research communications
α-hemipentahydrogen hexamolybdoplatinate(IV)] dodecahydrate
of undecapotassium bis[aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bResearch Institute of Natural Science, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
The title compound, K11[α-Pt(μ3-OH)2(μ3-OH0.5)Mo6(μ3-O)3(μ2-O)6O12]2·12H2O (simplified chemical formula K11[H2.5PtMo6O24]2·12H2O), containing the well-known Anderson-type heteropolyoxomolybdate anion, was obtained by hydrothermal reaction at pH = ca 6.0. The complete polyanion dimer has 2/m symmetry. The locations of the H atoms with respect to protonated O atoms were obtained from difference Fourier maps, and confirmed by the interpolyanion hydrogen bonds, bond-length elongation and bond-valence sums (BVSs). The title heteropolyanion has two types of protonated O atoms viz. μ3-OH, {Mo2–O(H)–Pt} and μ3-OH0.5 (disordered H atom). The [H2.5α-PtMo6O24]5.5− polyanion forms a dimer, [(H2.5α-PtMo6O24)2]11−, held together by two pairs of μ3-O—H⋯μ1-O and of one disordered μ3-O⋯H⋯μ3-O hydrogen bonds. Three K+ ions are located on special positions (two on twofold rotation axes, one on a mirror plane), and two K+ ions are located on general positions with a reduced occupancy of 0.5. The remaining K+ ion has a reduced occupancy of 0.25 for charge balance and reasonable displacement parameters. As a result, the numbers of K+ and H+ ions in the title compound are 5.5 and 2.5, respectively.
Keywords: crystal structure; platinium(IV); platinum-containing heteropolyoxometalate; short hydrogen bond; Anderson structure heteropolyoxomolybdate.
CCDC reference: 1415450
1. Chemical context
The α (planar structure) -β (bent structure) -α geometrical isomerization, according to stepwise protonation in the [PtMo6O24]8− polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5− (Lee & Sasaki, 1998), [H4β-PtMo6O24]4− (Lee & Sasaki, 1998; Joo et al., 1994) and [H4.5α-PtMo6O24]3.5− (Lee & Sasaki, 1998; Lee et al., 2010; Joo et al., 2015), is an unprecedented phenomenon in the Anderson-type heteropolyanion (Anderson, 1937) as well as in the chemistry of POMs. However, in addition, differently protonated polyanion species have been reported, viz. [H2PtMo6O24]6− (Lee & Joo, 2000, 2004b), and [H6PtMo6O24]2− (Lee & Joo, 2006a,b, 2010). Less protonated than the title polyanion, the species [H2PtMo6O24]6− was obtained in more acidic conditions (at pH 2.0 and 3.2). These polyanions are formed into dimers and polymers (in [H6PtMo6O24]2− polyanions) by interpolyanion hydrogen bonds. Recently, a hydrogen-bonded hexamolybdoplatinate(IV) tetramer, [(PtMo6O24)4H23]9−, and the trimers, [(PtMo6O24)3H16]8− and [(PtMo6O24)3H14]10− have been reported as the tetra-n-butylammonium and tetra-n-butylammonium/triethylammonium salts, respectively (Day et al., 2009). The same type of protonated species in a tungsten system, [H2.5PtW6O24]5.5−, has been reported by our group (Lee & Joo, 2004a). We report herein the of the title compound containing a new protonated species in the hexamolybdoplatinate(IV) system by hemipenta H+, [H2.5PtMo6O24]5.5−.
2. Structural commentary
Fig. 1 shows the building units of the title compound. The complete polyanion has symmetry m whereas the dimer (held together by hydrogen bonds) has 2/m symmetry. The O atoms of the heteropolyanion have been designated as OT (terminal Mo=O atom), OB (bridging μ2-OB atom; Mo—O—Mo) and OC (centered μ3-O atom; Mo2-–OC-–Pt). The protonated O atoms in the polyanion were confirmed by bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991), charge balance, bond-length elongation (Table 1) and the interpolyanion hydrogen bonds (Fig. 2 and Table 2).
|
Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The calculated BVSs for expected protonation atoms O1C and O3C are 1.46 and 1.39 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the O atom should be 2.0 v.u., the missing valences of O1C and O3C are 0.54 and 0.61 v.u., respectively, which corresponds to the valence of the O—H bonds. The BVS value for the unprotonated O2C, O4C, O5B–O8B atoms are 1.87, 1.78, 1.88, 1.60, 1.88 and 1.76 v.u., respectively. The value of O6B is relatively small but it is not protonated. As a result, the protonated O atoms are O1C and O3C.
The positions of atoms H1 and H3 on the protonated atoms O1C and O3C, respectively, were obtained from difference Fourier maps. The heteropolyanion forms a 2/m symmetric dimer {[H2.5PtMo6O24]2}11−, held together by each of the four μ3(Mo2Pt)-O3C-–H3⋯μ1(Mo)-O9T and one disordered μ3(Mo2Pt)-O1C⋯H1⋯μ3-O1C hydrogen bonds (Table 2 and Fig. 2).
While the structure of the dimeric polyanions is clear, the disorder among the potassium atoms and water molecules makes it difficult to be as certain of the chemical structure in the regions in between. The K1–K3 ions were located in special positions, one on a mirror plane and two on twofold rotation axes. The calculated BVSs for the K1–K3 ions are 1.00, 0.90 and 1.00 v.u. (K+⋯O distance 〈 3.00 Å), respectively. Reasonable displacement parameters of K4 and K5 atoms were obtained by reducing the site occupancies to 0.5, and the BVSs for K4 and K5 ions are 1.04 and 0.91 v.u., respectively. The occupancy of K6 was further reduced to 0.25 for charge balance and reasonable displacement parameters. The calculated BVSs was 0.54 v.u. For the same reason, the occupancies of water molecules O2W–O6W were reduced to 0.5. The K+ ions are variously coordinated by O atoms as [K1(OT)6]+, [K2(OT)4(OW)2]+, [K3(OC)2(OB)(OT)2(OW)2]+, [K4(OT)(OW)6]+, [K5(OT)2(OW)3]+ and [K6(OT)(OW)]+.
3. Supramolecular features
The polyanion dimers are three-dimensionally linked only via K⋯OB, C and T interactions. Water molecules O1W, O2W and O5W do not contribute to the hydrogen bonds.
4. Synthesis and crystallization
Crystals of the title compound were prepared by the reaction of K2MoO4·2H2O and K2Pt(OH)6 at pH = ca 6.0. as described in a previous report (Joo et al., 1994).
5. Refinement
Crystal data, data collection and structure . Atoms H1 and H3 in the polyanion were located in difference Fourier maps and refined with Uiso(H) = 1.5Ueq(O), and a distance restraint of O—H = 1.00 (3) Å using the DFIX command in SHELXL2014/7 (Sheldrick, 2015). The occupancy of atom H1 was reduced to 0.5 because of disorder. Reasonable displacement parameters for atoms K4–K6 and water molecules O2W–O5W were obtained by reducing their site occupancies to 0.5 because of disorder. The occupancy of K6 was further reduced to 0.25 for charge balance and reasonable displacement parameters. All H atoms of water molecules O1W–O4W were found in difference Fourier maps and refined with distance and angle restraints of O—H = 0.85 (3) Å and HA—OW—HB = 1.35 (3) Å, respectively, using the command DFIX, and were included in the with Uiso(H) = 1.5Ueq(O). The H atoms on O5W were positioned geometrically and refined using a riding model (HFIX 23), with OW—H = 0.97 Å and Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
The reflections (0,2,0) and (3,1,2) were omitted in the final
as they were obscured by the beamstop. The highest peak in the difference map is 0.86 Å from Pt1 and the deepest hole is 0.88 Å from Pt1.Supporting information
CCDC reference: 1415450
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).K11[H2.5PtMo6O24]2·12H2O | Dx = 3.304 Mg m−3 |
Mr = 1480.40 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Cmce | Cell parameters from 3642 reflections |
a = 16.8552 (4) Å | θ = 2.4–28.2° |
b = 22.7112 (7) Å | µ = 8.00 mm−1 |
c = 15.5503 (4) Å | T = 173 K |
V = 5952.7 (3) Å3 | Block, pale yellow |
Z = 8 | 0.25 × 0.15 × 0.14 mm |
F(000) = 5512 |
Bruker SMART APEXII CCD diffractometer | 3826 independent reflections |
Radiation source: rotating anode | 3257 reflections with I > 2σ(I) |
Detector resolution: 10.0 pixels mm-1 | Rint = 0.044 |
φ and ω scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −22→22 |
Tmin = 0.424, Tmax = 0.746 | k = −30→17 |
16741 measured reflections | l = −16→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0297P)2 + 46.2991P] where P = (Fo2 + 2Fc2)/3 |
3826 reflections | (Δ/σ)max = 0.001 |
264 parameters | Δρmax = 1.50 e Å−3 |
14 restraints | Δρmin = −1.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.5000 | 0.37721 (2) | 0.50594 (2) | 0.00882 (8) | |
Mo1 | 0.40210 (3) | 0.43798 (2) | 0.34971 (3) | 0.01424 (11) | |
Mo2 | 0.30535 (3) | 0.36824 (2) | 0.49776 (3) | 0.01495 (11) | |
Mo3 | 0.40452 (2) | 0.29903 (2) | 0.65278 (3) | 0.01481 (11) | |
O1C | 0.5000 | 0.4557 (2) | 0.4473 (3) | 0.0123 (10) | |
H1 | 0.5000 | 0.485 (6) | 0.495 (8) | 0.018* | 0.5 |
O2C | 0.41239 (19) | 0.36081 (16) | 0.4244 (2) | 0.0125 (7) | |
O3C | 0.41006 (19) | 0.39059 (16) | 0.5875 (2) | 0.0131 (7) | |
H3 | 0.402 (3) | 0.4250 (19) | 0.623 (3) | 0.020* | |
O4C | 0.5000 | 0.2979 (2) | 0.5621 (3) | 0.0131 (10) | |
O5B | 0.5000 | 0.4138 (2) | 0.2959 (3) | 0.0160 (11) | |
O6B | 0.3265 (2) | 0.44740 (18) | 0.4460 (2) | 0.0208 (8) | |
O7B | 0.3379 (2) | 0.29588 (17) | 0.5512 (2) | 0.0176 (8) | |
O8B | 0.5000 | 0.3212 (2) | 0.7162 (3) | 0.0158 (11) | |
O9T | 0.4015 (2) | 0.51246 (17) | 0.3235 (3) | 0.0187 (8) | |
O10T | 0.3402 (2) | 0.40612 (17) | 0.2754 (2) | 0.0196 (8) | |
O11T | 0.2431 (2) | 0.3418 (2) | 0.4200 (3) | 0.0266 (9) | |
O12T | 0.2448 (2) | 0.3962 (2) | 0.5763 (3) | 0.0273 (10) | |
O13T | 0.3397 (2) | 0.33250 (19) | 0.7226 (3) | 0.0237 (9) | |
O14T | 0.4017 (2) | 0.22555 (18) | 0.6778 (3) | 0.0228 (9) | |
K1 | 0.2500 | 0.30728 (8) | 0.2500 | 0.0221 (4) | |
K2 | 0.2500 | 0.43286 (8) | 0.7500 | 0.0267 (4) | |
K3 | 0.5000 | 0.28050 (8) | 0.33118 (12) | 0.0254 (4) | |
K4 | 0.09783 (17) | 0.43827 (17) | 0.5206 (2) | 0.0371 (7) | 0.5 |
K5 | 0.09202 (17) | 0.3486 (2) | 0.4765 (2) | 0.0595 (12) | 0.5 |
K6 | 0.1660 (5) | 0.2717 (3) | 0.6235 (4) | 0.0478 (19) | 0.25 |
O1W | 0.1839 (3) | 0.4814 (2) | 0.3701 (4) | 0.0412 (13) | |
H1A | 0.159 (4) | 0.451 (2) | 0.346 (5) | 0.062* | |
H1B | 0.219 (4) | 0.465 (3) | 0.402 (4) | 0.062* | |
O2W | 0.0345 (5) | 0.3851 (4) | 0.3785 (6) | 0.033 (2) | 0.5 |
H2A | 0.066 (6) | 0.355 (3) | 0.371 (10) | 0.049* | 0.5 |
H2B | 0.065 (6) | 0.414 (4) | 0.363 (10) | 0.049* | 0.5 |
O3W | 0.4326 (6) | 0.4488 (5) | 0.9311 (7) | 0.041 (3) | 0.5 |
H3A | 0.466 (7) | 0.470 (6) | 0.958 (7) | 0.062* | 0.5 |
H3B | 0.446 (9) | 0.452 (7) | 0.878 (3) | 0.062* | 0.5 |
O4W | 0.4571 (6) | 0.4175 (4) | 0.8141 (6) | 0.038 (2) | 0.5 |
H4A | 0.448 (8) | 0.448 (4) | 0.785 (8) | 0.057* | 0.5 |
H4B | 0.5000 | 0.424 (5) | 0.842 (4) | 0.057* | |
O5W | 0.0461 (6) | 0.2998 (5) | 0.5369 (7) | 0.051 (3) | 0.5 |
H5A | 0.0637 | 0.2610 | 0.5192 | 0.077* | 0.5 |
H5B | 0.0637 | 0.3054 | 0.5958 | 0.077* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.00455 (12) | 0.00998 (13) | 0.01192 (13) | 0.000 | 0.000 | −0.00001 (10) |
Mo1 | 0.0159 (2) | 0.0116 (2) | 0.0152 (2) | 0.00145 (17) | −0.00367 (16) | 0.00085 (17) |
Mo2 | 0.0058 (2) | 0.0224 (3) | 0.0166 (2) | −0.00089 (16) | 0.00046 (15) | 0.00087 (18) |
Mo3 | 0.0083 (2) | 0.0173 (2) | 0.0188 (2) | −0.00036 (17) | 0.00244 (16) | 0.00565 (18) |
O1C | 0.013 (2) | 0.011 (2) | 0.014 (2) | 0.000 | 0.000 | 0.0032 (19) |
O2C | 0.0108 (17) | 0.0133 (18) | 0.0134 (17) | −0.0018 (14) | −0.0018 (13) | −0.0013 (14) |
O3C | 0.0082 (16) | 0.0160 (19) | 0.0151 (17) | 0.0009 (14) | 0.0038 (13) | −0.0016 (14) |
O4C | 0.012 (2) | 0.010 (2) | 0.017 (3) | 0.000 | 0.000 | 0.003 (2) |
O5B | 0.014 (2) | 0.017 (3) | 0.018 (3) | 0.000 | 0.000 | −0.005 (2) |
O6B | 0.0136 (18) | 0.029 (2) | 0.0201 (19) | 0.0078 (17) | 0.0040 (15) | 0.0056 (17) |
O7B | 0.0113 (18) | 0.021 (2) | 0.0211 (19) | −0.0064 (15) | −0.0024 (14) | 0.0052 (16) |
O8B | 0.012 (2) | 0.018 (3) | 0.017 (3) | 0.000 | 0.000 | 0.001 (2) |
O9T | 0.020 (2) | 0.0154 (19) | 0.021 (2) | −0.0003 (15) | −0.0019 (16) | 0.0000 (15) |
O10T | 0.0150 (19) | 0.022 (2) | 0.0214 (19) | −0.0014 (16) | −0.0032 (15) | −0.0007 (16) |
O11T | 0.0155 (19) | 0.045 (3) | 0.020 (2) | −0.0050 (19) | −0.0028 (15) | 0.0079 (19) |
O12T | 0.0132 (19) | 0.046 (3) | 0.023 (2) | 0.0072 (18) | 0.0036 (16) | 0.006 (2) |
O13T | 0.0104 (18) | 0.037 (3) | 0.024 (2) | 0.0049 (17) | 0.0041 (15) | 0.0083 (18) |
O14T | 0.0162 (19) | 0.025 (2) | 0.028 (2) | −0.0049 (16) | −0.0038 (16) | 0.0080 (18) |
K1 | 0.0160 (8) | 0.0282 (10) | 0.0223 (9) | 0.000 | 0.0027 (6) | 0.000 |
K2 | 0.0275 (10) | 0.0299 (10) | 0.0227 (9) | 0.000 | 0.0033 (7) | 0.000 |
K3 | 0.0253 (9) | 0.0248 (10) | 0.0262 (9) | 0.000 | 0.000 | −0.0107 (7) |
K4 | 0.0198 (14) | 0.061 (2) | 0.0307 (16) | 0.0001 (13) | −0.0029 (12) | −0.0010 (15) |
K5 | 0.0178 (15) | 0.118 (4) | 0.0425 (19) | 0.0099 (18) | 0.0007 (13) | −0.013 (2) |
K6 | 0.091 (5) | 0.019 (3) | 0.034 (3) | −0.010 (3) | 0.037 (3) | −0.007 (2) |
O1W | 0.038 (3) | 0.039 (3) | 0.047 (3) | 0.016 (2) | −0.017 (2) | −0.010 (2) |
O2W | 0.039 (5) | 0.037 (5) | 0.022 (4) | 0.006 (4) | 0.007 (4) | 0.000 (4) |
O3W | 0.024 (5) | 0.067 (8) | 0.032 (6) | 0.010 (5) | −0.009 (5) | −0.005 (5) |
O4W | 0.052 (6) | 0.027 (5) | 0.035 (5) | 0.004 (5) | −0.002 (4) | 0.001 (4) |
O5W | 0.059 (7) | 0.049 (7) | 0.045 (6) | 0.016 (6) | −0.003 (5) | −0.021 (5) |
Pt1—O1C | 2.003 (5) | O13T—K2 | 2.768 (4) |
Pt1—O2C | 1.981 (3) | O14T—K1ii | 2.890 (4) |
Pt1—O3C | 2.000 (3) | O14T—K3iii | 2.907 (4) |
Pt1—O4C | 2.001 (5) | O14T—K5ii | 2.934 (6) |
Mo1—O1C | 2.277 (3) | K1—O10Tvi | 2.740 (4) |
Mo1—O2C | 2.110 (4) | K1—O11Tvi | 2.760 (4) |
Mo2—O2C | 2.141 (3) | K1—O14Tii | 2.890 (4) |
Mo2—O3C | 2.307 (4) | K1—O14Tvii | 2.890 (4) |
Mo3—O3C | 2.316 (4) | K2—O13Tv | 2.768 (4) |
Mo3—O4C | 2.140 (3) | K2—O12Tv | 2.828 (4) |
Pt1—O2Ci | 1.981 (3) | K2—O1Wviii | 2.919 (6) |
Pt1—O3Ci | 2.000 (3) | K2—O1Wix | 2.919 (6) |
Pt1—K3 | 3.4943 (18) | K2—O9Tviii | 3.060 (4) |
Mo1—O10T | 1.717 (4) | K2—O9Tix | 3.060 (4) |
Mo1—O9T | 1.740 (4) | K3—O2Ci | 2.759 (4) |
Mo1—O5B | 1.930 (3) | K3—O5Wx | 2.852 (12) |
Mo1—O6B | 1.978 (4) | K3—O5Wii | 2.852 (12) |
Mo1—K3 | 3.9494 (17) | K3—O14Tvii | 2.907 (4) |
Mo2—O11T | 1.709 (4) | K3—O14Txi | 2.907 (4) |
Mo2—O12T | 1.714 (4) | K3—O8Bxi | 2.921 (5) |
Mo2—O7B | 1.921 (4) | K4—O3Wv | 0.940 (11) |
Mo2—O6B | 2.002 (4) | K4—O2W | 2.735 (10) |
Mo3—O14T | 1.714 (4) | K4—O4Wv | 2.773 (11) |
Mo3—O13T | 1.717 (4) | K4—O1Wix | 2.884 (6) |
Mo3—O7B | 1.939 (4) | K4—O3Wxii | 2.894 (10) |
Mo3—O8B | 1.953 (3) | K4—O1W | 2.923 (7) |
Mo3—Mo3i | 3.2187 (8) | K4—O3Wiv | 2.963 (12) |
O1C—Mo1i | 2.278 (3) | K4—O5W | 3.274 (12) |
O1C—H1 | 0.99 (3) | K5—O5W | 1.647 (13) |
O2C—K3 | 2.759 (4) | K5—O2W | 1.987 (10) |
O2C—K6ii | 3.370 (7) | K5—O3Wv | 2.723 (13) |
O3C—H3 | 0.97 (3) | K5—O5Wxiii | 2.744 (11) |
O4C—Mo3i | 2.140 (3) | K5—O2Wxiii | 2.750 (9) |
O5B—Mo1i | 1.930 (3) | K5—O14Tii | 2.934 (6) |
O5B—K3 | 3.077 (6) | K6—O5W | 2.512 (14) |
O7B—K6ii | 3.121 (7) | K6—O13Tv | 2.765 (7) |
O7B—K6 | 3.155 (8) | K6—O11Tii | 3.074 (8) |
O8B—Mo3i | 1.953 (3) | K6—O7Bii | 3.121 (7) |
O8B—K3iii | 2.921 (5) | K6—O2Cii | 3.370 (7) |
O9T—K2iv | 3.060 (4) | O1W—H1A | 0.88 (3) |
O10T—K1 | 2.740 (4) | O1W—H1B | 0.86 (3) |
O11T—K5 | 2.698 (5) | O2W—H2A | 0.86 (3) |
O11T—K1 | 2.760 (4) | O2W—H2B | 0.87 (3) |
O11T—K6ii | 3.074 (8) | O3W—H3A | 0.86 (3) |
O12T—K4 | 2.792 (5) | O3W—H3B | 0.85 (3) |
O12T—K2 | 2.828 (4) | O4W—H4A | 0.85 (3) |
O12T—K5 | 3.195 (6) | O4W—H4B | 0.85 (3) |
O12T—K6 | 3.210 (7) | O5W—H5A | 0.9700 |
O13T—K6v | 2.765 (7) | O5W—H5B | 0.9700 |
Pt1—O1C—Mo1 | 98.38 (17) | O2C—K3—O5Wx | 101.0 (2) |
Mo1—O1C—Mo1i | 92.86 (18) | O2Ci—K3—O5Wx | 84.2 (2) |
Pt1—O2C—Mo1 | 104.91 (15) | O2C—K3—O5Wii | 84.2 (2) |
Pt1—O2C—Mo2 | 105.82 (15) | O2Ci—K3—O5Wii | 101.0 (2) |
Mo1—O2C—Mo2 | 99.12 (14) | O5Wx—K3—O5Wii | 31.6 (4) |
Pt1—O3C—Mo2 | 99.35 (15) | O2C—K3—O14Tvii | 99.06 (11) |
Pt1—O3C—Mo3 | 99.91 (14) | O2Ci—K3—O14Tvii | 140.13 (13) |
Mo2—O3C—Mo3 | 92.10 (13) | O5Wx—K3—O14Tvii | 135.6 (2) |
Pt1—O4C—Mo3 | 106.09 (17) | O5Wii—K3—O14Tvii | 113.9 (2) |
Mo3—O4C—Mo3i | 97.5 (2) | O2C—K3—O14Txi | 140.14 (13) |
O2Ci—Pt1—O2C | 96.4 (2) | O2Ci—K3—O14Txi | 99.06 (11) |
O2Ci—Pt1—O3C | 177.79 (14) | O5Wx—K3—O14Txi | 113.9 (2) |
O2C—Pt1—O3C | 82.50 (15) | O5Wii—K3—O14Txi | 135.6 (2) |
O2Ci—Pt1—O3Ci | 82.50 (15) | O14Tvii—K3—O14Txi | 69.49 (16) |
O2C—Pt1—O3Ci | 177.79 (14) | O2C—K3—O8Bxi | 147.63 (7) |
O3C—Pt1—O3Ci | 98.6 (2) | O2Ci—K3—O8Bxi | 147.63 (7) |
O2Ci—Pt1—O4C | 96.31 (14) | O5Wx—K3—O8Bxi | 86.3 (2) |
O2C—Pt1—O4C | 96.31 (14) | O5Wii—K3—O8Bxi | 86.3 (2) |
O3C—Pt1—O4C | 81.95 (14) | O14Tvii—K3—O8Bxi | 57.34 (11) |
O3Ci—Pt1—O4C | 81.94 (14) | O14Txi—K3—O8Bxi | 57.34 (11) |
O2Ci—Pt1—O1C | 82.88 (14) | O2C—K3—O5B | 56.17 (11) |
O2C—Pt1—O1C | 82.88 (14) | O2Ci—K3—O5B | 56.16 (11) |
O3C—Pt1—O1C | 98.84 (14) | O5Wx—K3—O5B | 139.2 (2) |
O3Ci—Pt1—O1C | 98.84 (14) | O5Wii—K3—O5B | 139.2 (2) |
O4C—Pt1—O1C | 178.8 (2) | O14Tvii—K3—O5B | 84.27 (12) |
O10T—Mo1—O9T | 104.34 (18) | O14Txi—K3—O5B | 84.27 (12) |
O10T—Mo1—O5B | 96.18 (18) | O8Bxi—K3—O5B | 131.98 (15) |
O9T—Mo1—O5B | 100.4 (2) | O3Wv—K4—O2W | 123.0 (7) |
O10T—Mo1—O6B | 99.42 (17) | O3Wv—K4—O4Wv | 28.4 (7) |
O9T—Mo1—O6B | 93.92 (17) | O2W—K4—O4Wv | 122.9 (3) |
O5B—Mo1—O6B | 155.52 (18) | O3Wv—K4—O12T | 108.9 (6) |
O10T—Mo1—O2C | 94.06 (16) | O2W—K4—O12T | 116.4 (2) |
O9T—Mo1—O2C | 159.58 (16) | O4Wv—K4—O12T | 87.2 (2) |
O5B—Mo1—O2C | 86.13 (18) | O3Wv—K4—O1Wix | 69.1 (7) |
O6B—Mo1—O2C | 74.10 (15) | O2W—K4—O1Wix | 162.1 (3) |
O10T—Mo1—O1C | 164.43 (18) | O4Wv—K4—O1Wix | 74.3 (3) |
O9T—Mo1—O1C | 89.35 (18) | O12T—K4—O1Wix | 65.64 (16) |
O5B—Mo1—O1C | 73.73 (16) | O3Wv—K4—O3Wxii | 41.1 (6) |
O6B—Mo1—O1C | 86.76 (15) | O2W—K4—O3Wxii | 82.6 (3) |
O2C—Mo1—O1C | 73.78 (15) | O4Wv—K4—O3Wxii | 56.8 (3) |
O11T—Mo2—O12T | 105.6 (2) | O12T—K4—O3Wxii | 143.3 (2) |
O11T—Mo2—O7B | 100.41 (18) | O1Wix—K4—O3Wxii | 106.2 (3) |
O12T—Mo2—O7B | 100.32 (18) | O3Wv—K4—O1W | 145.6 (8) |
O11T—Mo2—O6B | 98.06 (18) | O2W—K4—O1W | 72.2 (2) |
O12T—Mo2—O6B | 93.40 (19) | O4Wv—K4—O1W | 164.8 (3) |
O7B—Mo2—O6B | 153.03 (15) | O12T—K4—O1W | 85.57 (15) |
O11T—Mo2—O2C | 96.48 (16) | O1Wix—K4—O1W | 90.59 (19) |
O12T—Mo2—O2C | 155.60 (17) | O3Wxii—K4—O1W | 131.1 (3) |
O7B—Mo2—O2C | 85.55 (15) | O3Wv—K4—O3Wiv | 93.5 (8) |
O6B—Mo2—O2C | 72.94 (14) | O2W—K4—O3Wiv | 86.3 (3) |
O11T—Mo2—O3C | 167.10 (17) | O4Wv—K4—O3Wiv | 121.7 (3) |
O12T—Mo2—O3C | 86.74 (16) | O12T—K4—O3Wiv | 126.5 (2) |
O7B—Mo2—O3C | 73.03 (14) | O1Wix—K4—O3Wiv | 79.4 (3) |
O6B—Mo2—O3C | 84.81 (14) | O3Wxii—K4—O3Wiv | 83.3 (3) |
O2C—Mo2—O3C | 72.23 (13) | O1W—K4—O3Wiv | 54.5 (2) |
O14T—Mo3—O13T | 105.6 (2) | O3Wv—K4—O5W | 92.1 (8) |
O14T—Mo3—O7B | 97.66 (17) | O2W—K4—O5W | 62.3 (3) |
O13T—Mo3—O7B | 99.35 (17) | O4Wv—K4—O5W | 71.1 (3) |
O14T—Mo3—O8B | 99.1 (2) | O12T—K4—O5W | 83.3 (2) |
O13T—Mo3—O8B | 95.24 (18) | O1Wix—K4—O5W | 134.1 (2) |
O7B—Mo3—O8B | 153.87 (17) | O3Wxii—K4—O5W | 78.6 (3) |
O14T—Mo3—O4C | 99.17 (19) | O1W—K4—O5W | 121.1 (2) |
O13T—Mo3—O4C | 154.17 (19) | O3Wiv—K4—O5W | 145.3 (3) |
O7B—Mo3—O4C | 84.17 (15) | O5W—K5—O11T | 126.2 (4) |
O8B—Mo3—O4C | 73.51 (16) | O2W—K5—O11T | 103.6 (3) |
O14T—Mo3—O3C | 167.13 (17) | O5W—K5—O3Wv | 100.9 (4) |
O13T—Mo3—O3C | 84.56 (16) | O2W—K5—O3Wv | 89.0 (4) |
O7B—Mo3—O3C | 72.52 (14) | O11T—K5—O3Wv | 111.3 (3) |
O8B—Mo3—O3C | 87.51 (17) | O5W—K5—O5Wxiii | 30.0 (4) |
O4C—Mo3—O3C | 72.02 (15) | O2W—K5—O5Wxiii | 91.0 (4) |
Pt1—O1C—Mo1i | 98.38 (17) | O11T—K5—O5Wxiii | 152.7 (3) |
Mo1—O5B—Mo1i | 117.5 (3) | O3Wv—K5—O5Wxiii | 91.6 (3) |
Mo1—O6B—Mo2 | 108.78 (18) | O5W—K5—O2Wxiii | 98.9 (4) |
Mo2—O7B—Mo3 | 119.1 (2) | O2W—K5—O2Wxiii | 21.7 (3) |
Mo3i—O8B—Mo3 | 111.0 (2) | O11T—K5—O2Wxiii | 124.7 (3) |
O10T—K1—O10Tvi | 69.96 (16) | O3Wv—K5—O2Wxiii | 85.5 (3) |
O10T—K1—O11Tvi | 83.21 (13) | O5Wxiii—K5—O2Wxiii | 69.7 (3) |
O10Tvi—K1—O11Tvi | 69.68 (12) | O5W—K5—O14Tii | 95.6 (4) |
O10T—K1—O11T | 69.68 (12) | O2W—K5—O14Tii | 68.3 (3) |
O10Tvi—K1—O11T | 83.21 (13) | O11T—K5—O14Tii | 70.56 (14) |
O11Tvi—K1—O11T | 147.0 (2) | O3Wv—K5—O14Tii | 156.5 (3) |
O10T—K1—O14Tii | 130.28 (12) | O5Wxiii—K5—O14Tii | 94.5 (3) |
O10Tvi—K1—O14Tii | 77.07 (11) | O2Wxiii—K5—O14Tii | 75.4 (2) |
O11Tvi—K1—O14Tii | 118.84 (11) | O5W—K5—K5xiii | 62.0 (4) |
O11T—K1—O14Tii | 70.39 (12) | O2W—K5—K5xiii | 60.8 (3) |
O10T—K1—O14Tvii | 77.07 (11) | O5W—K5—O12T | 109.2 (4) |
O10Tvi—K1—O14Tvii | 130.28 (12) | O2W—K5—O12T | 128.6 (4) |
O11Tvi—K1—O14Tvii | 70.39 (12) | O11T—K5—O12T | 54.31 (13) |
O11T—K1—O14Tvii | 118.84 (11) | O3Wv—K5—O12T | 65.4 (2) |
O14Tii—K1—O14Tvii | 150.10 (18) | O5Wxiii—K5—O12T | 130.8 (3) |
O13T—K2—O13Tv | 69.14 (16) | O2Wxiii—K5—O12T | 142.4 (3) |
O13T—K2—O12T | 68.14 (12) | O14Tii—K5—O12T | 124.24 (14) |
O13Tv—K2—O12T | 83.57 (13) | O5W—K6—O13Tv | 108.0 (3) |
O13T—K2—O12Tv | 83.57 (13) | O5W—K6—O11Tii | 119.7 (3) |
O13Tv—K2—O12Tv | 68.14 (12) | O13Tv—K6—O11Tii | 128.8 (3) |
O12T—K2—O12Tv | 145.8 (2) | O5W—K6—O7Bii | 69.0 (3) |
O13T—K2—O1Wviii | 116.05 (13) | O13Tv—K6—O7Bii | 176.7 (3) |
O13Tv—K2—O1Wviii | 131.23 (13) | O11Tii—K6—O7Bii | 53.59 (14) |
O12T—K2—O1Wviii | 145.01 (14) | O5W—K6—O7B | 120.2 (3) |
O12Tv—K2—O1Wviii | 64.73 (13) | O13Tv—K6—O7B | 104.7 (3) |
O13T—K2—O1Wix | 131.23 (13) | O11Tii—K6—O7B | 67.06 (18) |
O13Tv—K2—O1Wix | 116.05 (13) | O7Bii—K6—O7B | 78.15 (17) |
O12T—K2—O1Wix | 64.73 (13) | O5W—K6—O12T | 89.2 (3) |
O12Tv—K2—O1Wix | 145.01 (14) | O13Tv—K6—O12T | 76.85 (18) |
O1Wviii—K2—O1Wix | 96.3 (2) | O11Tii—K6—O12T | 118.9 (2) |
O13T—K2—O9Tviii | 147.91 (12) | O7Bii—K6—O12T | 104.03 (19) |
O13Tv—K2—O9Tviii | 79.69 (11) | O7B—K6—O12T | 52.07 (14) |
O12T—K2—O9Tviii | 116.73 (11) | O5W—K6—O2Cii | 78.0 (3) |
O12Tv—K2—O9Tviii | 77.81 (11) | O13Tv—K6—O2Cii | 128.6 (2) |
O1Wviii—K2—O9Tviii | 79.00 (12) | O11Tii—K6—O2Cii | 52.97 (13) |
O1Wix—K2—O9Tviii | 69.48 (13) | O7Bii—K6—O2Cii | 50.21 (13) |
O13T—K2—O9Tix | 79.69 (11) | O7B—K6—O2Cii | 115.9 (2) |
O13Tv—K2—O9Tix | 147.92 (12) | O12T—K6—O2Cii | 153.9 (2) |
O12T—K2—O9Tix | 77.81 (11) | H1A—O1W—H1B | 103 (4) |
O12Tv—K2—O9Tix | 116.74 (11) | H2A—O2W—H2B | 101 (5) |
O1Wviii—K2—O9Tix | 69.48 (13) | H3A—O3W—H3B | 105 (5) |
O1Wix—K2—O9Tix | 79.00 (12) | H4A—O4W—H4B | 107 (5) |
O9Tviii—K2—O9Tix | 132.12 (16) | H5A—O5W—H5B | 107.1 |
O2C—K3—O2Ci | 64.72 (14) |
Symmetry codes: (i) −x+1, y, z; (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1, −y+1/2, z+1/2; (iv) −x+1/2, −y+1, z−1/2; (v) −x+1/2, y, −z+3/2; (vi) −x+1/2, y, −z+1/2; (vii) x, −y+1/2, z−1/2; (viii) −x+1/2, −y+1, z+1/2; (ix) x, −y+1, −z+1; (x) x+1/2, −y+1/2, −z+1; (xi) −x+1, −y+1/2, z−1/2; (xii) x−1/2, y, −z+3/2; (xiii) −x, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1C—H1···O1Cxiv | 0.99 (3) | 1.62 (6) | 2.595 (10) | 165 (17) |
O3C—H3···O9Tix | 0.97 (3) | 1.64 (3) | 2.605 (5) | 171 (5) |
O3W—H3B···O4Wi | 0.85 (3) | 2.07 (14) | 2.697 (15) | 130 (15) |
O4W—H4A···O9Tix | 0.85 (3) | 2.06 (7) | 2.826 (11) | 150 (12) |
O4W—H4B···O3Wi | 0.85 (3) | 1.89 (5) | 2.697 (15) | 159 (5) |
Symmetry codes: (i) −x+1, y, z; (ix) x, −y+1, −z+1; (xiv) −x+1, −y+1, −z+1. |
References
Anderson, J. S. (1937). Nature, 140, 850. CrossRef Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Day, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079–5087. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659–1661. CrossRef CAS Web of Science IUCr Journals Google Scholar
Joo, H.-C., Park, K.-M. & Lee, U. (2015). Acta Cryst. E71, 268–271. CSD CrossRef IUCr Journals Google Scholar
Lee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311–e312. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lee, U. & Joo, H.-C. (2004a). Acta Cryst. E60, i33–i36. CrossRef IUCr Journals Google Scholar
Lee, U. & Joo, H.-C. (2004b). Acta Cryst. E60, i61–i63. CrossRef IUCr Journals Google Scholar
Lee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231–i233. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241–i243. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8–i9. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U. & Sasaki, Y. (1998). Bull. Korean Chem. Soc., 15, 37–45. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.