organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o472-o473

Crystal structure of cis-anti-cis-di­cyclo­hexane-18-crown-6 aceto­nitrile disolvate

aChemistry Department, SUNY College at Buffalo, 1300 Elmwood Ave, Buffalo, New York 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by M. Zeller, Youngstown State University, USA (Received 6 June 2015; accepted 7 June 2015; online 13 June 2015)

The title compound (systematic name: cis-anti-cis-2,5,8,15,18,21-hexa­oxatri­cyclo­[20.4.0.09,14]hexa­cosane aceto­nitrile disolvate), C20H36O6·2CH3CN, crystallizes from an aceto­nitrile solution of di­cyclo­hexane-18-crown-6 on evaporation. The mol­ecule is arranged around a center of symmetry with half the crown ether mol­ecule and one mol­ecule of aceto­nitrile symmetry independent. All O—C—C—O torsion angles are gauche while all C—O—C—C angles are trans. The sequence of torsion angles is [(tg+t)(tgt)]3; the geometry of oxygen atoms is close to pseudo-D3d with three atoms below and three atoms above the mean plane, with an average deviation of ±0.16 (1) Å from the mean plane. This geometry is identical to that observed in metal ion complexes of di­cyclo­hexane-18-crown-6 but differs significantly from the conformation of a free unsolvated mol­ecule. Each aceto­nitrile mol­ecule connects to a crown ether mol­ecule via two of its methyl group H atoms (C—H⋯O). Weaker inter­actions exist between the third H atom of the aceto­nitrile methyl group and an O atom of a neighbouring crown ether mol­ecule (C—H⋯O); and between the N atom of the aceto­nitrile mol­ecule and a H atom of another neighbouring crown ether mol­ecule. All these inter­molecular inter­actions create a three-dimensional network stabilizing the disolvate.

1. Related literature

The crystal structure of the cis-anti-cis isomer of di­cyclo­hexane-18-crown-6 was reported by Dalley et al. (1975[Dalley, N. K., Smith, J. S., Larson, S. B., Christensen, J. J. & Izatt, R. M. (1975). Chem. Commun., pp. 43-44.]) (no atomic coordinates given), and later re-investigated by Naza­renko (2002[Nazarenko, A. Y. (2002). Private communication (refcode DCHXCS01). CCDC, Cambridge, England.]). For the ortho­rhom­bic polymorph, see: Kravtsov et al. (2002[Kravtsov, V. Ch., Fonari, M. S., Zaworotko, M. J. & Lipkowski, J. (2002). Acta Cryst. C58, o683-o684.]). Synthesis and crystal structures of solvates of di­cyclo­hexane-18-crown-6 with di­nitriles have been investigated; see: structures with malono­nitrile by Damewood et al. (1988[Damewood, J. R., Urban, J. J., Williamson, T. C. & Rheingold, A. (1988). J. Org. Chem. 53, 167-171.]) and with succino­nitrile by Dalley & Naza­renko (1999[Dalley, N. K., Lamb, J. D. & Nazarenko, A. Y. (1999). J. Inclusion Phenom. Macrocycl. Chem. 33, 331-338.]). The importance of the different behavior of isomers of di­cyclo­hexane-18-crown-6 was first stressed by Pedersen (1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.]) and later studied in complexation, extraction, and transport reactions.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H36O6·2C2H3N

  • Mr = 454.59

  • Triclinic, [P \overline 1]

  • a = 6.9428 (4) Å

  • b = 9.5286 (5) Å

  • c = 9.8927 (6) Å

  • α = 80.415 (2)°

  • β = 81.697 (2)°

  • γ = 80.927 (2)°

  • V = 632.53 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.49 × 0.34 × 0.28 mm

2.2. Data collection

  • Bruker PHOTON-100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 1.000

  • 20203 measured reflections

  • 3045 independent reflections

  • 2476 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.07

  • 3045 reflections

  • 229 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O3i 0.936 (19) 2.51 (2) 3.3528 (17) 150.8 (16)
C11—H11C⋯O1i 0.97 (2) 2.56 (2) 3.4809 (16) 159.1 (15)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Related literature top

The crystal structure of the cis-anti-cis isomer of dicyclohexane-18-crown-6 was reported by Dalley et al. (1975) (no atom coordinates given), and later re-investigated by Nazarenko (2002). For the orthorhombic polymorph, see: Kravtsov et al. (2002). Synthesis and crystal structures of solvates of dicyclohexane-18-crown-6 with dinitriles have been investigated; see: structures with malononitrile by Damewood et al. (1988) and with succinonitrile by Dalley & Nazarenko (1999). The importance of the different behavior of isomers of dicyclohexane-18-crown-6 was first stressed by Pedersen (1967) and later studied in complexation, extraction, and transport reactions.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Structure of the title compound with atom labeling. The second half of the crown ether molecule and the second acetonitrile molecule molecule are created by an inversion center located at the center of the crown ether molecule (symmetry operator: 1 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. Intermolecular short contacts of acetonitrile molecules with neighboring crown ether molecules.
cis-anti-cis-2,5,8,15,18,21-Hexaoxatricyclo[20.4.0.09,14]hexacosane acetonitrile disolvate top
Crystal data top
C20H36O6·2C2H3NZ = 1
Mr = 454.59F(000) = 248
Triclinic, P1Dx = 1.193 Mg m3
a = 6.9428 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5286 (5) ÅCell parameters from 9918 reflections
c = 9.8927 (6) Åθ = 3.0–33.2°
α = 80.415 (2)°µ = 0.09 mm1
β = 81.697 (2)°T = 173 K
γ = 80.927 (2)°Block, colourless
V = 632.53 (6) Å30.49 × 0.34 × 0.28 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
2476 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.031
ϕ and ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 99
Tmin = 0.956, Tmax = 1.000k = 1212
20203 measured reflectionsl = 1313
3045 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.1761P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3045 reflectionsΔρmax = 0.29 e Å3
229 parametersΔρmin = 0.19 e Å3
0 restraints
Crystal data top
C20H36O6·2C2H3Nγ = 80.927 (2)°
Mr = 454.59V = 632.53 (6) Å3
Triclinic, P1Z = 1
a = 6.9428 (4) ÅMo Kα radiation
b = 9.5286 (5) ŵ = 0.09 mm1
c = 9.8927 (6) ÅT = 173 K
α = 80.415 (2)°0.49 × 0.34 × 0.28 mm
β = 81.697 (2)°
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
3045 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2476 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 1.000Rint = 0.031
20203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 1.07Δρmax = 0.29 e Å3
3045 reflectionsΔρmin = 0.19 e Å3
229 parameters
Special details top

Experimental. SADABS-2014/5 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0615 before and 0.0513 after correction. The Ratio of minimum to maximum transmission is 0.9562. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.32768 (12)0.49496 (8)0.76820 (8)0.0246 (2)
O10.47462 (11)0.27282 (8)0.32574 (8)0.02307 (19)
O20.24108 (12)0.30700 (8)0.59392 (8)0.0258 (2)
C100.50905 (17)0.66821 (12)0.81733 (11)0.0222 (2)
C50.31527 (17)0.60704 (12)0.84980 (11)0.0217 (2)
C20.28223 (19)0.18001 (13)0.53071 (12)0.0265 (3)
C10.29308 (18)0.22030 (14)0.37680 (13)0.0275 (3)
C40.16935 (18)0.41295 (13)0.80064 (13)0.0259 (3)
C30.22641 (18)0.27499 (12)0.73991 (12)0.0244 (3)
C60.14216 (17)0.72519 (13)0.82817 (13)0.0245 (2)
C90.50976 (19)0.78031 (13)0.91167 (13)0.0278 (3)
C80.3383 (2)0.90062 (13)0.89292 (14)0.0312 (3)
C70.1431 (2)0.84186 (14)0.91736 (14)0.0319 (3)
C120.25068 (19)0.76690 (15)0.34942 (15)0.0356 (3)
N10.2335 (2)0.87640 (16)0.28169 (17)0.0589 (4)
C110.2721 (2)0.62716 (15)0.43442 (15)0.0346 (3)
H50.3067 (19)0.5644 (13)0.9475 (14)0.021 (3)*
H6A0.1510 (18)0.7665 (14)0.7324 (14)0.022 (3)*
H8A0.357 (2)0.9525 (15)0.7989 (16)0.032 (4)*
H1A0.183 (2)0.2961 (15)0.3529 (14)0.031 (4)*
H2A0.408 (2)0.1246 (15)0.5572 (15)0.032 (4)*
H100.618 (2)0.5904 (14)0.8319 (13)0.024 (3)*
H3A0.356 (2)0.2254 (14)0.7689 (13)0.023 (3)*
H9A0.499 (2)0.7318 (15)1.0061 (16)0.032 (4)*
H2B0.179 (2)0.1217 (15)0.5635 (14)0.029 (3)*
H4A0.140 (2)0.3869 (15)0.9035 (16)0.031 (4)*
H3B0.124 (2)0.2113 (14)0.7749 (14)0.026 (3)*
H6B0.015 (2)0.6841 (15)0.8527 (14)0.028 (3)*
H9B0.636 (2)0.8182 (15)0.8941 (15)0.032 (4)*
H7A0.121 (2)0.8002 (16)1.0119 (17)0.035 (4)*
H1B0.281 (2)0.1362 (17)0.3363 (15)0.036 (4)*
H8B0.337 (2)0.9694 (16)0.9556 (16)0.038 (4)*
H4B0.053 (2)0.4659 (16)0.7635 (15)0.033 (4)*
H7B0.034 (2)0.9160 (17)0.9006 (16)0.040 (4)*
H11A0.360 (3)0.5628 (19)0.3858 (19)0.055 (5)*
H11B0.147 (3)0.5936 (19)0.4572 (19)0.057 (5)*
H11C0.326 (3)0.635 (2)0.517 (2)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0272 (4)0.0223 (4)0.0253 (4)0.0080 (3)0.0043 (3)0.0085 (3)
O10.0231 (4)0.0282 (4)0.0189 (4)0.0070 (3)0.0018 (3)0.0040 (3)
O20.0344 (5)0.0210 (4)0.0222 (4)0.0053 (3)0.0006 (3)0.0055 (3)
C100.0249 (6)0.0223 (5)0.0196 (5)0.0013 (4)0.0055 (4)0.0028 (4)
C50.0283 (6)0.0208 (5)0.0163 (5)0.0032 (4)0.0013 (4)0.0047 (4)
C20.0308 (6)0.0222 (6)0.0276 (6)0.0095 (5)0.0034 (5)0.0072 (5)
C10.0263 (6)0.0324 (6)0.0273 (6)0.0117 (5)0.0003 (5)0.0099 (5)
C40.0262 (6)0.0266 (6)0.0257 (6)0.0081 (5)0.0030 (5)0.0072 (5)
C30.0286 (6)0.0229 (6)0.0222 (6)0.0086 (5)0.0009 (5)0.0034 (4)
C60.0241 (6)0.0259 (6)0.0237 (6)0.0022 (4)0.0010 (4)0.0065 (5)
C90.0335 (7)0.0308 (6)0.0221 (6)0.0079 (5)0.0054 (5)0.0078 (5)
C80.0408 (7)0.0249 (6)0.0303 (7)0.0046 (5)0.0029 (5)0.0119 (5)
C70.0329 (7)0.0292 (6)0.0335 (7)0.0011 (5)0.0009 (5)0.0137 (5)
C120.0277 (7)0.0402 (8)0.0411 (8)0.0068 (5)0.0073 (5)0.0080 (6)
N10.0539 (9)0.0474 (8)0.0755 (11)0.0121 (7)0.0197 (7)0.0062 (7)
C110.0317 (7)0.0371 (7)0.0340 (7)0.0009 (6)0.0032 (6)0.0063 (6)
Geometric parameters (Å, º) top
O3—C51.4274 (13)C4—H4B0.969 (15)
O3—C41.4169 (14)C3—H3A1.005 (13)
O1—C10i1.4285 (13)C3—H3B0.993 (14)
O1—C11.4230 (14)C6—C71.5313 (16)
O2—C21.4241 (13)C6—H6A0.961 (13)
O2—C31.4177 (14)C6—H6B1.006 (14)
C10—O1i1.4285 (13)C9—C81.5256 (18)
C10—C51.5210 (16)C9—H9A0.969 (15)
C10—C91.5319 (16)C9—H9B0.983 (15)
C10—H100.982 (13)C8—C71.5196 (19)
C5—C61.5248 (16)C8—H8A0.980 (15)
C5—H50.981 (13)C8—H8B0.972 (16)
C2—C11.5009 (17)C7—H7A0.953 (16)
C2—H2A0.994 (15)C7—H7B0.964 (16)
C2—H2B0.964 (15)C12—N11.1414 (19)
C1—H1A0.992 (15)C12—C111.450 (2)
C1—H1B0.974 (16)C11—H11A0.934 (19)
C4—C31.5086 (16)C11—H11B0.959 (19)
C4—H4A1.005 (15)C11—H11C0.97 (2)
C4—O3—C5114.40 (8)O2—C3—H3B110.1 (8)
C1—O1—C10i114.05 (8)C4—C3—H3A109.8 (7)
C3—O2—C2111.74 (9)C4—C3—H3B108.8 (8)
O1i—C10—C5106.49 (9)H3A—C3—H3B109.1 (10)
O1i—C10—C9112.88 (9)C5—C6—C7110.51 (10)
O1i—C10—H10108.5 (8)C5—C6—H6A109.1 (8)
C5—C10—C9109.33 (9)C5—C6—H6B110.4 (8)
C5—C10—H10109.5 (8)C7—C6—H6A109.7 (8)
C9—C10—H10110.0 (8)C7—C6—H6B109.2 (8)
O3—C5—C10107.36 (9)H6A—C6—H6B107.8 (11)
O3—C5—C6114.17 (9)C10—C9—H9A107.7 (8)
O3—C5—H5108.6 (7)C10—C9—H9B110.2 (8)
C10—C5—C6110.98 (9)C8—C9—C10110.82 (10)
C10—C5—H5106.1 (8)C8—C9—H9A110.1 (9)
C6—C5—H5109.4 (7)C8—C9—H9B111.4 (8)
O2—C2—C1109.38 (10)H9A—C9—H9B106.6 (12)
O2—C2—H2A109.3 (8)C9—C8—H8A108.6 (8)
O2—C2—H2B109.0 (8)C9—C8—H8B110.4 (9)
C1—C2—H2A110.7 (8)C7—C8—C9111.38 (11)
C1—C2—H2B109.7 (8)C7—C8—H8A109.9 (8)
H2A—C2—H2B108.7 (11)C7—C8—H8B109.5 (9)
O1—C1—C2109.04 (10)H8A—C8—H8B107.0 (12)
O1—C1—H1A109.4 (8)C6—C7—H7A108.0 (9)
O1—C1—H1B111.4 (9)C6—C7—H7B108.9 (9)
C2—C1—H1A110.0 (8)C8—C7—C6111.85 (10)
C2—C1—H1B108.9 (9)C8—C7—H7A108.5 (9)
H1A—C1—H1B108.1 (12)C8—C7—H7B112.3 (9)
O3—C4—C3109.11 (9)H7A—C7—H7B106.9 (13)
O3—C4—H4A110.3 (8)N1—C12—C11179.47 (16)
O3—C4—H4B110.7 (9)C12—C11—H11A109.2 (11)
C3—C4—H4A107.7 (8)C12—C11—H11B109.6 (11)
C3—C4—H4B109.4 (9)C12—C11—H11C108.9 (12)
H4A—C4—H4B109.6 (12)H11A—C11—H11B109.9 (15)
O2—C3—C4109.08 (9)H11A—C11—H11C108.5 (17)
O2—C3—H3A110.0 (7)H11B—C11—H11C110.8 (16)
O3—C5—C6—C7178.84 (9)C5—C10—C9—C858.39 (13)
O3—C4—C3—O268.55 (12)C5—C6—C7—C854.14 (14)
O1i—C10—C5—O362.59 (10)C2—O2—C3—C4176.21 (10)
O1i—C10—C5—C662.81 (11)C4—O3—C5—C10171.48 (9)
O1i—C10—C9—C859.93 (13)C4—O3—C5—C665.05 (12)
O2—C2—C1—O175.52 (12)C3—O2—C2—C1179.16 (10)
C10i—O1—C1—C2172.39 (9)C9—C10—C5—O3175.17 (9)
C10—C5—C6—C757.34 (13)C9—C10—C5—C659.43 (12)
C10—C9—C8—C755.90 (14)C9—C8—C7—C653.72 (15)
C5—O3—C4—C3163.53 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.936 (19)2.51 (2)3.3528 (17)150.8 (16)
C11—H11C···O1i0.97 (2)2.56 (2)3.4809 (16)159.1 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.936 (19)2.51 (2)3.3528 (17)150.8 (16)
C11—H11C···O1i0.97 (2)2.56 (2)3.4809 (16)159.1 (15)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the State University of New York for acquisition of the X-ray diffractometer is gratefully acknowledged.

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalley, N. K., Lamb, J. D. & Nazarenko, A. Y. (1999). J. Inclusion Phenom. Macrocycl. Chem. 33, 331–338.  Web of Science CrossRef CAS Google Scholar
First citationDalley, N. K., Smith, J. S., Larson, S. B., Christensen, J. J. & Izatt, R. M. (1975). Chem. Commun., pp. 43–44.  Google Scholar
First citationDamewood, J. R., Urban, J. J., Williamson, T. C. & Rheingold, A. (1988). J. Org. Chem. 53, 167–171.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKravtsov, V. Ch., Fonari, M. S., Zaworotko, M. J. & Lipkowski, J. (2002). Acta Cryst. C58, o683–o684.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNazarenko, A. Y. (2002). Private communication (refcode DCHXCS01). CCDC, Cambridge, England.  Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017–7036.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o472-o473
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds