research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 737-740

Crystal structure of the co-crystalline adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD)–4-chloro-3,5-di­methyl­phenol (1/1)

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by G. Smith, Queensland University of Technology, Australia (Received 12 May 2015; accepted 27 May 2015; online 3 June 2015)

In the crystal of the title co-crystalline adduct, C8H16N4·C8H9ClO, (I), prepared by solid-state reaction, the mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds, forming a D motif. The aza­adamantane structure in (I) is slightly distorted, with N—CH2—CH2—N torsion angles of 10.4 (3) and −9.0 (3)°. These values differ slightly from the corresponding torsion angles in the free aminal cage (0.0°) and in related co-crystalline adducts, which are not far from a planar geometry and consistent with a D2d mol­ecular symmetry in the tetra­aza­tri­cyclo structure. The structures also differ in that there is a slight elongation of the N—C bond lengths about the N atom that accepts the hydrogen bond in (I) compared with the other N—C bond lengths. In the crystal, the two mol­ecules are not only linked by a classical O—H⋯N hydrogen bond but are further connected by weak C—H⋯π inter­actions, forming a two-dimensional supra­molecular network parallel to the bc plane.

1. Chemical context

In our continuing investigations on the reactivity of cyclic aminals of the adamantane type with phenols, we have found that 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) shows an inter­esting reactivity with 4-chloro-3,5-di­methyl­phenol under different conditions. Reaction between TATD with 4-chloro-3,5-di­methyl­phenol in solution yields symmetrical bis-benzoxazines (Rivera et al., 2005[Rivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105-115.]), but under heating in an oil bath (Rivera & Quevedo, 2013[Rivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416-1420.]) or microwave-assisted solvent-free conditions, symmetrical N,N'-disubstituted imidazolidines (Rivera, Nerio & Bolte, 2015[Rivera, A., Nerio, L. S. & Bolte, M. (2015). Acta Cryst. E71, 312-314.]) are obtained. Therefore, we became inter­ested in exploring the reactivity of TATD with phenols under solvent-free conditions at room temperature. In the course of our investigations, we obtained the mol­ecular salt 8,10,12-tri­aza-1-azonia­tetra­cyclo[8.3.1.18,12.02,7]penta­decane 4-nitro­phenolate 4-nitro­phenol by grinding (2R,7R)-1,8,10,12-tetra­aza­tetra­cyclo­[8.3.1.18,12.02,7]penta­decane with 4-nitro­phenol (Rivera, Uribe, Ríos-Motta et al., 2015[Rivera, A., Uribe, J. M., Ríos-Motta, J., Osorio, H. J. & Bolte, M. (2015). Acta Cryst. C71, 284-288.]) and the 1:2 adduct 1,3,6,8-tetra­aza­tri­cyclo[4.4.1.13,8]dodecane (TATD)-4-bromo­phenol (Rivera, Uribe, Rojas et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]) by grinding at room temperature.

[Scheme 1]

Herein, we describe the synthesis of the title co-crystalline adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD)–4-chloro-3,5-di­methyl­phenol under solvent-free conditions by simply grinding together the components at room temperature.

2. Structural commentary

The crystal structure of the title compound, (I)[link], has confirmed the presence of a 1:1 co-crystalline adduct. A view of this adduct is shown in Fig. 1[link]. The asymmetric unit of the title compound contains a 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) and a 4-chloro-3,5-di­methyl­phenol mol­ecule linked via an O—H⋯N hydrogen bond, forming a D motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). As in the 1:2 adduct with 4-bromo­phenol (Rivera, Uribe, Rojas et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]) and the 1:1 adduct with hydro­quinone (Rivera et al., 2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.]), the inter­molecular O—H⋯N hydrogen bond in (I)[link] also leads to a stable supra­molecular structure, but comparison of the title compound with the above-mentioned related structures shows that the three adducts differ in the O⋯N hydrogen-bond distances [2.752 (2) Å in (I)[link], 2.705 (5) Å in the 1:2 adduct and 2.767 (2) Å in the co-crystalline adduct with hydro­quinone], which is in agreement with the differences in the pKa values between the species involved in the hydrogen bond (Majerz et al., 1997[Majerz, I., Malarski, Z. & Sobczyk, L. (1997). Chem. Phys. Lett. 274, 361-364.]): 4-chloro-3,5-di­methyl­phenol (pKa = 9.76); p-bromo­phenol (pKa = 9.37) and hydro­quinone (pKa = 9.85) (Lide, 2003[Lide, D. R. (2003). CRC Handbook of Chemistry and Physics. Boca Raton, Florida: CRC Press.]).

[Figure 1]
Figure 1
Perspective view of the title compound, with displacement ellipsoids drawn at the 50% probability level. The hydrogen bond is drawn as a dashed line.

To a first approximation, the geometric parameters of the title mol­ecule agree well with those reported for similar structures (Rivera et al., 2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.]; Rivera, Uribe, Rojas et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]) and are within normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), but compared to the free aminal cage structure (Rivera et al., 2014[Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.]) which belongs to the D2d point group, two small differences are noted. The aza­adamantane structure in (I)[link] is slightly distorted, with N—CH2—CH2—N torsion angles of 10.4 (3)° (N1—C1—C2—N2) and −9.0 (3)° (N3—C7—C8—N4). These values differ slightly from the values of the corresponding torsion angles in the free aminal cage (0.0°; Rivera et al., 2014[Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.]), and the related co-crystalline adducts [2.4 (7)° (Rivera, Uribe, Rojas et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]) and −0.62° (Rivera et al., 2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.])] which shows that each N—C—C—N group is not far from a planar geometry and consistent with a D2d mol­ecular symmetry in the tetra­aza­tri­cyclo structure. Furthermore, the structures also differ in the slight elongation of the N1—C bond lengths of the nitro­gen atom that accepts the hydrogen bond, [1.470 (2) and 1.480 (2) Å], compared to the the other N—C bond lengths (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

N1—C1 1.470 (2) N3—C7 1.455 (2)
N1—C5 1.470 (2) N3—C4 1.458 (2)
N1—C3 1.480 (2) N4—C5 1.444 (2)
N2—C2 1.449 (3) N4—C6 1.456 (2)
N2—C6 1.454 (3) N4—C8 1.457 (3)
N2—C4 1.462 (2) Cl1—C14 1.7534 (16)
N3—C3 1.446 (2) O11—C11 1.356 (2)
       
N1—C1—C2—N2 10.4 (3) N3—C7—C8—N4 −9.0 (3)

3. Supra­molecular features

The two different mol­ecules in (I)[link] are connected by a classical O—H⋯N hydrogen bond. The crystal packing is further stabilized by weak inter­molecular C—H⋯π inter­actions, linking the mol­ecules into two-dimensional sheets in the bc plane (Table 2[link] and Fig. 2[link]). Furthermore, there are short N⋯Cl contacts [N4⋯Cl1i 3.1680 (15) Å; symmetry operator: (i) x, −y, z − [{1\over 2}]] linking the mol­ecules into zigzag chains running along the c-axis direction (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg8 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯N1 0.85 (4) 1.92 (4) 2.752 (2) 165 (3)
C3—H3ACg8i 0.99 2.89 3.837 (2) 160
C8—H8ACg8ii 0.99 2.88 3.814 (2) 157
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are drawn as dashed lines.
[Figure 3]
Figure 3
Partial packing diagram of the title compound, viewed along the b axis. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are drawn as dashed lines and the short Cl⋯N contacts are shown as dotted lines. Atoms with suffix A are generated by the symmetry operator (x, −y, z − [{1\over 2}]) and atoms with suffix B are generated by the symmetry operator (x, −y, z + [{1\over 2}]).

4. Database survey

The geometric parameters of 4-chloro-3,5-di­methyl­phenol in (I)[link] (Table 1[link]) agree well with those of found in the crystal structure containing only this mol­ecule (Cox, 1995[Cox, P. J. (1995). Acta Cryst. C51, 1361-1364.]), which crystallized with two mol­ecules in the asymmetric unit [C—O = 1.387 (3) and 1.378 (3) Å; C—Cl = 1.752 (2) and 1.749 (2) Å; C—Cmeth­yl = 1.502 (3), 1.500 (3), 1.514 (3) and 1.505 (3) Å]. For 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane, two comparable structures were retrieved from the CSD (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). A least-squares fit of the structure that contains only 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (Rivera et al., 2014[Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.]) gives an r.m.s. deviation of 0.048 Å with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane of (I)[link] and a least-squares fit of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane co-crystallized with hydro­quinone (Rivera et al., 2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.]) gives an r.m.s. deviation of 0.051 Å with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane of (I)[link]. Thus, it can be concluded that the conformational freedom of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane is rather limited.

5. Synthesis and crystallization

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.3,8]dodecane (TATD) (168 mg, 1 mmol) and 4-chloro-3,5-di­methyl­phenol (157 mg, 1 mmol) was ground using a mortar and pestle, at room temperature for 15 min., as required to complete the reaction (TLC). The mixture was then dissolved in methanol. Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference electron-density maps. The hydroxyl H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95, 0.98 or 0.99 Å) and refined using a riding model, with Uiso(H) values set at 1.2Ueq (1.5 for methyl groups) of the parent atom. The methyl groups were allowed to rotate but not to tip.

Table 3
Experimental details

Crystal data
Chemical formula C8H16N4·C8H9ClO
Mr 324.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 25.6048 (18), 7.5295 (7), 18.2317 (13)
β (°) 111.080 (5)
V3) 3279.7 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.27 × 0.26 × 0.22
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-RED32; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.738, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14414, 3066, 2512
Rint 0.083
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.02
No. of reflections 3066
No. of parameters 205
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical context top

In our continuing investigations on the reactivity of cyclic aminals of the adamantane type with phenols, we have found that 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) shows an inter­esting reactivity with 4-chloro-3,5-di­methyl­phenol under different conditions. Reaction between TATD with 4-chloro-3,5-di­methyl­phenol in solution yields symmetrical bis-benzoxazines (Rivera et al., 2005), but under heating in an oil bath (Rivera & Quevedo, 2013) or microwave-assisted solvent-free conditions, symmetrical N,N'-disubstituted imidazolidines (Rivera, Nerio & Bolte, 2015) are obtained. Therefore, we became inter­ested in exploring the reactivity of TATD with phenols under solvent-free conditions at room temperature. In the course of our investigations, we obtained the molecular salt 8,10,12-tri­aza-1-azonia­tetra­cyclo­[8.3.1.18,12.02,7]penta­decane 4-nitro­phenolate 4-nitro­phenol by grinding (2R,7R)-1,8,10,12-tetra­aza­tetra­cyclo­[8.3.1.18,12.02,7]penta­decane with 4-nitro­phenol (Rivera, Uribe, Ríos-Motta et al., 2015) and the 1:2 adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD)-4-bromo­phenol (Rivera, Uribe, Rojas et al., 2015) by grinding at room temperature. Herein, we describe the synthesis of the title co-crystalline adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD)-4-chloro-3,5-di­methyl­phenol under solvent-free conditions by simply grinding together the components at room temperature.

Structural commentary top

The crystal structure of the title compound, (I), has confirmed the presence of a 1:1 co-crystalline adduct. A view of this adduct is shown in Fig. 1. The asymmetric unit of the title compound contains a 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) and a 4-chloro-3,5-di­methyl­phenol molecule linked via an O—H···N hydrogen bond, forming a D motif (Bernstein et al., 1995). As in the 1:2 adduct with 4-bromo­phenol (Rivera, Uribe, Rojas et al., 2015) and the 1:1 adduct with hydro­quinone (Rivera et al., 2007), the inter­molecular O—H···N hydrogen bond in (I) also leads to a stable supra­molecular structure, but comparison of the title compound with the other related structures shows that the three adducts differ in the O···N hydrogen-bond distances [2.752 (2) Å in (I), 2.705 (5) Å in the 1:2 adduct and 2.767 (2) Å in the co-crystalline adduct with hydro­quinone], which is in agreement with the differences in the pKa values between the species involved in the hydrogen bond (Majerz et al., 1997): 4-chloro-3,5-di­methyl­phenol (pKa = 9.76); p-bromo­phenol (pKa = 9.37) and hydro­quinone (pKa = 9.85) (Lide, 2003).

To a first approximation, the geometric parameters of the title molecule agree well with those reported for similar structures (Rivera et al., 2007; Rivera, Uribe, Rojas et al., 2015) and are within normal ranges (Allen et al., 1987), but compared to the free aminal cage structure (Rivera et al., 2014) which belongs to the D2d point group, two small differences are noted. The aza­adamantane structure in (I) is slightly distorted, with N—CH2—CH2—N torsion angles of 10.4 (3)° (N1—C1—C2—N2) and -9.0 (3)° (N3—C7—C8—N4). These values differ slightly from the values of the corresponding torsion angles in the free aminal cage (0.0°; Rivera et al., 2014), and the related co-crystalline adducts [2.4 (7)° (Rivera, Uribe, Rojas et al., 2015) and -0.62° (Rivera et al., 2007)] which shows that each N—C—C—N group is not far from a planar geometry and consistent with a D2d molecular symmetry in the tetra­aza­tri­cyclo structure. Furthermore, the structures also differ in the slight elongation of the N1—C bond lengths of the nitro­gen atom that accepts the hydrogen bond, [1.470 (2) and 1.480 (2) Å], compared to the the other N—C bond lengths (Table 1).

Supra­molecular features top

The two different molecules in (I) are connected by a classical O—H···N hydrogen bond. The crystal packing is further stabilized by weak inter­molecular C—H···π inter­actions, linking the molecules into two-dimensional sheets in the bc plane (Table 2 and Fig. 2). Furthermore, there are short N···Cl contacts [N4···Cl1i 3.1680 (15) Å symmetry operator: (i) x, -y, z - 1/2] linking the molecules into zigzag chains running along the c-axis direction (Fig. 3).

Database survey top

The geometric parameters of 4-chloro-3,5-di­methyl­phenol in (I) (Table 1) agree well with those of found in the crystal structure containing only this molecule (Cox, 1995), which crystallized with two molecules in the asymmetric unit [C—O = 1.387 (3) and 1.378 (3) Å; C—Cl = 1.752 (2) and 1.749 (2) Å; C—Cmethyl = 1.502 (3), 1.500 (3), 1.514 (3) and 1.505 (3) Å]. For 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane, two comparable structures were retrieved from the CSD (Groom & Allen, 2014). A least-squares fit of the structure that contains only 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (Rivera et al., 2014) gives an r.m.s. deviation of 0.048 Å with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane of (I) and a least-squares fit of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane co-crystallized with hydro­quinone (Rivera et al., 2007) gives an r.m.s. deviation of 0.051 Å with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane of (I). Thus, it can be concluded that the conformational freedom of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane is rather limited.

Synthesis and crystallization top

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.3,8]do­decane (TATD) (168 mg, 1 mmol) and 4-chloro-3,5-di­methyl­phenol (157 mg, 1 mmol) was ground using a mortar and pestle, at room temperature for 15 min., as required to complete the reaction (TLC). The mixture was then dissolved in methanol. Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were located in difference electron-density maps. The hydroxyl H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95, 0.98 or 0.99 Å ) and refined using a riding model, with Uiso(H) values set at 1.2Ueq (1.5 for methyl groups) of the parent atom. The methyl groups were allowed to rotate but not to tip.

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Cox (1995); Lide (2003); Majerz et al. (1997); Rivera & Quevedo (2013); Rivera et al. (2005, 2007, 2014); Rivera, Nerio & Bolte (2015); Rivera, Uribe, Ríos-Motta, Osorio & Bolte (2015); Rivera, Uribe, Rojas, Ríos-Motta & Bolte (2015).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, with displacement ellipsoids drawn at the 50% probability level. The hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. Partial packing diagram of the title compound. View onto the ab plane. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are drawn as dashed lines and the short Cl···N contacts are shown as dotted lines. Atoms with suffix A are generated by the symmetry operator (x, -y, z - 1/2) and atoms with suffix B are generated by the symmetry operator (x, -y, z + 1/2).
1,3,6,8-Tetraazatricyclo[4.4.1.13,8]dodecane; 4-chloro-3,5-dimethylphenol top
Crystal data top
C8H16N4·C8H9ClOF(000) = 1392
Mr = 324.85Dx = 1.316 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.6048 (18) ÅCell parameters from 12525 reflections
b = 7.5295 (7) Åθ = 3.4–25.8°
c = 18.2317 (13) ŵ = 0.24 mm1
β = 111.080 (5)°T = 173 K
V = 3279.7 (5) Å3Block, colourless
Z = 80.27 × 0.26 × 0.22 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2512 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.083
ω scansθmax = 25.6°, θmin = 3.4°
Absorption correction: multi-scan
(X-RED32; Stoe & Cie, 2001)
h = 3030
Tmin = 0.738, Tmax = 1.000k = 99
14414 measured reflectionsl = 1922
3066 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.5777P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3066 reflectionsΔρmax = 0.26 e Å3
205 parametersΔρmin = 0.25 e Å3
Crystal data top
C8H16N4·C8H9ClOV = 3279.7 (5) Å3
Mr = 324.85Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.6048 (18) ŵ = 0.24 mm1
b = 7.5295 (7) ÅT = 173 K
c = 18.2317 (13) Å0.27 × 0.26 × 0.22 mm
β = 111.080 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3066 independent reflections
Absorption correction: multi-scan
(X-RED32; Stoe & Cie, 2001)
2512 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.083
14414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
3066 reflectionsΔρmin = 0.25 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37029 (5)0.56339 (18)0.36779 (8)0.0224 (3)
N20.30414 (6)0.8359 (2)0.26828 (9)0.0297 (3)
N30.40890 (6)0.84503 (19)0.33226 (9)0.0260 (3)
N40.35050 (6)0.58696 (19)0.22295 (9)0.0299 (3)
C10.31697 (7)0.6087 (2)0.37648 (11)0.0313 (4)
H1A0.32460.63450.43260.038*
H1B0.29240.50300.36230.038*
C20.28501 (8)0.7651 (3)0.32812 (14)0.0438 (5)
H2A0.24550.72870.30220.053*
H2B0.28570.86270.36490.053*
C30.41163 (7)0.7098 (2)0.38985 (10)0.0267 (4)
H3A0.40840.77000.43630.032*
H3B0.44940.65590.40680.032*
C40.35575 (8)0.9394 (2)0.29998 (12)0.0333 (4)
H4A0.35781.01800.25750.040*
H4B0.35241.01700.34190.040*
C50.36300 (7)0.4777 (2)0.29227 (11)0.0285 (4)
H5A0.39770.41110.29890.034*
H5B0.33250.38940.28180.034*
C60.30356 (8)0.7083 (3)0.20810 (12)0.0376 (5)
H6A0.29970.77610.15990.045*
H6B0.26930.63550.19610.045*
C70.43347 (9)0.7933 (3)0.27484 (12)0.0386 (5)
H7A0.47050.73910.30320.046*
H7B0.43990.90200.24870.046*
C80.39926 (10)0.6640 (3)0.21162 (13)0.0430 (5)
H8A0.38650.72650.16040.052*
H8B0.42410.56610.20840.052*
Cl10.35337 (2)0.26689 (6)0.61168 (3)0.03412 (16)
O110.43692 (5)0.32897 (19)0.47753 (9)0.0390 (4)
H110.4116 (15)0.396 (5)0.447 (2)0.084 (10)*
C110.41519 (7)0.1923 (2)0.50578 (10)0.0257 (4)
C120.45255 (7)0.0659 (2)0.55103 (10)0.0261 (4)
H120.49130.07740.55970.031*
C130.43430 (7)0.0768 (2)0.58371 (10)0.0250 (4)
C140.37708 (7)0.0899 (2)0.56943 (10)0.0237 (3)
C150.33830 (7)0.0318 (2)0.52312 (10)0.0229 (3)
C160.35825 (7)0.1742 (2)0.49162 (10)0.0245 (4)
H160.33270.25970.46010.029*
C170.27635 (7)0.0110 (2)0.50600 (12)0.0311 (4)
H17A0.26380.10470.48130.047*
H17B0.25590.10570.47040.047*
H17C0.26920.01850.55520.047*
C180.47576 (8)0.2148 (3)0.63056 (13)0.0388 (5)
H18A0.47190.23110.68170.058*
H18B0.51390.17530.63840.058*
H18C0.46840.32770.60190.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0202 (6)0.0238 (7)0.0228 (7)0.0040 (5)0.0074 (5)0.0018 (5)
N20.0289 (7)0.0269 (7)0.0311 (8)0.0034 (6)0.0080 (6)0.0026 (6)
N30.0285 (7)0.0250 (7)0.0264 (8)0.0061 (6)0.0122 (6)0.0009 (6)
N40.0394 (8)0.0270 (7)0.0227 (8)0.0012 (6)0.0104 (6)0.0047 (6)
C10.0261 (8)0.0386 (10)0.0328 (10)0.0012 (7)0.0152 (8)0.0041 (8)
C20.0350 (10)0.0483 (11)0.0558 (14)0.0129 (9)0.0259 (10)0.0134 (10)
C30.0243 (8)0.0289 (8)0.0233 (9)0.0075 (6)0.0042 (7)0.0006 (7)
C40.0402 (10)0.0206 (8)0.0367 (11)0.0003 (7)0.0108 (8)0.0009 (7)
C50.0331 (9)0.0206 (8)0.0309 (10)0.0020 (6)0.0106 (7)0.0034 (7)
C60.0410 (10)0.0353 (10)0.0247 (10)0.0032 (8)0.0024 (8)0.0014 (8)
C70.0408 (10)0.0466 (11)0.0376 (11)0.0112 (8)0.0252 (9)0.0016 (9)
C80.0609 (13)0.0429 (11)0.0379 (12)0.0081 (10)0.0333 (11)0.0079 (9)
Cl10.0372 (2)0.0318 (2)0.0342 (3)0.00899 (18)0.01382 (19)0.00941 (18)
O110.0250 (6)0.0406 (8)0.0481 (9)0.0075 (6)0.0090 (6)0.0216 (7)
C110.0256 (8)0.0271 (8)0.0240 (9)0.0081 (7)0.0084 (7)0.0023 (7)
C120.0194 (7)0.0308 (9)0.0256 (9)0.0054 (6)0.0049 (6)0.0012 (7)
C130.0267 (8)0.0260 (8)0.0197 (8)0.0027 (6)0.0051 (7)0.0003 (6)
C140.0298 (8)0.0231 (8)0.0189 (8)0.0077 (6)0.0096 (7)0.0009 (6)
C150.0251 (8)0.0253 (8)0.0201 (8)0.0051 (6)0.0102 (6)0.0028 (6)
C160.0240 (8)0.0256 (8)0.0220 (8)0.0011 (6)0.0062 (7)0.0033 (7)
C170.0255 (9)0.0332 (9)0.0373 (11)0.0038 (7)0.0145 (7)0.0008 (8)
C180.0325 (9)0.0385 (10)0.0387 (11)0.0028 (8)0.0047 (8)0.0122 (9)
Geometric parameters (Å, º) top
N1—C11.470 (2)C7—C81.522 (3)
N1—C51.470 (2)C7—H7A0.9900
N1—C31.480 (2)C7—H7B0.9900
N2—C21.449 (3)C8—H8A0.9900
N2—C61.454 (3)C8—H8B0.9900
N2—C41.462 (2)Cl1—C141.7534 (16)
N3—C31.446 (2)O11—C111.356 (2)
N3—C71.455 (2)O11—H110.85 (4)
N3—C41.458 (2)C11—C121.391 (2)
N4—C51.444 (2)C11—C161.393 (2)
N4—C61.456 (2)C12—C131.388 (2)
N4—C81.457 (3)C12—H120.9500
C1—C21.521 (3)C13—C141.396 (2)
C1—H1A0.9900C13—C181.512 (2)
C1—H1B0.9900C14—C151.391 (2)
C2—H2A0.9900C15—C161.397 (2)
C2—H2B0.9900C15—C171.511 (2)
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—H17A0.9800
C4—H4A0.9900C17—H17B0.9800
C4—H4B0.9900C17—H17C0.9800
C5—H5A0.9900C18—H18A0.9800
C5—H5B0.9900C18—H18B0.9800
C6—H6A0.9900C18—H18C0.9800
C6—H6B0.9900
C1—N1—C5113.12 (13)N4—C6—H6B107.5
C1—N1—C3113.50 (13)H6A—C6—H6B107.0
C5—N1—C3114.75 (13)N3—C7—C8115.84 (15)
C2—N2—C6114.25 (16)N3—C7—H7A108.3
C2—N2—C4113.62 (17)C8—C7—H7A108.3
C6—N2—C4114.37 (16)N3—C7—H7B108.3
C3—N3—C7114.43 (15)C8—C7—H7B108.3
C3—N3—C4115.49 (14)H7A—C7—H7B107.4
C7—N3—C4114.98 (16)N4—C8—C7115.87 (15)
C5—N4—C6115.37 (15)N4—C8—H8A108.3
C5—N4—C8114.79 (15)C7—C8—H8A108.3
C6—N4—C8114.58 (16)N4—C8—H8B108.3
N1—C1—C2116.37 (15)C7—C8—H8B108.3
N1—C1—H1A108.2H8A—C8—H8B107.4
C2—C1—H1A108.2C11—O11—H11112 (2)
N1—C1—H1B108.2O11—C11—C12117.13 (15)
C2—C1—H1B108.2O11—C11—C16123.30 (16)
H1A—C1—H1B107.3C12—C11—C16119.58 (15)
N2—C2—C1117.66 (15)C13—C12—C11121.22 (15)
N2—C2—H2A107.9C13—C12—H12119.4
C1—C2—H2A107.9C11—C12—H12119.4
N2—C2—H2B107.9C12—C13—C14117.86 (15)
C1—C2—H2B107.9C12—C13—C18119.89 (15)
H2A—C2—H2B107.2C14—C13—C18122.22 (15)
N3—C3—N1118.95 (14)C15—C14—C13122.59 (15)
N3—C3—H3A107.6C15—C14—Cl1118.87 (12)
N1—C3—H3A107.6C13—C14—Cl1118.54 (13)
N3—C3—H3B107.6C14—C15—C16117.92 (14)
N1—C3—H3B107.6C14—C15—C17121.63 (15)
H3A—C3—H3B107.0C16—C15—C17120.45 (15)
N3—C4—N2118.66 (14)C11—C16—C15120.81 (15)
N3—C4—H4A107.6C11—C16—H16119.6
N2—C4—H4A107.6C15—C16—H16119.6
N3—C4—H4B107.6C15—C17—H17A109.5
N2—C4—H4B107.6C15—C17—H17B109.5
H4A—C4—H4B107.1H17A—C17—H17B109.5
N4—C5—N1118.91 (13)C15—C17—H17C109.5
N4—C5—H5A107.6H17A—C17—H17C109.5
N1—C5—H5A107.6H17B—C17—H17C109.5
N4—C5—H5B107.6C13—C18—H18A109.5
N1—C5—H5B107.6C13—C18—H18B109.5
H5A—C5—H5B107.0H18A—C18—H18B109.5
N2—C6—N4119.39 (15)C13—C18—H18C109.5
N2—C6—H6A107.5H18A—C18—H18C109.5
N4—C6—H6A107.5H18B—C18—H18C109.5
N2—C6—H6B107.5
C5—N1—C1—C273.2 (2)C3—N3—C7—C874.7 (2)
C3—N1—C1—C259.8 (2)C4—N3—C7—C862.5 (2)
C6—N2—C2—C159.7 (2)C5—N4—C8—C763.3 (2)
C4—N2—C2—C174.0 (2)C6—N4—C8—C773.6 (2)
N1—C1—C2—N210.4 (3)N3—C7—C8—N49.0 (3)
C7—N3—C3—N179.67 (19)O11—C11—C12—C13178.74 (17)
C4—N3—C3—N157.2 (2)C16—C11—C12—C131.2 (3)
C1—N1—C3—N384.10 (19)C11—C12—C13—C140.3 (3)
C5—N1—C3—N348.1 (2)C11—C12—C13—C18178.17 (17)
C3—N3—C4—N251.5 (2)C12—C13—C14—C151.1 (3)
C7—N3—C4—N285.2 (2)C18—C13—C14—C15176.72 (17)
C2—N2—C4—N378.8 (2)C12—C13—C14—Cl1178.85 (13)
C6—N2—C4—N354.8 (2)C18—C13—C14—Cl13.3 (2)
C6—N4—C5—N151.7 (2)C13—C14—C15—C161.5 (2)
C8—N4—C5—N184.85 (19)Cl1—C14—C15—C16178.46 (13)
C1—N1—C5—N479.28 (19)C13—C14—C15—C17177.67 (16)
C3—N1—C5—N453.1 (2)Cl1—C14—C15—C172.4 (2)
C2—N2—C6—N483.3 (2)O11—C11—C16—C15179.15 (17)
C4—N2—C6—N450.0 (2)C12—C11—C16—C150.8 (3)
C5—N4—C6—N256.6 (2)C14—C15—C16—C110.5 (3)
C8—N4—C6—N280.1 (2)C17—C15—C16—C11178.67 (17)
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O11—H11···N10.85 (4)1.92 (4)2.752 (2)165 (3)
C3—H3A···Cg8i0.992.893.837 (2)160
C8—H8A···Cg8ii0.992.883.814 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2.
Selected geometric parameters (Å, º) top
N1—C11.470 (2)N3—C71.455 (2)
N1—C51.470 (2)N3—C41.458 (2)
N1—C31.480 (2)N4—C51.444 (2)
N2—C21.449 (3)N4—C61.456 (2)
N2—C61.454 (3)N4—C81.457 (3)
N2—C41.462 (2)Cl1—C141.7534 (16)
N3—C31.446 (2)O11—C111.356 (2)
N1—C1—C2—N210.4 (3)N3—C7—C8—N49.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O11—H11···N10.85 (4)1.92 (4)2.752 (2)165 (3)
C3—H3A···Cg8i0.992.893.837 (2)160
C8—H8A···Cg8ii0.992.883.814 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC8H16N4·C8H9ClO
Mr324.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)25.6048 (18), 7.5295 (7), 18.2317 (13)
β (°) 111.080 (5)
V3)3279.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.27 × 0.26 × 0.22
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-RED32; Stoe & Cie, 2001)
Tmin, Tmax0.738, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14414, 3066, 2512
Rint0.083
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.02
No. of reflections3066
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

We acknowledge the financial support provided to us by the Dirección de Investigación, Sede Bogotá (DIB) at the Universidad Nacional de Colombia. JJR thanks COLCIENCIAS for a fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCox, P. J. (1995). Acta Cryst. C51, 1361–1364.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationLide, D. R. (2003). CRC Handbook of Chemistry and Physics. Boca Raton, Florida: CRC Press.  Google Scholar
First citationMajerz, I., Malarski, Z. & Sobczyk, L. (1997). Chem. Phys. Lett. 274, 361–364.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Nerio, L. S. & Bolte, M. (2015). Acta Cryst. E71, 312–314.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416–1420.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105-115.  CAS Google Scholar
First citationRivera, A., Uribe, J. M., Ríos-Motta, J., Osorio, H. J. & Bolte, M. (2015). Acta Cryst. C71, 284–288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463–465.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 737-740
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds