research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 864-866

Crystal structure of 4-({5-[(E)-(3,5-di­fluoro­phen­yl)diazen­yl]-2-hy­dr­oxy­benzyl­­idene}amino)-2,2,6,6-tetra­methyl­piperidin-1-ox­yl

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Harran University, 63300 Osmanbey, Şanlıurfa, Turkey, bDepartment of Science Education, Aksaray University, 68100 Aksaray, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 June 2015; accepted 23 June 2015; online 27 June 2015)

The asymmetric unit of the title compound, C22H25F2N4O2, contains two crystallographically independent mol­ecules. In one mol­ecule, the two benzene rings are oriented at a dihedral angle of 1.93 (10)° and in the other mol­ecule the corresponding dihedral angle is 7.19 (9)°. The piperidine rings in the two mol­ecules adopt a similar distorted chair conformation, and both have pseudo-mirror planes passing through the N—O bonds. An intra­molecular O—H⋯N hydrogen bond between the hy­droxy group and the imine N atom is observed in both mol­ecules. In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds, enclosing R22(6) ring motifs, and weak ππ stacking inter­actions link the mol­ecules into a three-dimensional supra­molecular network, with centroid-to-centroid distances between the nearly parallel phenyl and benzene rings of adjacent mol­ecules of 3.975 (2) and 3.782 (2) Å.

1. Chemical context

It is well known that the 4-amino-2,2,6,6-tetra­methyl­piperidine-1-oxyl (4-amino-TEMPO) free nitroxyl radical has been attached to various organic compounds (such as aldehydes, ketons, azo compounds and carb­oxy­lic and amino acids) and biomolecules (such as lipids, proteins, steroids and metalloenzymes) (Gallez et al. 1992[Gallez, B., Demeure, R., Debuyst, R., Leonard, D., Dejehet, F. & Dumont, P. (1992). Magn. Reson. Imaging, 10, 445-455.]; Berliner, 1976[Berliner, L. J. (1976). Editor. In Spin Labeling: Theory and Applications. New York: Academic Press.]) to yield a wide variety of TEMPO-bearing mol­ecules named as spin-labeled compounds (Rosen et al., 1999[Rosen, G. M., Britigan, B. E., Halpern, H. J. & Pou, S. (1999). In Free Radicals: Biology and Detection by Spin Trapping. New York: Oxford University Press Inc.]; Gnewuch & Sosnovsky, 1986[Gnewuch, T. & Sosnovsky, G. (1986). Chem. Rev. 86, 203-238.]). These types of nitroxide free radicals have different applications such as magnetic resonance imaging (Likhtenstein et al., 2008[Likhtenstein, G. I., Yamauchi, J., Nakatsuji, S., Smirnov, A. I. & Tamura, R. (2008). Nitroxides, pp. 331-399. Weinheim: Wiley-VCH.]), protection from oxidative stress and irradiative damage (Hahn et al., 1994[Hahn, S. M., Krishna, C. M., Samuni, A., DeGraff, W., Cuscela, D. O., Johnstone, P. & Mitchell, J. B. (1994). Cancer Res. 54, 2006-2010.]), controlled `living' free-radical polymerization (Hawker, 1997[Hawker, C. J. (1997). Acc. Chem. Res. 30, 373-382.]), spin trapping and spin-labeling in various fields of chemistry, biology and material sciences (Tretyakov & Ovcharenko, 2009[Tretyakov, E. V. & Ovcharenko, V. I. (2009). Russ. Chem. Rev. 78, 971-1012.]). Our literature searches revealed that while a verity of TEMPO-labeled radicals with various imines, alcohol amines, carb­oxy­lic acids, salicyl­aldehydes, azo compounds, ketone derivatives have been designed, no TEMPO-labeled compound on the basis of phenyl­azo-salicyl­aldehyde compounds has been reported. We report herein the synthesis and structure of the new class title spin-labeled compound.

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules (Fig. 1[link]). The mol­ecules include short intra­molecular O—H ⋯ N hydrogen bonds (Table 1[link]), which mean that the ligand is in the phenol–imine form. The C=N imine bond distances and C—N—C bond angles (Table 1[link]) also indicate the existence of the phenol–imine tautomer, and they are comparable with the corresponding values of 1.276 (2), 1.279 (2) Å and 124.64 (17), 123.05 (16)° in 1,3-bis­[2-(2-hy­droxy­benzyl­idene-amino)­phen­oxy]propane (Hökelek et al., 2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

N3—C13 1.270 (3) N7—C35 1.272 (3)
       
C13—N3—C14 121.6 (2) C35—N7—C36 117.9 (2)
       
C17—N4—C16—C15 −33.9 (4) N4—C16—C15—C14 44.0 (3)
C16—N4—C17—C18 35.4 (4) C14—C18—C17—N4 −46.1 (3)
C39—N8—C38—C37 36.8 (3) C40—C36—C37—C38 61.4 (3)
C38—N8—C39—C40 −34.3 (3) C37—C36—C40—C39 −59.0 (3)
C18—C14—C15—C16 −58.4 (3) N8—C38—C37—C36 −48.9 (3)
C15—C14—C18—C17 59.1 (3) N8—C39—C40—C36 44.0 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.

The phenyl [A (C1–C6) and D (C23–C28)] and benzene [B (C7–C12) and E (C29–C34)] rings are oriented at dihedral angles of A/B = 1.93 (10), A/D = 3.17 (10), A/E = 4.87 (10), B/D = 5.05 (9), B/E = 4.61 (9) and D/E = 7.19 (9)°. The six-membered rings (O1/H1/N3/C10/C11/C13) and (O3/H3/N7/C31/C32/C35) are almost planar, and they are oriented at dihedral angles of 0.83 (10) and 0.92 (9)°, respectively, to the adjacent benzene (B and E) rings.

The piperidine [C (N4/C14–C18) and F (N8/C36–C40)] rings are in distorted chair conformations [φ = −5.1 (9), θ = 21.7 (3)° (for ring C) and φ = −170.3 (8), θ = 157.9 (3)° (for ring F)] having total puckering amplitudes QT of 0.491 (3) Å (for ring C) and 0.509 (3) Å (for ring F), and they have pseudo mirror planes passing through the N4—O2 (for ring C) and N8—O4 (for ring F) bonds.

3. Supra­molecular features

In the crystal, strong intra­molecular O—H⋯N and weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds (Table 2[link]) link the mol­ecules, enclosing R22(6) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and forming layers parallel to (001), into a three-dimensional network (Fig. 2[link]). The ππ stacking inter­actions between the phenyl and benzene rings, Cg1⋯Cg5i and Cg2⋯Cg4i [symmetry code: (i) x − 1, y, z, where Cg1, Cg2, Cg4 and Cg5 are the centroids of the rings A (C1–C6), B (C7–C12), D (C23–C28) and E (C29–C34), respectively], with centroid–centroid distances of 3.975 (2) and 3.782 (2) Å, respectively, may further stabilize the structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 1.03 (5) 1.66 (5) 2.585 (3) 147 (4)
O3—H3⋯N7 0.88 (4) 1.85 (4) 2.639 (3) 148 (4)
C13—H13⋯O4i 0.96 (2) 2.44 (2) 3.324 (3) 154.5 (2)
C15—H15A⋯F1ii 0.97 2.43 3.218 (3) 138
C30—H30⋯O2iii 0.93 2.36 3.222 (3) 154
C35—H35⋯O2iii 0.97 (2) 2.44 (2) 3.318 (3) 150.5 (2)
C37—H37B⋯F2 0.97 2.48 3.346 (3) 148
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure, viewed down [001]. Intra­molecular O—H⋯N and inter­molecular C—H⋯O and C—H⋯F hydrogen bonds, which enclose R22(6) ring motifs, are shown as dashed lines. H atoms not involved in these hydrogen bonds have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized by the reaction of 5-[(3,5-di­fluoro­phen­yl)diazen­yl]-2-hy­droxy­benzaldehyde (Ba & Ma­thias, 2013[Ba, Y. & Mathias, E. V. (2013). Patent Appl. Publ. US 20120065230A1.]) with 4-amino-2,2,6,6-tetra­methyl­piperidine-1-oxyl (4-amino-TEMPO). 4-amino-TEMPO (171 mg, 1 mmol) in hexane (20 ml) was added to a stirred hexa­ne/CHCl3 (1:1) solution (70 ml) of 5-[(3,5-di­fluoro­phen­yl)diazen­yl]-2-hy­droxy­benzaldehyde (262 mg, 1 mmol), and heated at 333 K for 2 h. Then, the reaction mixture was left to slowly cool to room temperature. After one day, orange microcrystals were obtained (yield: 348 mg, 84%). Orange block-shaped crystals, suitable for X-ray analysis, were obtained by recrystallization from methanol/CHCl3 (1:1) solution by slow evaporation at room temperature after several days (m.p. 473–475 K).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atoms H1 and H3 (for OH) and H13 and H35 (for CH) were located in a difference Fourier map and were refined freely. The other C-bound H atoms were positioned geometrically with C—H = 0.93 Å (for aromatic CH), 0.96 Å (for CH3), 0.97 Å (for CH2) and 0.98 Å (for CH), and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C22H25F2N4O2
Mr 415.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.5115 (3), 23.1062 (5), 13.8677 (3)
β (°) 100.639 (3)
V3) 4255.06 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.15 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.550, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 73169, 10597, 5159
Rint 0.101
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.163, 1.08
No. of reflections 10597
No. of parameters 565
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

It is well known that the 4-amino-2,2,6,6-tetra­methyl­piperidine-1-oxyl (4-amino-TEMPO) free nitroxyl radical has been attached to various organic compounds (such as aldehydes, ketons, azo compounds and carb­oxy­lic and amino acids) and biomolecules (such as lipids, proteins, steroids and metalloenzymes) (Gallez et al. 1992; Berliner, 1976) to yield a wide variety of TEMPO-bearing molecules named as spin-labeled compounds (Rosen et al., 1999; Gnewuch & Sosnovsky, 1986). These types of nitroxide free radicals have different applications such as magnetic resonance imaging (Likhtenstein et al., 2008), protection from oxidative stress and irradiative damage (Hahn et al., 1994), controlled `living' free-radical polymerization (Hawker, 1997), spin trapping and spin-labeling in various fields of chemistry, biology and material sciences (Tretyakov & Ovcharenko, 2009). Our literature searches revealed that while a verity of TEMPO-labeled radicals with various imines, alcohol amines, carb­oxy­lic acids, salicyl­aldehydes, azo compounds, ketone derivatives have been designed, no TEMPO-labeled compounds on the basis of phenyl­azo-salicyl­aldehyde compounds have been reported. We report herein the synthesis and structure of the new class title spin-labeled compound.

Structural commentary top

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1). The molecules include short intra­molecular O—H ··· N hydrogen bonds (Table 1), which mean that the ligand is in the phenol–imine form. The CN imine bond distances and C—N—C bond angles (Table 1) also indicate the existence of the phenol–imine tautomer, and they are comparable with the corresponding values of 1.276 (2), 1.279 (2) Å and 124.64 (17), 123.05 (16)° in 1,3-bis­[2-(2-hy­droxy­benzyl­idene- amino)­phen­oxy]­propane (Hökelek et al., 2004).

The phenyl [A (C1–C6) and D (C23–C28)] and benzene [B (C7–C12) and E (C29–C34)] rings are oriented at dihedral angles of A/B = 1.93 (10), A/D = 3.17 (10), A/E = 4.87 (10), B/D = 5.05 (9), B/E = 4.61 (9) and D/E = 7.19 (9)°. The six-membered rings (O1/H1/N3/C10/C11/C13) and (O3/H3/N7/C31/C32/C35) are almost planar, and they are oriented with respect to the adjacent benzene (B and E) rings at dihedral angles of 0.83 (10) and 0.92 (9)°, respectively.

The piperidine [C (N4/C14–C18) and F (N8/C36–C40)] rings are in distorted chair conformations [ϕ = -5.1 (9), θ = 21.7 (3)° (for ring C) and ϕ = -170.3 (8), θ = 157.9 (3)° (for ring F)] having total puckering amplitudes QT of 0.491 (3) Å (for ring C) and 0.509 (3) Å (for ring F), and they have pseudo mirror planes passing through N4—O2 (for ring C) and N8—O4 (for ring F) bonds.

Supra­molecular features top

In the crystal, strong intra­molecular O—H···N and weak inter­molecular C—H···O and C—H···F hydrogen bonds (Table 2) link the molecules, enclosing R22(6) ring motifs (Bernstein et al., 1995) and forming layers parallel to (001), into a three-dimensional network (Fig. 2). The ππ stacking inter­actions between the phenyl and benzene rings, Cg1···Cg5i and Cg2···Cg4i [symmetry code: (i) x - 1, y, z, where Cg1, Cg2, Cg4 and Cg5 are the centroids of the rings A (C1–C6), B (C7–C12), D (C23–C28) and E (C29–C34), respectively] with centroid–centroid distances of 3.975 (2) and 3.782 (2) Å, respectively, may further stabilize the structure.

Synthesis and crystallization top

The title compound was synthesized by the reaction of 5-((3,5-di­fluoro­phenyl)­diazenyl)-2-hy­droxy­benzaldehyde (Ba & Ma­thias, 2013) with 4-amino-2,2,6,6-tetra­methyl­piperidine-1-oxyl (4-amino-TEMPO). 4-amino-TEMPO (171 mg, 1 mmol) in hexane (20 ml) was added to a stirred hexane/CHCl3 (1:1) solution (70 ml) of 5-[(3,5-di­fluoro­phenyl)­diazenyl]-2-hy­droxy­benzaldehyde (262 mg, 1 mmol), and heated at 333 K for 2 h. Then, the reaction mixture was left to slowly cool to room temperature. After one day, orange microcrystals were obtained (yield: 348 mg, 84%). Orange block-shaped crystals, suitable for X-ray analysis, were obtained by recrystallization from methanol/CHCl3 (1:1) solution by slow evaporation at room temperature after several days (m.p. 473–475 K).

Refinement top

Atoms H1 and H3 (for OH) and H13 and H35 (for CH) were located in a difference Fourier map and were refined freely. The other C-bound H atoms were positioned geometrically with C—H = 0.93 Å (for aromatic CH), 0.96 Å (for CH3), 0.97 Å (for CH2) and 0.98 Å (for CH), and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for other H atoms.

Related literature top

For related literature, see: Ba & Mathias (2013); Berliner (1976); Bernstein et al. (1995); Gallez et al. (1992); Gnewuch & Sosnovsky (1986); Hökelek et al. (2004); Hahn et al. (1994); Hawker (1997); Likhtenstein et al. (2008); Rosen et al. (1999); Tretyakov & Ovcharenko (2009).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular O—H···N hydrogen bonds are shown as dashed lines. H atoms not involved in these hydrogen bonds have been omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure, viewed down [001]. Intramolecular O—H···N and intermolecular C—H···O and C—H···F hydrogen bonds, which enclose R22(6) ring motifs, are shown as dashed lines. H atoms not involved in these hydrogen bonds have been omitted for clarity.
4-({5-[(E)-(3,5-Difluorophenyl)diazenyl]-2-hydroxybenzylidene}amino)-2,2,6,6-tetramethylpiperidin-1-oxyl top
Crystal data top
C22H25F2N4O2F(000) = 1752
Mr = 415.46Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9961 reflections
a = 13.5115 (3) Åθ = 3.0–25.5°
b = 23.1062 (5) ŵ = 0.10 mm1
c = 13.8677 (3) ÅT = 296 K
β = 100.639 (3)°Block, orange
V = 4255.06 (17) Å30.15 × 0.12 × 0.07 mm
Z = 8
Data collection top
Bruker SMART BREEZE CCD
diffractometer
10597 independent reflections
Radiation source: fine-focus sealed tube5159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ϕ and ω scansθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1815
Tmin = 0.550, Tmax = 0.746k = 3030
73169 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.038P)2 + 2.7618P]
where P = (Fo2 + 2Fc2)/3
10597 reflections(Δ/σ)max < 0.001
565 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H25F2N4O2V = 4255.06 (17) Å3
Mr = 415.46Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.5115 (3) ŵ = 0.10 mm1
b = 23.1062 (5) ÅT = 296 K
c = 13.8677 (3) Å0.15 × 0.12 × 0.07 mm
β = 100.639 (3)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
10597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
5159 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.746Rint = 0.101
73169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.24 e Å3
10597 reflectionsΔρmin = 0.26 e Å3
565 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.15807 (13)0.31895 (8)0.67257 (16)0.0571 (6)
H11.182 (3)0.277 (2)0.689 (3)0.147 (17)*
O21.33270 (17)0.00335 (9)0.6821 (2)0.1014 (10)
O30.35009 (14)0.31846 (10)0.84490 (19)0.0700 (7)
H30.330 (3)0.3547 (17)0.837 (3)0.110 (15)*
O40.10773 (14)0.61906 (8)0.74731 (15)0.0621 (6)
N10.69757 (16)0.36539 (9)0.60396 (16)0.0447 (5)
N20.74088 (15)0.31783 (9)0.61875 (16)0.0436 (5)
N31.14968 (15)0.20870 (8)0.70174 (16)0.0395 (5)
N41.28781 (16)0.04498 (9)0.6852 (2)0.0555 (7)
N50.81042 (17)0.26830 (10)0.88903 (17)0.0496 (6)
N60.76620 (16)0.31481 (9)0.87086 (16)0.0458 (6)
N70.36191 (15)0.43076 (9)0.81433 (16)0.0440 (5)
N80.16577 (15)0.57475 (9)0.76354 (16)0.0413 (5)
F10.38227 (15)0.26409 (9)0.5857 (2)0.1154 (9)
F20.38710 (13)0.46381 (8)0.54690 (17)0.0887 (6)
F31.12098 (14)0.37687 (9)0.91031 (17)0.0940 (7)
F41.12618 (13)0.17533 (8)0.93352 (14)0.0785 (6)
C10.58988 (18)0.36132 (11)0.59137 (19)0.0406 (6)
C20.53935 (19)0.41297 (12)0.5745 (2)0.0476 (7)
H20.57430.44740.57140.057*
C30.4371 (2)0.41268 (13)0.5624 (2)0.0542 (8)
C40.3814 (2)0.36392 (14)0.5667 (2)0.0593 (8)
H40.31150.36490.55890.071*
C50.4345 (2)0.31360 (14)0.5831 (3)0.0634 (9)
C60.5379 (2)0.31004 (12)0.5959 (2)0.0552 (8)
H60.57120.27480.60710.066*
C70.84776 (17)0.32118 (10)0.63156 (18)0.0370 (6)
C80.90275 (19)0.37183 (11)0.6247 (2)0.0457 (7)
H80.86910.40680.61090.055*
C91.00523 (19)0.37041 (11)0.6379 (2)0.0491 (7)
H91.04060.40450.63290.059*
C101.05804 (18)0.31848 (10)0.65898 (19)0.0396 (6)
C111.00326 (17)0.26725 (10)0.66530 (17)0.0326 (5)
C120.89906 (18)0.26979 (10)0.65085 (18)0.0368 (6)
H120.86290.23590.65430.044*
C131.05423 (19)0.21225 (11)0.68549 (19)0.0365 (6)
H131.0106 (17)0.1798 (10)0.6857 (17)0.037 (7)*
C141.20161 (17)0.15317 (10)0.72328 (19)0.0377 (6)
H141.23330.15280.79280.045*
C151.28355 (18)0.15037 (11)0.6628 (2)0.0457 (7)
H15A1.32530.18460.67630.055*
H15B1.25250.15140.59390.055*
C161.35082 (18)0.09733 (11)0.6807 (2)0.0444 (7)
C171.19288 (19)0.04364 (11)0.7258 (2)0.0475 (7)
C181.13575 (18)0.09998 (10)0.7027 (2)0.0416 (6)
H18A1.10400.10000.63400.050*
H18B1.08280.10200.74120.050*
C191.4049 (2)0.08989 (14)0.5944 (3)0.0702 (9)
H19A1.35630.08360.53550.105*
H19B1.44940.05720.60600.105*
H19C1.44310.12410.58720.105*
C201.4281 (2)0.10201 (14)0.7758 (2)0.0651 (9)
H20A1.46100.06540.79010.098*
H20B1.39470.11260.82850.098*
H20C1.47720.13090.76840.098*
C211.2180 (2)0.03272 (14)0.8364 (3)0.0711 (10)
H21A1.25750.06430.86790.107*
H21B1.25550.00260.84890.107*
H21C1.15680.02960.86180.107*
C221.1290 (2)0.00633 (12)0.6769 (3)0.0732 (10)
H22A1.16490.04200.69190.110*
H22B1.11510.00060.60720.110*
H22C1.06680.00780.70090.110*
C230.91854 (18)0.27444 (12)0.89988 (18)0.0422 (6)
C240.9677 (2)0.32733 (12)0.8995 (2)0.0493 (7)
H240.93220.36200.89170.059*
C251.0708 (2)0.32625 (13)0.9110 (2)0.0552 (8)
C261.1267 (2)0.27622 (14)0.9232 (2)0.0548 (8)
H261.19660.27660.93100.066*
C271.0737 (2)0.22591 (13)0.9234 (2)0.0509 (7)
C280.9715 (2)0.22356 (12)0.91185 (19)0.0464 (7)
H280.93840.18830.91210.056*
C290.65870 (18)0.31143 (11)0.86313 (19)0.0410 (6)
C300.60837 (18)0.36318 (11)0.84394 (18)0.0385 (6)
H300.64490.39620.83480.046*
C310.50519 (17)0.36772 (10)0.83778 (18)0.0364 (6)
C320.45009 (19)0.31767 (11)0.8503 (2)0.0479 (7)
C330.5006 (2)0.26487 (12)0.8682 (2)0.0594 (8)
H330.46450.23140.87570.071*
C340.6032 (2)0.26191 (12)0.8748 (2)0.0558 (8)
H340.63600.22650.88710.067*
C350.45585 (19)0.42366 (11)0.81786 (19)0.0386 (6)
H350.4994 (18)0.4552 (11)0.8064 (17)0.042 (7)*
C360.32030 (18)0.48883 (10)0.79230 (19)0.0399 (6)
H360.37240.51450.77560.048*
C370.23279 (19)0.48515 (11)0.7065 (2)0.0446 (7)
H37A0.18160.45990.72420.054*
H37B0.25620.46790.65100.054*
C380.18551 (18)0.54383 (11)0.67565 (19)0.0403 (6)
C390.23265 (19)0.57273 (12)0.8622 (2)0.0453 (7)
C400.2808 (2)0.51305 (12)0.8792 (2)0.0498 (7)
H40A0.33610.51520.93470.060*
H40B0.23140.48630.89630.060*
C410.2535 (2)0.58093 (13)0.6231 (2)0.0565 (8)
H41A0.22510.61890.61150.085*
H41B0.25870.56330.56150.085*
H41C0.31930.58380.66330.085*
C420.0843 (2)0.53434 (13)0.6073 (2)0.0603 (8)
H42A0.05540.57110.58550.090*
H42B0.03960.51410.64200.090*
H42C0.09430.51190.55170.090*
C430.1667 (2)0.58384 (14)0.9378 (2)0.0681 (9)
H43A0.14170.62280.93110.102*
H43B0.20560.57851.00240.102*
H43C0.11110.55730.92760.102*
C440.3117 (2)0.62071 (13)0.8681 (2)0.0645 (9)
H44A0.27880.65700.85030.097*
H44B0.35660.61210.82390.097*
H44C0.34920.62310.93390.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (10)0.0402 (11)0.0952 (17)0.0017 (8)0.0016 (10)0.0106 (11)
O20.0688 (15)0.0378 (12)0.210 (3)0.0163 (11)0.0583 (18)0.0083 (15)
O30.0347 (11)0.0505 (14)0.124 (2)0.0017 (10)0.0142 (11)0.0242 (13)
O40.0562 (12)0.0607 (13)0.0693 (14)0.0315 (10)0.0110 (10)0.0061 (11)
N10.0413 (12)0.0410 (13)0.0513 (15)0.0057 (10)0.0071 (10)0.0037 (11)
N20.0415 (12)0.0403 (13)0.0482 (14)0.0103 (10)0.0064 (10)0.0032 (10)
N30.0353 (12)0.0284 (11)0.0544 (14)0.0073 (9)0.0070 (10)0.0030 (10)
N40.0425 (13)0.0309 (12)0.096 (2)0.0084 (10)0.0204 (13)0.0069 (12)
N50.0479 (13)0.0463 (14)0.0537 (15)0.0086 (11)0.0073 (11)0.0015 (11)
N60.0426 (13)0.0445 (14)0.0483 (14)0.0113 (11)0.0031 (10)0.0030 (11)
N70.0337 (12)0.0378 (12)0.0587 (15)0.0054 (9)0.0040 (10)0.0087 (10)
N80.0340 (11)0.0410 (12)0.0489 (14)0.0107 (10)0.0079 (10)0.0039 (10)
F10.0722 (14)0.0731 (14)0.202 (3)0.0253 (11)0.0276 (15)0.0178 (15)
F20.0584 (11)0.0752 (13)0.1328 (19)0.0288 (10)0.0188 (11)0.0253 (12)
F30.0672 (13)0.0775 (14)0.1341 (19)0.0210 (11)0.0101 (12)0.0166 (13)
F40.0702 (12)0.0810 (13)0.0842 (14)0.0358 (10)0.0138 (10)0.0009 (11)
C10.0326 (13)0.0491 (16)0.0398 (16)0.0013 (12)0.0053 (11)0.0009 (12)
C20.0402 (15)0.0459 (16)0.0566 (18)0.0028 (12)0.0089 (13)0.0054 (13)
C30.0427 (16)0.060 (2)0.059 (2)0.0133 (15)0.0092 (14)0.0072 (15)
C40.0343 (15)0.073 (2)0.070 (2)0.0052 (15)0.0078 (14)0.0078 (17)
C50.0500 (18)0.060 (2)0.081 (2)0.0142 (16)0.0127 (16)0.0053 (17)
C60.0504 (18)0.0455 (17)0.069 (2)0.0062 (14)0.0094 (15)0.0054 (15)
C70.0332 (13)0.0385 (14)0.0379 (15)0.0063 (11)0.0034 (11)0.0007 (11)
C80.0448 (15)0.0291 (14)0.0585 (18)0.0106 (12)0.0026 (13)0.0034 (12)
C90.0420 (16)0.0272 (14)0.073 (2)0.0025 (11)0.0017 (14)0.0053 (13)
C100.0340 (14)0.0337 (14)0.0484 (17)0.0014 (11)0.0003 (12)0.0008 (12)
C110.0343 (13)0.0295 (13)0.0326 (14)0.0047 (10)0.0028 (10)0.0001 (10)
C120.0357 (13)0.0308 (13)0.0434 (15)0.0011 (11)0.0066 (11)0.0024 (11)
C130.0361 (14)0.0300 (14)0.0440 (16)0.0027 (11)0.0089 (12)0.0013 (11)
C140.0343 (13)0.0302 (13)0.0480 (16)0.0084 (11)0.0063 (12)0.0038 (11)
C150.0398 (15)0.0368 (15)0.0619 (19)0.0014 (12)0.0130 (13)0.0043 (13)
C160.0345 (14)0.0349 (14)0.0651 (19)0.0039 (11)0.0130 (13)0.0025 (13)
C170.0381 (15)0.0299 (14)0.076 (2)0.0043 (11)0.0143 (14)0.0031 (13)
C180.0325 (13)0.0316 (13)0.0618 (18)0.0054 (11)0.0113 (12)0.0047 (12)
C190.0532 (19)0.073 (2)0.091 (3)0.0033 (16)0.0298 (18)0.0120 (19)
C200.0453 (17)0.064 (2)0.082 (2)0.0101 (15)0.0013 (16)0.0037 (17)
C210.068 (2)0.058 (2)0.088 (3)0.0116 (16)0.0157 (19)0.0267 (18)
C220.061 (2)0.0371 (17)0.125 (3)0.0043 (15)0.025 (2)0.0098 (18)
C230.0338 (14)0.0590 (18)0.0333 (15)0.0040 (13)0.0044 (11)0.0050 (13)
C240.0477 (17)0.0505 (17)0.0482 (18)0.0114 (13)0.0053 (13)0.0076 (13)
C250.0466 (17)0.0594 (19)0.058 (2)0.0081 (15)0.0056 (14)0.0132 (15)
C260.0318 (14)0.080 (2)0.0496 (18)0.0062 (15)0.0013 (13)0.0148 (16)
C270.0465 (17)0.068 (2)0.0379 (16)0.0199 (15)0.0064 (13)0.0033 (14)
C280.0475 (16)0.0498 (17)0.0412 (16)0.0055 (13)0.0067 (13)0.0011 (13)
C290.0340 (14)0.0429 (15)0.0445 (16)0.0069 (12)0.0028 (12)0.0002 (12)
C300.0336 (13)0.0372 (14)0.0432 (16)0.0006 (11)0.0031 (11)0.0018 (12)
C310.0316 (13)0.0345 (14)0.0414 (15)0.0048 (11)0.0026 (11)0.0030 (11)
C320.0341 (15)0.0428 (16)0.065 (2)0.0024 (12)0.0056 (13)0.0085 (14)
C330.0492 (18)0.0355 (16)0.093 (2)0.0006 (13)0.0113 (16)0.0163 (15)
C340.0498 (17)0.0384 (16)0.078 (2)0.0133 (13)0.0080 (15)0.0102 (15)
C350.0346 (14)0.0349 (14)0.0450 (16)0.0011 (12)0.0036 (12)0.0031 (12)
C360.0332 (13)0.0321 (14)0.0529 (17)0.0047 (11)0.0040 (12)0.0066 (12)
C370.0415 (15)0.0403 (15)0.0508 (17)0.0056 (12)0.0055 (13)0.0010 (13)
C380.0359 (14)0.0439 (15)0.0400 (15)0.0070 (11)0.0039 (11)0.0020 (12)
C390.0427 (15)0.0477 (16)0.0438 (16)0.0106 (12)0.0037 (12)0.0016 (13)
C400.0493 (16)0.0521 (17)0.0442 (17)0.0091 (13)0.0009 (13)0.0049 (13)
C410.0529 (17)0.0591 (19)0.060 (2)0.0108 (14)0.0168 (15)0.0153 (15)
C420.0532 (18)0.0578 (19)0.062 (2)0.0071 (15)0.0084 (15)0.0037 (15)
C430.074 (2)0.076 (2)0.057 (2)0.0174 (18)0.0183 (17)0.0042 (17)
C440.0556 (19)0.0546 (19)0.079 (2)0.0012 (15)0.0027 (17)0.0122 (17)
Geometric parameters (Å, º) top
O1—C101.330 (3)C19—H19A0.9600
O1—H11.03 (5)C19—H19B0.9600
O3—C321.339 (3)C19—H19C0.9600
O3—H30.88 (4)C20—H20A0.9600
O4—N81.284 (2)C20—H20B0.9600
N1—C11.436 (3)C20—H20C0.9600
N2—N11.244 (3)C21—H21A0.9600
N2—C71.424 (3)C21—H21B0.9600
N3—C131.270 (3)C21—H21C0.9600
N3—C141.466 (3)C22—H22A0.9600
N4—O21.275 (3)C22—H22B0.9600
N4—C161.487 (3)C22—H22C0.9600
N4—C171.493 (3)C23—C241.392 (4)
N5—C231.448 (3)C23—C281.370 (4)
N6—N51.233 (3)C24—C251.373 (4)
N6—C291.439 (3)C24—H240.9300
N7—C351.272 (3)C26—C251.374 (4)
N7—C361.465 (3)C26—H260.9300
N8—C381.479 (3)C27—C261.365 (4)
N8—C391.495 (3)C28—C271.362 (4)
F1—C51.348 (3)C28—H280.9300
F2—C31.358 (3)C29—C341.393 (4)
F3—C251.353 (3)C30—C291.377 (3)
F4—C271.360 (3)C30—H300.9300
C1—C21.373 (3)C31—C301.385 (3)
C1—C61.385 (4)C31—C321.403 (3)
C2—C31.360 (4)C32—C331.398 (4)
C2—H20.9300C33—H330.9300
C3—C41.363 (4)C34—C331.374 (4)
C4—C51.363 (4)C34—H340.9300
C4—H40.9300C35—C311.457 (3)
C6—C51.377 (4)C35—H350.97 (2)
C6—H60.9300C36—C371.517 (3)
C7—C81.399 (3)C36—C401.512 (4)
C8—C91.363 (3)C36—H360.9800
C8—H80.9300C37—H37A0.9700
C9—H90.9300C37—H37B0.9700
C10—C91.399 (3)C38—C371.526 (3)
C11—C101.408 (3)C38—C411.536 (4)
C11—C121.386 (3)C38—C421.529 (4)
C11—C131.448 (3)C39—C401.525 (3)
C12—C71.376 (3)C39—C431.517 (4)
C12—H120.9300C39—C441.531 (4)
C13—H130.96 (2)C40—H40A0.9700
C14—C151.509 (3)C40—H40B0.9700
C14—C181.513 (3)C41—H41A0.9600
C14—H140.9800C41—H41B0.9600
C15—H15A0.9700C41—H41C0.9600
C15—H15B0.9700C42—H42A0.9600
C16—C151.519 (3)C42—H42B0.9600
C16—C191.523 (4)C42—H42C0.9600
C16—C201.528 (4)C43—H43A0.9600
C17—C211.528 (4)C43—H43B0.9600
C17—C221.524 (4)C43—H43C0.9600
C18—C171.517 (3)C44—H44A0.9600
C18—H18A0.9700C44—H44B0.9600
C18—H18B0.9700C44—H44C0.9600
C10—O1—H1107 (2)H21B—C21—H21C109.5
C32—O3—H3108 (3)C17—C22—H22A109.5
N2—N1—C1113.4 (2)C17—C22—H22B109.5
N1—N2—C7114.1 (2)C17—C22—H22C109.5
C13—N3—C14121.6 (2)H22A—C22—H22B109.5
O2—N4—C16115.5 (2)H22A—C22—H22C109.5
O2—N4—C17116.2 (2)H22B—C22—H22C109.5
C16—N4—C17124.8 (2)C24—C23—N5124.0 (2)
N6—N5—C23112.2 (2)C28—C23—N5115.0 (2)
N5—N6—C29114.4 (2)C28—C23—C24121.0 (2)
C35—N7—C36117.9 (2)C23—C24—H24121.4
O4—N8—C38116.0 (2)C25—C24—C23117.3 (3)
O4—N8—C39115.6 (2)C25—C24—H24121.4
C38—N8—C39124.67 (19)F3—C25—C24118.8 (3)
C2—C1—N1115.1 (2)F3—C25—C26117.6 (3)
C2—C1—C6120.7 (2)C24—C25—C26123.5 (3)
C6—C1—N1124.2 (2)C25—C26—H26121.9
C1—C2—H2120.7C27—C26—C25116.1 (3)
C3—C2—C1118.6 (3)C27—C26—H26122.0
C3—C2—H2120.7F4—C27—C28118.4 (3)
F2—C3—C2118.7 (3)F4—C27—C26117.9 (3)
F2—C3—C4117.6 (3)C28—C27—C26123.7 (3)
C2—C3—C4123.8 (3)C23—C28—H28120.8
C3—C4—C5115.7 (3)C27—C28—C23118.4 (3)
C3—C4—H4122.1C27—C28—H28120.8
C5—C4—H4122.1C30—C29—N6115.0 (2)
F1—C5—C4117.8 (3)C30—C29—C34118.6 (2)
F1—C5—C6118.0 (3)C34—C29—N6126.4 (2)
C4—C5—C6124.2 (3)C29—C30—C31122.2 (2)
C1—C6—H6121.5C29—C30—H30118.9
C5—C6—C1117.0 (3)C31—C30—H30118.9
C5—C6—H6121.5C30—C31—C32118.7 (2)
C8—C7—N2125.2 (2)C30—C31—C35119.9 (2)
C12—C7—N2116.1 (2)C32—C31—C35121.3 (2)
C12—C7—C8118.7 (2)O3—C32—C31122.3 (2)
C7—C8—H8119.7O3—C32—C33118.5 (2)
C9—C8—C7120.6 (2)C33—C32—C31119.2 (2)
C9—C8—H8119.7C32—C33—H33119.7
C8—C9—C10121.0 (2)C34—C33—C32120.6 (3)
C8—C9—H9119.5C34—C33—H33119.7
C10—C9—H9119.5C29—C34—H34119.7
O1—C10—C9119.2 (2)C33—C34—C29120.6 (2)
O1—C10—C11122.0 (2)C33—C34—H34119.7
C9—C10—C11118.7 (2)N7—C35—C31122.7 (2)
C10—C11—C13120.9 (2)N7—C35—H35122.0 (14)
C12—C11—C10119.1 (2)C31—C35—H35115.3 (14)
C12—C11—C13120.0 (2)N7—C36—C40110.6 (2)
C7—C12—C11121.8 (2)N7—C36—C37109.0 (2)
C7—C12—H12119.1N7—C36—H36109.8
C11—C12—H12119.1C37—C36—H36109.8
N3—C13—C11121.5 (2)C40—C36—C37107.9 (2)
N3—C13—H13123.8 (14)C40—C36—H36109.8
C11—C13—H13114.7 (14)C36—C37—C38113.3 (2)
N3—C14—C15107.3 (2)C36—C37—H37A108.9
N3—C14—C18115.44 (19)C36—C37—H37B108.9
N3—C14—H14108.3C38—C37—H37A108.9
C15—C14—C18109.0 (2)C38—C37—H37B108.9
C15—C14—H14108.3H37A—C37—H37B107.7
C18—C14—H14108.3N8—C38—C37109.2 (2)
C14—C15—C16115.0 (2)N8—C38—C42107.6 (2)
C14—C15—H15A108.5N8—C38—C41109.7 (2)
C14—C15—H15B108.5C37—C38—C42109.1 (2)
C16—C15—H15A108.5C37—C38—C41111.9 (2)
C16—C15—H15B108.5C42—C38—C41109.3 (2)
H15A—C15—H15B107.5N8—C39—C43107.1 (2)
N4—C16—C15109.5 (2)N8—C39—C40109.7 (2)
N4—C16—C19107.7 (2)N8—C39—C44108.9 (2)
N4—C16—C20109.0 (2)C43—C39—C40109.6 (2)
C15—C16—C19108.8 (2)C43—C39—C44109.5 (2)
C15—C16—C20112.1 (2)C40—C39—C44111.9 (2)
C19—C16—C20109.6 (2)C36—C40—C39114.6 (2)
N4—C17—C18109.9 (2)C36—C40—H40A108.6
N4—C17—C22107.7 (2)C36—C40—H40B108.6
N4—C17—C21109.5 (2)C39—C40—H40A108.6
C18—C17—C22109.4 (2)C39—C40—H40B108.6
C18—C17—C21111.4 (2)H40A—C40—H40B107.6
C22—C17—C21108.9 (2)C38—C41—H41A109.5
C14—C18—C17113.5 (2)C38—C41—H41B109.5
C14—C18—H18A108.9C38—C41—H41C109.5
C14—C18—H18B108.9H41A—C41—H41B109.5
C17—C18—H18A108.9H41A—C41—H41C109.5
C17—C18—H18B108.9H41B—C41—H41C109.5
H18A—C18—H18B107.7C38—C42—H42A109.5
C16—C19—H19A109.5C38—C42—H42B109.5
C16—C19—H19B109.5C38—C42—H42C109.5
C16—C19—H19C109.5H42A—C42—H42B109.5
H19A—C19—H19B109.5H42A—C42—H42C109.5
H19A—C19—H19C109.5H42B—C42—H42C109.5
H19B—C19—H19C109.5C39—C43—H43A109.5
C16—C20—H20A109.5C39—C43—H43B109.5
C16—C20—H20B109.5C39—C43—H43C109.5
C16—C20—H20C109.5H43A—C43—H43B109.5
H20A—C20—H20B109.5H43A—C43—H43C109.5
H20A—C20—H20C109.5H43B—C43—H43C109.5
H20B—C20—H20C109.5C39—C44—H44A109.5
C17—C21—H21A109.5C39—C44—H44B109.5
C17—C21—H21B109.5C39—C44—H44C109.5
C17—C21—H21C109.5H44A—C44—H44B109.5
H21A—C21—H21B109.5H44A—C44—H44C109.5
H21A—C21—H21C109.5H44B—C44—H44C109.5
N2—N1—C1—C2179.8 (2)C12—C11—C10—O1179.7 (2)
N2—N1—C1—C60.6 (4)C12—C11—C10—C90.2 (4)
C7—N2—N1—C1179.9 (2)C13—C11—C10—O11.0 (4)
N1—N2—C7—C82.7 (4)C13—C11—C10—C9179.1 (2)
N1—N2—C7—C12178.3 (2)C10—C11—C12—C70.7 (4)
C14—N3—C13—C11179.3 (2)C13—C11—C12—C7180.0 (2)
C13—N3—C14—C15134.9 (3)C10—C11—C13—N32.7 (4)
C13—N3—C14—C1813.1 (4)C12—C11—C13—N3178.0 (2)
O2—N4—C16—C15167.8 (3)C11—C12—C7—N2179.6 (2)
O2—N4—C16—C1949.6 (3)C11—C12—C7—C81.2 (4)
O2—N4—C16—C2069.2 (3)N3—C14—C15—C16175.9 (2)
C17—N4—C16—C1533.9 (4)C18—C14—C15—C1658.4 (3)
C17—N4—C16—C19152.1 (3)N3—C14—C18—C17179.9 (2)
C17—N4—C16—C2089.1 (3)C15—C14—C18—C1759.1 (3)
O2—N4—C17—C18166.4 (3)N4—C16—C15—C1444.0 (3)
O2—N4—C17—C2170.9 (3)C19—C16—C15—C14161.5 (2)
O2—N4—C17—C2247.4 (4)C20—C16—C15—C1477.1 (3)
C16—N4—C17—C1835.4 (4)C14—C18—C17—N446.1 (3)
C16—N4—C17—C2187.3 (3)C14—C18—C17—C2175.5 (3)
C16—N4—C17—C22154.5 (3)C14—C18—C17—C22164.1 (2)
N6—N5—C23—C245.9 (4)N5—C23—C24—C25179.7 (2)
N6—N5—C23—C28174.7 (2)C28—C23—C24—C250.3 (4)
C29—N6—N5—C23177.7 (2)N5—C23—C28—C27179.5 (2)
N5—N6—C29—C30179.3 (2)C24—C23—C28—C270.0 (4)
N5—N6—C29—C340.5 (4)C23—C24—C25—F3179.6 (3)
C36—N7—C35—C31179.1 (2)C23—C24—C25—C260.3 (4)
C35—N7—C36—C37126.6 (3)C27—C26—C25—F3179.9 (3)
C35—N7—C36—C40115.0 (3)C27—C26—C25—C240.1 (4)
O4—N8—C38—C37166.1 (2)F4—C27—C26—C25178.9 (2)
O4—N8—C38—C4171.0 (3)C28—C27—C26—C250.3 (4)
O4—N8—C38—C4247.9 (3)C23—C28—C27—F4178.9 (2)
C39—N8—C38—C3736.8 (3)C23—C28—C27—C260.3 (4)
C39—N8—C38—C4186.1 (3)N6—C29—C34—C33178.2 (3)
C39—N8—C38—C42155.1 (2)C30—C29—C34—C330.6 (4)
O4—N8—C39—C40168.5 (2)C31—C30—C29—N6177.7 (2)
O4—N8—C39—C4349.6 (3)C31—C30—C29—C341.3 (4)
O4—N8—C39—C4468.6 (3)C32—C31—C30—C290.8 (4)
C38—N8—C39—C4034.3 (3)C35—C31—C30—C29179.6 (2)
C38—N8—C39—C43153.2 (2)C30—C31—C32—O3179.6 (3)
C38—N8—C39—C4488.5 (3)C30—C31—C32—C330.2 (4)
N1—C1—C2—C3179.6 (2)C35—C31—C32—O30.1 (4)
C6—C1—C2—C30.1 (4)C35—C31—C32—C33179.3 (3)
N1—C1—C6—C5179.4 (3)O3—C32—C33—C34179.7 (3)
C2—C1—C6—C50.2 (4)C31—C32—C33—C340.9 (5)
C1—C2—C3—F2179.2 (3)C29—C34—C33—C320.4 (5)
C1—C2—C3—C40.4 (5)N7—C35—C31—C30177.8 (3)
F2—C3—C4—C5179.5 (3)N7—C35—C31—C322.7 (4)
C2—C3—C4—C50.7 (5)N7—C36—C37—C38178.5 (2)
C3—C4—C5—F1178.6 (3)C40—C36—C37—C3861.4 (3)
C3—C4—C5—C60.6 (5)N7—C36—C40—C39178.1 (2)
C1—C6—C5—F1179.0 (3)C37—C36—C40—C3959.0 (3)
C1—C6—C5—C40.1 (5)N8—C38—C37—C3648.9 (3)
N2—C7—C8—C9179.8 (3)C41—C38—C37—C3672.6 (3)
C12—C7—C8—C90.8 (4)C42—C38—C37—C36166.3 (2)
C7—C8—C9—C100.2 (4)N8—C39—C40—C3644.0 (3)
O1—C10—C9—C8179.2 (3)C43—C39—C40—C36161.4 (2)
C11—C10—C9—C80.7 (4)C44—C39—C40—C3677.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N31.03 (5)1.66 (5)2.585 (3)147 (4)
O3—H3···N70.88 (4)1.85 (4)2.639 (3)148 (4)
C13—H13···O4i0.96 (2)2.44 (2)3.324 (3)154.5 (2)
C15—H15A···F1ii0.972.433.218 (3)138
C30—H30···O2iii0.932.363.222 (3)154
C35—H35···O2iii0.97 (2)2.44 (2)3.318 (3)150.5 (2)
C37—H37B···F20.972.483.346 (3)148
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z; (iii) x+2, y+1/2, z+3/2.
Selected geometric parameters (Å, º) top
N3—C131.270 (3)N7—C351.272 (3)
C13—N3—C14121.6 (2)C35—N7—C36117.9 (2)
C17—N4—C16—C1533.9 (4)N4—C16—C15—C1444.0 (3)
C16—N4—C17—C1835.4 (4)C14—C18—C17—N446.1 (3)
C39—N8—C38—C3736.8 (3)C40—C36—C37—C3861.4 (3)
C38—N8—C39—C4034.3 (3)C37—C36—C40—C3959.0 (3)
C18—C14—C15—C1658.4 (3)N8—C38—C37—C3648.9 (3)
C15—C14—C18—C1759.1 (3)N8—C39—C40—C3644.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N31.03 (5)1.66 (5)2.585 (3)147 (4)
O3—H3···N70.88 (4)1.85 (4)2.639 (3)148 (4)
C13—H13···O4i0.96 (2)2.44 (2)3.324 (3)154.5 (2)
C15—H15A···F1ii0.972.433.218 (3)138
C30—H30···O2iii0.932.363.222 (3)154
C35—H35···O2iii0.97 (2)2.44 (2)3.318 (3)150.5 (2)
C37—H37B···F20.97002.483.346 (3)148
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H25F2N4O2
Mr415.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.5115 (3), 23.1062 (5), 13.8677 (3)
β (°) 100.639 (3)
V3)4255.06 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.12 × 0.07
Data collection
DiffractometerBruker SMART BREEZE CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.550, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
73169, 10597, 5159
Rint0.101
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.163, 1.08
No. of reflections10597
No. of parameters565
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationBa, Y. & Mathias, E. V. (2013). Patent Appl. Publ. US 20120065230A1.  Google Scholar
First citationBerliner, L. J. (1976). Editor. In Spin Labeling: Theory and Applications. New York: Academic Press.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGallez, B., Demeure, R., Debuyst, R., Leonard, D., Dejehet, F. & Dumont, P. (1992). Magn. Reson. Imaging, 10, 445–455.  CrossRef PubMed CAS Google Scholar
First citationGnewuch, T. & Sosnovsky, G. (1986). Chem. Rev. 86, 203–238.  CrossRef CAS Google Scholar
First citationHahn, S. M., Krishna, C. M., Samuni, A., DeGraff, W., Cuscela, D. O., Johnstone, P. & Mitchell, J. B. (1994). Cancer Res. 54, 2006–2010.  Google Scholar
First citationHawker, C. J. (1997). Acc. Chem. Res. 30, 373–382.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLikhtenstein, G. I., Yamauchi, J., Nakatsuji, S., Smirnov, A. I. & Tamura, R. (2008). Nitroxides, pp. 331–399. Weinheim: Wiley-VCH.  Google Scholar
First citationRosen, G. M., Britigan, B. E., Halpern, H. J. & Pou, S. (1999). In Free Radicals: Biology and Detection by Spin Trapping. New York: Oxford University Press Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTretyakov, E. V. & Ovcharenko, V. I. (2009). Russ. Chem. Rev. 78, 971–1012.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 864-866
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds