) Å

  • c = 20.038 (10) Å

  • α = 80.25 (2)°

  • β = 79.90 (2)°

  • γ = 64.080 (15)°

  • V = 895.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.17 mm

2.2. Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.848

  • 9552 measured reflections

  • 4104 independent reflections

  • 3636 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.05

  • 4104 reflections

  • 274 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1i 2.1403 (18)
Co1—N2 2.0815 (18)
Co1—O2 2.1575 (16)
Co1—O4i 2.1028 (16)
Co1—O5 2.0773 (18)
Co1—O6 2.0889 (19)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3ii 0.81 (2) 1.89 (2) 2.697 (3) 178 (4)
O5—H5B⋯O1iii 0.82 (2) 2.01 (2) 2.825 (4) 175 (3)
O6—H6A⋯O3iv 0.81 (3) 1.98 (3) 2.769 (3) 165 (3)
O6—H6B⋯O1v 0.81 (2) 1.99 (2) 2.795 (3) 171 (3)
Symmetry codes: (ii) -x, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent years, many successful examples have been made based on mixed ligands. Pyridine carboxylic acids and N-donor ligand as good kinds of organic linkers were always selected to construct various metal-organic frameworks (MOFs) with specially properties. In this work, we choose 5-(4-carboxyphenyl)picolinic acid and 1,4-bis(1-imidazoly)benzene to construct a new kind of Co-based MOFs. By now, a related 5-(4-carboxyphenyl)picolinate complex (Meng et al., 2012) and a related 1,4-bis(1-imidazoly)benzene compound (Li et al., 2009) have been reported.

Related literature top

For the structure of a related 5-(4-carboxyphenyl)picolinate complex, see: Meng et al.(2012). For a related 1,4-bis(1-imidazoly)benzene compound, see: Li et al. (2009).

Experimental top

An aqueous mixture of cobalt(II) nitrate hexahydrate (58.2 mg, 0.2 mmol), 5-(4-carboxyphenyl)picolinic acid 48.6 mg, 0.2 mmol) and 1,4-bis(1-imidazoly)benzene (42 mg, 0.2 mmol) was placed in a Teflon-lined, stainless-steel reactor. The reactor was heated to 413 K for 72 hours. It was then cooled to room temperature at the rate of 15 K per hour. Red crystals were isolated in 73% yield (based on Co). C, H, N elemental analysis. calcd.for C19 H16 O6 N3 Co: C 51.71, H 3.65, N 9.52%; found C 51.88, H 3.71,N 9.92%.

Refinement top

Water H atoms were located in a difference Fourier map and refined with a distance constraint of O—H = 0.82 (1) Å, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, -z.
catena-Poly[[diaquacobalt(II)]-bis[µ-5-(4-carboxylatophenyl)picolinato]-κ3N,O2:O5;κ3O5:N,O2-[diaquacobalt(II)]-µ-1-[4-(1H-imidazol-1-yl)phenyl]-1H-imidazole-κ2N3:N3'] top
Crystal data top
[Co2(C13H7NO4)2(C12H10N4)(H2O)4]Z = 2
Mr = 441.28F(000) = 452
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.055 (3) ÅCell parameters from 2498 reflections
b = 7.190 (3) Åθ = 2.1–27.6°
c = 20.038 (10) ŵ = 1.00 mm1
α = 80.25 (2)°T = 293 K
β = 79.90 (2)°Prism, red
γ = 64.080 (15)°0.20 × 0.20 × 0.17 mm
V = 895.1 (7) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4104 independent reflections
Radiation source: fine-focus sealed tube3636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 27.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.825, Tmax = 0.848k = 99
9552 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.035P)2 + 0.341P]
where P = (Fo2 + 2Fc2)/3
4104 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.34 e Å3
4 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co2(C13H7NO4)2(C12H10N4)(H2O)4]γ = 64.080 (15)°
Mr = 441.28V = 895.1 (7) Å3
Triclinic, P1Z = 2
a = 7.055 (3) ÅMo Kα radiation
b = 7.190 (3) ŵ = 1.00 mm1
c = 20.038 (10) ÅT = 293 K
α = 80.25 (2)°0.20 × 0.20 × 0.17 mm
β = 79.90 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3636 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.848Rint = 0.045
9552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
4104 reflectionsΔρmin = 0.41 e Å3
274 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00343 (4)0.48246 (4)0.218107 (13)0.02287 (10)
N10.1553 (3)0.6510 (3)0.69865 (8)0.0240 (4)
N20.1229 (3)0.5882 (3)0.12579 (9)0.0286 (4)
N30.2772 (3)0.7531 (3)0.04950 (8)0.0291 (4)
O10.2958 (3)0.7975 (3)0.25034 (8)0.0359 (4)
O20.1274 (3)0.5901 (3)0.28498 (8)0.0368 (4)
O30.3160 (3)0.8566 (2)0.81611 (8)0.0325 (3)
O40.1426 (3)0.6548 (3)0.83101 (7)0.0341 (4)
O50.2808 (3)0.7538 (3)0.22533 (10)0.0404 (4)
O60.2678 (3)0.2026 (3)0.22547 (11)0.0443 (4)
C10.2182 (3)0.6971 (3)0.29511 (10)0.0247 (4)
C20.2347 (3)0.7058 (3)0.36903 (10)0.0242 (4)
C30.2170 (3)0.5541 (3)0.41956 (11)0.0279 (4)
H30.19910.44360.40780.033*
C40.2260 (3)0.5653 (3)0.48755 (11)0.0286 (4)
H40.21900.45960.52040.034*
C50.2452 (3)0.7331 (3)0.50710 (10)0.0248 (4)
C60.2625 (4)0.8848 (3)0.45621 (11)0.0294 (5)
H60.27480.99830.46810.035*
C70.2618 (3)0.8700 (3)0.38789 (11)0.0287 (4)
H70.27940.97010.35460.034*
C80.2451 (3)0.7502 (3)0.58043 (10)0.0253 (4)
C90.1620 (3)0.6403 (3)0.63224 (10)0.0270 (4)
H90.10850.55520.61980.032*
C100.2369 (3)0.7693 (3)0.71770 (10)0.0246 (4)
C110.3202 (4)0.8855 (4)0.67012 (11)0.0330 (5)
H110.37400.96810.68400.040*
C120.3220 (4)0.8769 (4)0.60140 (11)0.0329 (5)
H120.37520.95630.56900.039*
C130.2319 (3)0.7604 (3)0.79457 (10)0.0246 (4)
C140.2106 (4)0.7192 (4)0.11613 (11)0.0341 (5)
H140.22540.78130.15080.041*
C150.2261 (4)0.6350 (4)0.01419 (11)0.0346 (5)
H150.25070.62690.03260.042*
C160.1328 (4)0.5334 (4)0.06182 (11)0.0332 (5)
H160.08300.44090.05290.040*
C170.5370 (4)0.8784 (4)0.06193 (11)0.0373 (6)
H170.56150.79600.10340.045*
C180.3908 (4)0.8791 (3)0.02369 (10)0.0286 (5)
C190.3533 (4)0.9994 (4)0.03836 (11)0.0346 (5)
H190.25570.99820.06390.042*
H5A0.288 (5)0.869 (2)0.2128 (14)0.052*
H5B0.403 (2)0.767 (5)0.2352 (15)0.052*
H6A0.383 (3)0.191 (5)0.2064 (14)0.052*
H6B0.263 (5)0.090 (2)0.2309 (15)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02701 (16)0.02627 (15)0.02110 (15)0.01781 (12)0.00122 (10)0.00029 (10)
N10.0276 (9)0.0289 (9)0.0216 (8)0.0184 (8)0.0011 (7)0.0018 (7)
N20.0365 (10)0.0367 (10)0.0220 (9)0.0261 (9)0.0009 (7)0.0002 (7)
N30.0420 (11)0.0399 (10)0.0188 (8)0.0316 (9)0.0007 (7)0.0013 (7)
O10.0512 (10)0.0455 (9)0.0246 (8)0.0345 (9)0.0010 (7)0.0021 (7)
O20.0505 (10)0.0487 (10)0.0291 (8)0.0366 (9)0.0077 (7)0.0026 (7)
O30.0429 (9)0.0393 (9)0.0288 (8)0.0294 (8)0.0038 (7)0.0044 (7)
O40.0496 (10)0.0474 (9)0.0220 (7)0.0378 (9)0.0002 (6)0.0017 (7)
O50.0300 (9)0.0252 (8)0.0647 (12)0.0139 (8)0.0014 (8)0.0008 (8)
O60.0285 (9)0.0289 (8)0.0732 (13)0.0152 (8)0.0035 (8)0.0000 (9)
C10.0246 (10)0.0273 (10)0.0256 (10)0.0140 (9)0.0030 (8)0.0031 (8)
C20.0218 (10)0.0308 (10)0.0231 (10)0.0139 (9)0.0022 (7)0.0036 (8)
C30.0294 (11)0.0306 (11)0.0298 (11)0.0180 (9)0.0027 (8)0.0042 (9)
C40.0338 (12)0.0310 (11)0.0267 (11)0.0205 (10)0.0026 (8)0.0007 (8)
C50.0228 (10)0.0323 (10)0.0235 (10)0.0158 (9)0.0010 (8)0.0031 (8)
C60.0390 (12)0.0331 (11)0.0270 (10)0.0250 (10)0.0037 (9)0.0035 (9)
C70.0374 (12)0.0313 (11)0.0240 (10)0.0217 (10)0.0047 (8)0.0016 (8)
C80.0256 (10)0.0323 (10)0.0216 (10)0.0163 (9)0.0009 (8)0.0022 (8)
C90.0314 (11)0.0331 (11)0.0251 (10)0.0213 (9)0.0039 (8)0.0026 (8)
C100.0253 (10)0.0283 (10)0.0256 (10)0.0167 (9)0.0009 (8)0.0035 (8)
C110.0445 (13)0.0420 (12)0.0279 (11)0.0331 (11)0.0004 (9)0.0050 (9)
C120.0442 (14)0.0445 (13)0.0229 (10)0.0332 (12)0.0005 (9)0.0007 (9)
C130.0271 (11)0.0272 (10)0.0236 (10)0.0156 (9)0.0018 (8)0.0028 (8)
C140.0519 (14)0.0485 (13)0.0187 (10)0.0381 (12)0.0015 (9)0.0040 (9)
C150.0461 (14)0.0486 (13)0.0215 (10)0.0322 (12)0.0015 (9)0.0066 (9)
C160.0468 (14)0.0405 (12)0.0271 (11)0.0323 (11)0.0012 (9)0.0055 (9)
C170.0531 (15)0.0522 (14)0.0211 (10)0.0385 (13)0.0090 (10)0.0098 (10)
C180.0404 (13)0.0369 (12)0.0189 (9)0.0283 (10)0.0020 (8)0.0014 (8)
C190.0433 (13)0.0516 (14)0.0233 (10)0.0339 (12)0.0081 (9)0.0032 (9)
Geometric parameters (Å, º) top
Co1—N1i2.1403 (18)C3—H30.9300
Co1—N22.0815 (18)C4—C51.396 (3)
Co1—O22.1575 (16)C4—H40.9300
Co1—O4i2.1028 (16)C5—C61.393 (3)
Co1—O52.0773 (18)C5—C81.495 (3)
Co1—O62.0889 (19)C6—C71.392 (3)
N1—C91.338 (3)C6—H60.9300
N1—C101.347 (2)C7—H70.9300
N1—Co1i2.1403 (18)C8—C121.394 (3)
N2—C141.309 (3)C8—C91.400 (3)
N2—C161.385 (3)C9—H90.9300
N3—C141.354 (3)C10—C111.384 (3)
N3—C151.383 (3)C10—C131.526 (3)
N3—C181.435 (3)C11—C121.386 (3)
O1—C11.257 (2)C11—H110.9300
O2—C11.254 (2)C12—H120.9300
O3—C131.251 (2)C14—H140.9300
O4—C131.255 (2)C15—C161.357 (3)
O4—Co1i2.1028 (16)C15—H150.9300
O5—H5A0.810 (10)C16—H160.9300
O5—H5B0.813 (10)C17—C19ii1.386 (3)
O6—H6A0.811 (10)C17—C181.387 (3)
O6—H6B0.814 (10)C17—H170.9300
C1—C21.520 (3)C18—C191.384 (3)
C2—C31.390 (3)C19—C17ii1.386 (3)
C2—C71.395 (3)C19—H190.9300
C3—C41.392 (3)
O5—Co1—N294.70 (8)C6—C5—C8121.13 (18)
O5—Co1—O6172.08 (8)C4—C5—C8120.96 (18)
N2—Co1—O692.55 (8)C7—C6—C5121.32 (19)
O5—Co1—O4i92.29 (8)C7—C6—H6119.3
N2—Co1—O4i92.21 (7)C5—C6—H6119.3
O6—Co1—O4i90.60 (8)C6—C7—C2120.39 (19)
O5—Co1—N1i86.11 (8)C6—C7—H7119.8
N2—Co1—N1i169.23 (7)C2—C7—H7119.8
O6—Co1—N1i87.36 (8)C12—C8—C9116.25 (18)
O4i—Co1—N1i77.02 (7)C12—C8—C5122.94 (18)
O5—Co1—O289.39 (8)C9—C8—C5120.80 (18)
N2—Co1—O297.93 (7)N1—C9—C8123.55 (18)
O6—Co1—O286.46 (8)N1—C9—H9118.2
O4i—Co1—O2169.55 (6)C8—C9—H9118.2
N1i—Co1—O292.81 (7)N1—C10—C11121.47 (19)
C9—N1—C10119.08 (17)N1—C10—C13114.58 (17)
C9—N1—Co1i126.97 (14)C11—C10—C13123.95 (18)
C10—N1—Co1i113.75 (13)C10—C11—C12118.96 (19)
C14—N2—C16105.69 (17)C10—C11—H11120.5
C14—N2—Co1127.21 (15)C12—C11—H11120.5
C16—N2—Co1127.09 (14)C11—C12—C8120.62 (19)
C14—N3—C15106.92 (17)C11—C12—H12119.7
C14—N3—C18124.58 (18)C8—C12—H12119.7
C15—N3—C18128.39 (17)O3—C13—O4125.53 (19)
C1—O2—Co1151.15 (14)O3—C13—C10118.33 (17)
C13—O4—Co1i117.89 (13)O4—C13—C10116.14 (17)
Co1—O5—H5A124 (2)N2—C14—N3111.75 (19)
Co1—O5—H5B129 (2)N2—C14—H14124.1
H5A—O5—H5B106 (3)N3—C14—H14124.1
Co1—O6—H6A122 (2)C16—C15—N3105.86 (19)
Co1—O6—H6B123 (2)C16—C15—H15127.1
H6A—O6—H6B109 (3)N3—C15—H15127.1
O2—C1—O1126.48 (19)C15—C16—N2109.77 (19)
O2—C1—C2116.35 (18)C15—C16—H16125.1
O1—C1—C2117.17 (17)N2—C16—H16125.1
C3—C2—C7118.53 (18)C19ii—C17—C18120.0 (2)
C3—C2—C1120.86 (18)C19ii—C17—H17120.0
C7—C2—C1120.59 (18)C18—C17—H17120.0
C2—C3—C4120.86 (19)C19—C18—C17120.91 (19)
C2—C3—H3119.6C19—C18—N3120.09 (19)
C4—C3—H3119.6C17—C18—N3118.99 (19)
C3—C4—C5120.90 (19)C18—C19—C17ii119.1 (2)
C3—C4—H4119.6C18—C19—H19120.4
C5—C4—H4119.6C17ii—C19—H19120.4
C6—C5—C4117.91 (19)
O5—Co1—N2—C1476.7 (2)Co1i—N1—C9—C8172.91 (15)
O6—Co1—N2—C14100.1 (2)C12—C8—C9—N10.4 (3)
O4i—Co1—N2—C14169.2 (2)C5—C8—C9—N1179.25 (19)
N1i—Co1—N2—C14170.6 (3)C9—N1—C10—C112.4 (3)
O2—Co1—N2—C1413.3 (2)Co1i—N1—C10—C11172.91 (17)
O5—Co1—N2—C16103.7 (2)C9—N1—C10—C13176.73 (18)
O6—Co1—N2—C1679.4 (2)Co1i—N1—C10—C138.0 (2)
O4i—Co1—N2—C1611.3 (2)N1—C10—C11—C121.0 (3)
N1i—Co1—N2—C169.9 (5)C13—C10—C11—C12178.0 (2)
O2—Co1—N2—C16166.21 (19)C10—C11—C12—C81.2 (4)
O5—Co1—O2—C182.1 (3)C9—C8—C12—C111.9 (3)
N2—Co1—O2—C112.6 (3)C5—C8—C12—C11179.4 (2)
O6—Co1—O2—C1104.7 (3)Co1i—O4—C13—O3177.72 (17)
O4i—Co1—O2—C1178.5 (3)Co1i—O4—C13—C102.5 (2)
N1i—Co1—O2—C1168.2 (3)N1—C10—C13—O3175.91 (18)
Co1—O2—C1—O17.1 (5)C11—C10—C13—O33.2 (3)
Co1—O2—C1—C2172.7 (2)N1—C10—C13—O43.9 (3)
O2—C1—C2—C320.7 (3)C11—C10—C13—O4177.0 (2)
O1—C1—C2—C3159.4 (2)C16—N2—C14—N30.0 (3)
O2—C1—C2—C7157.4 (2)Co1—N2—C14—N3179.63 (15)
O1—C1—C2—C722.4 (3)C15—N3—C14—N20.4 (3)
C7—C2—C3—C40.1 (3)C18—N3—C14—N2176.1 (2)
C1—C2—C3—C4178.12 (19)C14—N3—C15—C160.7 (3)
C2—C3—C4—C52.3 (3)C18—N3—C15—C16175.6 (2)
C3—C4—C5—C62.2 (3)N3—C15—C16—N20.7 (3)
C3—C4—C5—C8177.2 (2)C14—N2—C16—C150.5 (3)
C4—C5—C6—C70.3 (3)Co1—N2—C16—C15179.93 (16)
C8—C5—C6—C7179.7 (2)C19ii—C17—C18—C190.5 (4)
C5—C6—C7—C22.7 (3)C19ii—C17—C18—N3179.3 (2)
C3—C2—C7—C62.5 (3)C14—N3—C18—C19143.7 (2)
C1—C2—C7—C6175.7 (2)C15—N3—C18—C1940.6 (4)
C6—C5—C8—C1219.3 (3)C14—N3—C18—C1736.1 (3)
C4—C5—C8—C12161.3 (2)C15—N3—C18—C17139.6 (3)
C6—C5—C8—C9159.4 (2)C17—C18—C19—C17ii0.5 (4)
C4—C5—C8—C919.9 (3)N3—C18—C19—C17ii179.3 (2)
C10—N1—C9—C81.7 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3iii0.81 (2)1.89 (2)2.697 (3)178 (4)
O5—H5B···O1iv0.82 (2)2.01 (2)2.825 (4)175 (3)
O6—H6A···O3v0.81 (3)1.98 (3)2.769 (3)165 (3)
O6—H6B···O1vi0.81 (2)1.99 (2)2.795 (3)171 (3)
Symmetry codes: (iii) x, y+2, z+1; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x, y1, z.
Selected bond lengths (Å) top
Co1—N1i2.1403 (18)Co1—O4i2.1028 (16)
Co1—N22.0815 (18)Co1—O52.0773 (18)
Co1—O22.1575 (16)Co1—O62.0889 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3ii0.806 (19)1.892 (18)2.697 (3)178 (4)
O5—H5B···O1iii0.82 (2)2.01 (2)2.825 (4)175 (3)
O6—H6A···O3iv0.81 (3)1.98 (3)2.769 (3)165 (3)
O6—H6B···O1v0.81 (2)1.989 (18)2.795 (3)171 (3)
Symmetry codes: (ii) x, y+2, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y1, z.
 

Acknowledgements

This work was supported financially by the Graduate Student Research Innovation Fund of CTGU (CX2014094) and Training Excellent Master's Thesis Fund of CTGU (Nos. PY2015074, PY2015030 and PY2015024), China.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Z.-X., Xu, Y., Zuo, Y., Li, L., Pan, Q.-H., Hu, T.-L. & Bu, X.-H. (2009). Cryst. Growth Des. 9, 3904–3909.  CSD CrossRef CAS Google Scholar
First citationMeng, F.-J., Jia, H.-Q., Hu, N.-H. & Zhou, H. (2012). Acta Cryst. E68, m1364.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages m145-m146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds