metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages m143-m144

Crystal structure of [NaZn(BTC)(H2O)4]·1.5H2O (BTC = benzene-1,3,5-tri­carb­­oxy­l­ate): a heterometallic coordination compound

CROSSMARK_Color_square_no_text.svg

aCollege of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
*Correspondence e-mail: sqingli@mail.hzau.edu.cn

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 28 March 2015; accepted 23 June 2015; online 27 June 2015)

The title coordination polymer, poly[[μ-aqua-tri­aqua­(μ3-benzene-1,3,5-tri­carboxyl­ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O}n, was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri­carb­oxy­lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na+ ions (each located on an inversion centre), one Zn2+ ion, one BTC ligand, four coordinating water mol­ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn2+ cation is five-coordinated by two carboxyl­ate O atoms from two different BTC ligands and three coordinating H2O mol­ecules; the Zn—O bond lengths are in the range 1.975 (2)–2.058 (3) Å. The Na+ cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl­ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol­ecules while the other is bound by four carboxyl­ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol­ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn2+ atom and Na+ ions, forming a layered structure extending parallel to (100). An intricate network of O—H⋯O hydrogen bonds is present within and between the layers.

1. Related literature

For general background to heterometallic coordination compounds, see: Stock & Biswas (2012[Stock, N. & Biswas, S. (2012). Chem. Rev. 112, 933-969.]); Gao et al. (2005[Gao, Y. N., Han, S., Han, B., Li, G., Shen, D., Li, Z., Du, J., Hou, W. & Zhang, G. (2005). Langmuir, 21, 5681-5684.]); Zhou et al. (2012[Zhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673-674.]). For details of the synthesis, see: Shang et al. (2013[Shang, W. T., Kang, X. C., Ning, H., Zhang, J. L., Zhang, X. G., Wu, Z. H., Mo, G., Xing, X. Q. & Han, B. (2013). Langmuir, 29, 13168-13174.]); Fu et al. (2011[Fu, Y., Su, J., Yang, S. H., Zou, Z. B., Li, G. B., Liao, F. H., Xiong, M. & Lin, J. H. (2011). Cryst. Growth Des. 11, 2243-2249.]). For the potential application of this compound, see: Huang et al. (2014[Huang, X. Q., Chen, Y. F., Lin, Z. G., Ren, X. Q., Song, Y. N., Xu, Z. Z., Dong, X. M., Li, X. G., Hu, C. W. & Wang, B. (2014). Chem. Commun. 50, 2624-2627.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [NaZn(C9H3O6)(H2O)4]·1.5H2O

  • Mr = 394.56

  • Triclinic, [P \overline 1]

  • a = 7.0980 (11) Å

  • b = 9.8000 (16) Å

  • c = 11.2043 (17) Å

  • α = 66.923 (2)°

  • β = 73.598 (2)°

  • γ = 84.720 (3)°

  • V = 687.68 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 296 K

  • 0.05 × 0.03 × 0.02 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.963

  • 7585 measured reflections

  • 4331 independent reflections

  • 2567 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.113

  • S = 0.97

  • 4331 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O5i 0.82 1.79 2.587 (4) 162
O7—H7B⋯O12ii 0.82 1.93 2.740 (4) 172
O8—H8A⋯O10 0.82 2.40 3.114 (5) 146
O8—H8A⋯O11 0.82 1.98 2.672 (8) 142
O8—H8B⋯O6ii 0.82 2.05 2.641 (5) 128
O9—H9A⋯O12iii 0.82 1.95 2.734 (4) 159
O9—H9B⋯O2iv 0.82 2.01 2.823 (4) 170
O10—H10A⋯O5v 0.82 2.06 2.719 (6) 137
O10—H10B⋯O9vi 0.82 2.31 3.079 (5) 155
O11—H11A⋯O3vii 0.85 2.03 2.835 (8) 157
O11—H11B⋯O3v 0.85 2.27 2.866 (7) 127
O11—H11B⋯O11viii 0.85 1.33 1.973 (9) 128
O12—H12A⋯O6 0.82 1.86 2.652 (4) 161
O12—H12B⋯O4ix 0.82 1.97 2.787 (3) 172
Symmetry codes: (i) x, y+1, z-1; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+2, -y+2, -z; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z; (vii) x-1, y+1, z; (viii) -x, -y+2, -z+1; (ix) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

In the experiment, the microemulsion of desired composition containing water, [Bmim]PF6, and Triton X-100 was prepared using the method reported previously (Gao et al. 2005). H3BTC (0.210 g, 1.0 mmol), NaOH (0.040 g, 1.0 mmol) and Zn(NO3)2.6H2O (0.298 g, 1.0 mmol) were added one by one into the microemulsion (20 g) which was clear and transparent system including 1.444 g [Bmim]PF6, 10.428 g Triton X-100 and 8.310 g water. The whole system was stirred continuously for 24 h at 25oC. Then, the product crystals were collected by centrifugation at 4500 r/min and washed with alcohol three times (3x20 mL) to remove the surfa­ctant and [Bmim]PF6. Then, the crystals were dried in a vacuum oven at 60oC for 24 h. The resulting colorless crystals of the title compound were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For general background [to what?], see: Stock & Biswas (2012); Gao et al. (2005); Zhou et al. (2012). For details of the synthesis, see: Shang et al. (2013); Fu et al. (2011). For the potential application of this compound, see: Huang et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. The packing diagram viewed along the b axis.
[Figure 3] Fig. 3. The FT–IR spectrum of the title compound.
[Figure 4] Fig. 4. The XRD pattern of the title compound.
Poly[[µ-aqua-triaqua(µ3-benzene-1,3,5-tricarboxylato)sodiumzinc] sesquihydrate] top
Crystal data top
[NaZn(C9H3O6)(H2O)4]·1.5H2OZ = 2
Mr = 394.56F(000) = 402
Triclinic, P1Dx = 1.906 Mg m3
a = 7.0980 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8000 (16) ÅCell parameters from 1047 reflections
c = 11.2043 (17) Åθ = 2.4–22.5°
α = 66.923 (2)°µ = 1.88 mm1
β = 73.598 (2)°T = 296 K
γ = 84.720 (3)°Block, colourless
V = 687.68 (19) Å30.05 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2567 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
ϕ and ω scansθmax = 32.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.912, Tmax = 0.963k = 1414
7585 measured reflectionsl = 1616
4331 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.113H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
4331 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[NaZn(C9H3O6)(H2O)4]·1.5H2Oγ = 84.720 (3)°
Mr = 394.56V = 687.68 (19) Å3
Triclinic, P1Z = 2
a = 7.0980 (11) ÅMo Kα radiation
b = 9.8000 (16) ŵ = 1.88 mm1
c = 11.2043 (17) ÅT = 296 K
α = 66.923 (2)°0.05 × 0.03 × 0.02 mm
β = 73.598 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2567 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.963Rint = 0.051
7585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.97Δρmax = 0.79 e Å3
4331 reflectionsΔρmin = 0.69 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. olex2_refinement_description 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All O(H,H) groups 2. Others Fixed Sof: O11(0.5) H11A(0.5) H11B(0.5) 3.a Riding coordinates: O7(H7A,H7B), O8(H8A,H8B), O9(H9A,H9B), O10(H10A,H10B), O12(H12A,H12B) 3.b Free rotating group: O11(H11A,H11B) 3.c Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C6(H6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.69252 (6)1.17043 (4)0.17723 (4)0.02302 (13)
Na10.50001.00000.00000.0322 (5)
Na20.50000.00000.50000.0319 (5)
C10.7424 (5)0.7068 (3)0.3327 (3)0.0184 (7)
C20.7376 (5)0.5950 (3)0.2865 (3)0.0186 (7)
H20.73120.61920.19880.022*
C30.7423 (5)0.4476 (3)0.3710 (3)0.0188 (7)
C40.7512 (5)0.4130 (4)0.5013 (3)0.0207 (7)
H40.75290.31400.55810.025*
C50.7576 (5)0.5231 (4)0.5492 (3)0.0211 (7)
C60.7566 (5)0.6703 (4)0.4623 (3)0.0204 (7)
H60.76570.74550.49170.024*
C70.7273 (5)0.8667 (4)0.2423 (3)0.0204 (7)
C80.7345 (5)0.3229 (4)0.3272 (3)0.0206 (7)
C90.7632 (5)0.4837 (5)0.6923 (4)0.0291 (8)
O10.7044 (4)0.9607 (3)0.2967 (3)0.0371 (7)
O20.7376 (4)0.8999 (3)0.1217 (3)0.0341 (6)
O30.7335 (4)0.1931 (3)0.4071 (3)0.0325 (6)
O40.7242 (4)0.3558 (3)0.2063 (2)0.0268 (6)
O50.7596 (4)0.3477 (4)0.7661 (3)0.0467 (8)
O60.7682 (4)0.5863 (4)0.7316 (3)0.0479 (8)
O70.5762 (4)1.2363 (3)0.0195 (2)0.0292 (6)
H7A0.64831.28110.05570.044*
H7B0.47031.27780.02490.044*
O80.3875 (4)1.1497 (3)0.3061 (3)0.0396 (7)
H8A0.30401.09950.30310.059*
H8B0.33051.20220.34640.059*
O90.9800 (4)1.1943 (3)0.0630 (3)0.0382 (7)
H9A1.03641.25800.07130.057*
H9B1.05361.17210.00260.057*
O100.2322 (5)0.9423 (4)0.2021 (4)0.0790 (13)
H10A0.18080.85930.24020.119*
H10B0.14451.00270.18990.119*
O110.0497 (9)0.9938 (8)0.4107 (6)0.0482 (16)0.5
H11A0.05581.03900.39930.072*0.5
H11B0.04290.95530.49420.072*0.5
O120.7580 (4)0.6003 (3)0.9650 (2)0.0294 (6)
H12A0.77170.57730.90020.044*
H12B0.74990.52341.03180.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0340 (2)0.01306 (19)0.0218 (2)0.00099 (15)0.00540 (16)0.00759 (16)
Na10.0424 (13)0.0290 (11)0.0309 (12)0.0027 (9)0.0169 (10)0.0128 (10)
Na20.0457 (13)0.0204 (10)0.0228 (11)0.0072 (9)0.0013 (9)0.0048 (9)
C10.0191 (16)0.0153 (15)0.0210 (17)0.0019 (12)0.0009 (13)0.0096 (13)
C20.0267 (18)0.0163 (16)0.0141 (16)0.0003 (13)0.0044 (13)0.0078 (13)
C30.0211 (17)0.0145 (15)0.0205 (17)0.0018 (12)0.0023 (13)0.0081 (13)
C40.0239 (18)0.0150 (16)0.0184 (17)0.0016 (13)0.0045 (13)0.0025 (13)
C50.0217 (17)0.0228 (17)0.0150 (17)0.0005 (13)0.0033 (13)0.0045 (14)
C60.0259 (18)0.0190 (16)0.0194 (17)0.0014 (13)0.0039 (13)0.0123 (14)
C70.0221 (17)0.0146 (16)0.0221 (18)0.0014 (13)0.0017 (14)0.0070 (14)
C80.0229 (17)0.0170 (16)0.0221 (18)0.0007 (13)0.0047 (14)0.0089 (14)
C90.0241 (19)0.044 (2)0.0187 (19)0.0110 (16)0.0063 (15)0.0131 (18)
O10.071 (2)0.0100 (12)0.0212 (14)0.0004 (12)0.0018 (13)0.0062 (11)
O20.0607 (19)0.0187 (13)0.0253 (15)0.0030 (12)0.0202 (13)0.0053 (11)
O30.0481 (17)0.0124 (12)0.0351 (16)0.0001 (11)0.0128 (12)0.0058 (11)
O40.0411 (15)0.0191 (12)0.0235 (14)0.0019 (10)0.0079 (11)0.0117 (11)
O50.0529 (19)0.053 (2)0.0203 (15)0.0040 (15)0.0114 (13)0.0006 (14)
O60.058 (2)0.070 (2)0.0325 (17)0.0229 (17)0.0228 (14)0.0346 (17)
O70.0337 (15)0.0261 (14)0.0213 (14)0.0047 (11)0.0037 (11)0.0057 (11)
O80.0298 (15)0.065 (2)0.0303 (16)0.0049 (13)0.0034 (12)0.0265 (15)
O90.0386 (17)0.0369 (16)0.0418 (18)0.0062 (12)0.0029 (13)0.0260 (14)
O100.059 (2)0.062 (3)0.068 (3)0.0028 (18)0.0052 (18)0.016 (2)
O110.041 (4)0.052 (4)0.052 (4)0.008 (3)0.018 (3)0.019 (4)
O120.0440 (16)0.0224 (13)0.0223 (14)0.0001 (11)0.0096 (11)0.0086 (11)
Geometric parameters (Å, º) top
Zn1—Na13.6267 (5)C3—C81.495 (4)
Zn1—Na2i3.2603 (6)C4—H40.9300
Zn1—O11.975 (2)C4—C51.390 (5)
Zn1—O4i2.009 (2)C5—C61.390 (4)
Zn1—O72.013 (2)C5—C91.506 (5)
Zn1—O82.214 (3)C6—H60.9300
Zn1—O92.058 (3)C7—O11.267 (4)
Na1—Zn1ii3.6267 (5)C7—O21.242 (4)
Na1—O22.369 (3)C8—O31.235 (4)
Na1—O2ii2.369 (3)C8—O41.286 (4)
Na1—O72.529 (3)C9—O51.262 (5)
Na1—O7ii2.529 (3)C9—O61.252 (5)
Na1—O102.413 (3)O1—Na2i2.482 (2)
Na1—O10ii2.413 (3)O4—Zn1iv2.009 (2)
Na2—Zn1iii3.2603 (6)O7—H7A0.8201
Na2—Zn1iv3.2603 (6)O7—H7B0.8201
Na2—O1iv2.482 (2)O8—Na2i2.403 (3)
Na2—O1iii2.482 (2)O8—H8A0.8200
Na2—O32.339 (3)O8—H8B0.8201
Na2—O3v2.339 (3)O9—H9A0.8199
Na2—O8iii2.403 (3)O9—H9B0.8200
Na2—O8iv2.403 (3)O10—H10A0.8200
C1—C21.389 (4)O10—H10B0.8200
C1—C61.384 (4)O11—H11A0.8500
C1—C71.509 (4)O11—H11B0.8500
C2—H20.9300O12—H12A0.8203
C2—C31.386 (4)O12—H12B0.8200
C3—C41.382 (4)
Na2i—Zn1—Na1108.751 (15)O3v—Na2—O8iii81.75 (9)
O1—Zn1—Na181.47 (8)O3—Na2—O8iii98.25 (9)
O1—Zn1—Na2i49.45 (7)O3—Na2—O8iv81.75 (9)
O1—Zn1—O4i129.50 (11)O8iii—Na2—Zn1iv137.24 (6)
O1—Zn1—O7123.49 (11)O8iv—Na2—Zn1iii137.24 (6)
O1—Zn1—O883.14 (11)O8iii—Na2—Zn1iii42.76 (6)
O1—Zn1—O997.22 (11)O8iv—Na2—Zn1iv42.76 (6)
O4i—Zn1—Na1147.26 (7)O8iii—Na2—O1iii69.50 (9)
O4i—Zn1—Na2i89.66 (7)O8iii—Na2—O1iv110.50 (9)
O4i—Zn1—O7105.44 (10)O8iv—Na2—O1iv69.50 (9)
O4i—Zn1—O888.15 (11)O8iv—Na2—O1iii110.50 (9)
O4i—Zn1—O989.49 (10)O8iii—Na2—O8iv180.0
O7—Zn1—Na142.24 (7)C2—C1—C7119.8 (3)
O7—Zn1—Na2i131.91 (7)C6—C1—C2119.7 (3)
O7—Zn1—O886.91 (10)C6—C1—C7120.6 (3)
O7—Zn1—O995.17 (11)C1—C2—H2119.9
O8—Zn1—Na185.30 (7)C3—C2—C1120.1 (3)
O8—Zn1—Na2i47.48 (7)C3—C2—H2119.9
O9—Zn1—Na197.50 (8)C2—C3—C8122.3 (3)
O9—Zn1—Na2i131.02 (8)C4—C3—C2119.4 (3)
O9—Zn1—O8177.20 (11)C4—C3—C8118.2 (3)
Zn1—Na1—Zn1ii180.0C3—C4—H4119.3
O2—Na1—Zn153.49 (6)C3—C4—C5121.4 (3)
O2ii—Na1—Zn1ii53.49 (6)C5—C4—H4119.3
O2ii—Na1—Zn1126.51 (6)C4—C5—C9120.8 (3)
O2—Na1—Zn1ii126.51 (6)C6—C5—C4118.3 (3)
O2ii—Na1—O2180.0C6—C5—C9120.8 (3)
O2ii—Na1—O7ii83.14 (8)C1—C6—C5121.0 (3)
O2—Na1—O783.14 (8)C1—C6—H6119.5
O2ii—Na1—O796.86 (8)C5—C6—H6119.5
O2—Na1—O7ii96.86 (8)O1—C7—C1116.3 (3)
O2—Na1—O10ii86.91 (11)O2—C7—C1120.1 (3)
O2ii—Na1—O10ii93.09 (11)O2—C7—O1123.6 (3)
O2ii—Na1—O1086.91 (11)O3—C8—C3120.1 (3)
O2—Na1—O1093.09 (11)O3—C8—O4122.0 (3)
O7ii—Na1—Zn1147.65 (5)O4—C8—C3117.9 (3)
O7—Na1—Zn132.36 (5)O5—C9—C5117.2 (4)
O7ii—Na1—Zn1ii32.35 (5)O6—C9—C5118.8 (4)
O7—Na1—Zn1ii147.64 (5)O6—C9—O5124.0 (4)
O7ii—Na1—O7180.0Zn1—O1—Na2i93.35 (9)
O10ii—Na1—Zn199.48 (11)C7—O1—Zn1116.3 (2)
O10—Na1—Zn1ii99.48 (11)C7—O1—Na2i140.1 (2)
O10—Na1—Zn180.52 (11)C7—O2—Na1130.6 (2)
O10ii—Na1—Zn1ii80.52 (11)C8—O3—Na2132.2 (2)
O10—Na1—O7ii89.62 (12)C8—O4—Zn1iv110.2 (2)
O10—Na1—O790.38 (12)Zn1—O7—Na1105.40 (10)
O10ii—Na1—O7ii90.38 (12)Zn1—O7—H7A117.9
O10ii—Na1—O789.62 (12)Zn1—O7—H7B118.8
O10ii—Na1—O10180.0Na1—O7—H7A101.6
Zn1iii—Na2—Zn1iv180.0Na1—O7—H7B102.9
O1iii—Na2—Zn1iv142.80 (5)H7A—O7—H7B107.7
O1iv—Na2—Zn1iv37.20 (5)Zn1—O8—Na2i89.76 (9)
O1iv—Na2—Zn1iii142.80 (5)Zn1—O8—H8A121.4
O1iii—Na2—Zn1iii37.20 (5)Zn1—O8—H8B129.0
O1iv—Na2—O1iii180.0Na2i—O8—H8A106.3
O3v—Na2—Zn1iv123.65 (7)Na2i—O8—H8B89.2
O3—Na2—Zn1iv56.35 (7)H8A—O8—H8B107.7
O3v—Na2—Zn1iii56.35 (7)Zn1—O9—H9A109.9
O3—Na2—Zn1iii123.65 (7)Zn1—O9—H9B141.4
O3—Na2—O1iii102.11 (9)H9A—O9—H9B107.7
O3—Na2—O1iv77.89 (9)Na1—O10—H10A120.4
O3v—Na2—O1iii77.89 (9)Na1—O10—H10B110.7
O3v—Na2—O1iv102.11 (9)H10A—O10—H10B107.7
O3—Na2—O3v180.0H11A—O11—H11B109.5
O3v—Na2—O8iv98.25 (9)H12A—O12—H12B107.7
C1—C2—C3—C40.2 (5)C4—C5—C6—C12.3 (5)
C1—C2—C3—C8179.1 (3)C4—C5—C9—O50.8 (5)
C1—C7—O1—Zn1178.2 (2)C4—C5—C9—O6179.8 (3)
C1—C7—O1—Na2i48.0 (5)C6—C1—C2—C31.5 (5)
C1—C7—O2—Na1114.6 (3)C6—C1—C7—O18.3 (5)
C2—C1—C6—C52.8 (5)C6—C1—C7—O2171.6 (3)
C2—C1—C7—O1170.3 (3)C6—C5—C9—O5178.5 (3)
C2—C1—C7—O29.9 (5)C6—C5—C9—O60.4 (5)
C2—C3—C4—C50.7 (5)C7—C1—C2—C3177.0 (3)
C2—C3—C8—O3178.0 (3)C7—C1—C6—C5175.7 (3)
C2—C3—C8—O40.4 (5)C8—C3—C4—C5179.6 (3)
C3—C4—C5—C60.6 (5)C9—C5—C6—C1177.1 (3)
C3—C4—C5—C9178.8 (3)O1—C7—O2—Na165.6 (4)
C3—C8—O3—Na2116.2 (3)O2—C7—O1—Zn11.6 (5)
C3—C8—O4—Zn1iv175.2 (2)O2—C7—O1—Na2i132.1 (3)
C4—C3—C8—O30.9 (5)O3—C8—O4—Zn1iv3.1 (4)
C4—C3—C8—O4179.3 (3)O4—C8—O3—Na262.1 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5vi0.821.792.587 (4)162
O7—H7B···O12vii0.821.932.740 (4)172
O8—H8A···O100.822.403.114 (5)146
O8—H8A···O110.821.982.672 (8)142
O8—H8B···O6vii0.822.052.641 (5)128
O9—H9A···O12viii0.821.952.734 (4)159
O9—H9B···O2ix0.822.012.823 (4)170
O10—H10A···O5iii0.822.062.719 (6)137
O10—H10B···O9x0.822.313.079 (5)155
O11—H11A···O3xi0.852.032.835 (8)157
O11—H11B···O3iii0.852.272.866 (7)127
O11—H11B···O11xii0.851.331.973 (9)128
O12—H12A···O60.821.862.652 (4)161
O12—H12B···O4xiii0.821.972.787 (3)172
Symmetry codes: (iii) x+1, y+1, z+1; (vi) x, y+1, z1; (vii) x+1, y+2, z+1; (viii) x+2, y+2, z+1; (ix) x+2, y+2, z; (x) x1, y, z; (xi) x1, y+1, z; (xii) x, y+2, z+1; (xiii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5i0.821.792.587 (4)162
O7—H7B···O12ii0.821.932.740 (4)172
O8—H8A···O100.822.403.114 (5)146
O8—H8A···O110.821.982.672 (8)142
O8—H8B···O6ii0.822.052.641 (5)128
O9—H9A···O12iii0.821.952.734 (4)159
O9—H9B···O2iv0.822.012.823 (4)170
O10—H10A···O5v0.822.062.719 (6)137
O10—H10B···O9vi0.822.313.079 (5)155
O11—H11A···O3vii0.852.032.835 (8)157
O11—H11B···O3v0.852.272.866 (7)127
O11—H11B···O11viii0.851.331.973 (9)128
O12—H12A···O60.821.862.652 (4)161
O12—H12B···O4ix0.821.972.787 (3)172
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+2, z+1; (iii) x+2, y+2, z+1; (iv) x+2, y+2, z; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x1, y+1, z; (viii) x, y+2, z+1; (ix) x, y, z+1.
 

Acknowledgements

Financial support by the Fundamental Research Funds for the Central Universities (grant Nos. 2011PY128 and 2014PY053) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (grant No. 2015028) of Huazhong Agricultural University are gratefully acknowledged. We thank Dr Y. Qu of HZAU and Dr X. G. Meng of CCNU for their kind assistance with this work.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, Y., Su, J., Yang, S. H., Zou, Z. B., Li, G. B., Liao, F. H., Xiong, M. & Lin, J. H. (2011). Cryst. Growth Des. 11, 2243–2249.  CSD CrossRef CAS Google Scholar
First citationGao, Y. N., Han, S., Han, B., Li, G., Shen, D., Li, Z., Du, J., Hou, W. & Zhang, G. (2005). Langmuir, 21, 5681–5684.  CrossRef PubMed CAS Google Scholar
First citationHuang, X. Q., Chen, Y. F., Lin, Z. G., Ren, X. Q., Song, Y. N., Xu, Z. Z., Dong, X. M., Li, X. G., Hu, C. W. & Wang, B. (2014). Chem. Commun. 50, 2624–2627.  CSD CrossRef CAS Google Scholar
First citationShang, W. T., Kang, X. C., Ning, H., Zhang, J. L., Zhang, X. G., Wu, Z. H., Mo, G., Xing, X. Q. & Han, B. (2013). Langmuir, 29, 13168–13174.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStock, N. & Biswas, S. (2012). Chem. Rev. 112, 933–969.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673–674.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages m143-m144
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds