research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of undeca­potassium bis­­[α-hemi­penta­hydrogen hexa­molybdoplatinate(IV)] dodeca­hydrate

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bResearch Institute of Natural Science, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by I. D. Brown, McMaster University, Canada (Received 20 May 2015; accepted 27 July 2015; online 31 July 2015)

The title compound, K11[α-Pt(μ3-OH)2(μ3-OH0.5)Mo6(μ3-O)3(μ2-O)6O12]2·12H2O (simplified chemical formula K11[H2.5PtMo6O24]2·12H2O), containing the well-known Anderson-type heteropolyoxomolybdate anion, was obtained by hydro­thermal reaction at pH = ca 6.0. The complete polyanion dimer has 2/m symmetry. The locations of the H atoms with respect to protonated O atoms were obtained from difference Fourier maps, and confirmed by the inter­polyanion hydrogen bonds, bond-length elongation and bond-valence sums (BVSs). The title heteropolyanion has two types of protonated O atoms viz. μ3-OH, {Mo2–O(H)–Pt} and μ3-OH0.5 (disordered H atom). The [H2.5α-PtMo6O24]5.5− polyanion forms a dimer, [(H2.5α-PtMo6O24)2]11−, held together by two pairs of μ3-O—H⋯μ1-O and of one disordered μ3-O⋯H⋯μ3-O hydrogen bonds. Three K+ ions are located on special positions (two on twofold rotation axes, one on a mirror plane), and two K+ ions are located on general positions with a reduced occupancy of 0.5. The remaining K+ ion has a reduced occupancy of 0.25 for charge balance and reasonable displacement parameters. As a result, the numbers of K+ and H+ ions in the title compound are 5.5 and 2.5, respectively.

1. Chemical context

The α (planar structure) -β (bent structure) -α geometrical isomerization, according to stepwise protonation in the [PtMo6O24]8− polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5− (Lee & Sasaki, 1998[Lee, U. & Sasaki, Y. (1998). Bull. Korean Chem. Soc., 15, 37-45.]), [H4β-PtMo6O24]4− (Lee & Sasaki, 1998[Lee, U. & Sasaki, Y. (1998). Bull. Korean Chem. Soc., 15, 37-45.]; Joo et al., 1994[Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.]) and [H4.5α-PtMo6O24]3.5− (Lee & Sasaki, 1998[Lee, U. & Sasaki, Y. (1998). Bull. Korean Chem. Soc., 15, 37-45.]; Lee et al., 2010[Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.]; Joo et al., 2015[Joo, H.-C., Park, K.-M. & Lee, U. (2015). Acta Cryst. E71, 268-271.]), is an unprecedented phenomenon in the Anderson-type heteropolyanion (Anderson, 1937[Anderson, J. S. (1937). Nature, 140, 850.]) as well as in the chemistry of POMs. However, in addition, differently protonated polyanion species have been reported, viz. [H2PtMo6O24]6− (Lee & Joo, 2000[Lee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311-e312.], 2004b[Lee, U. & Joo, H.-C. (2004b). Acta Cryst. E60, i61-i63.]), and [H6PtMo6O24]2− (Lee & Joo, 2006a[Lee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231-i233.],b[Lee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241-i243.], 2010[Lee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8-i9.]). Less protonated than the title polyanion, the species [H2PtMo6O24]6− was obtained in more acidic conditions (at pH 2.0 and 3.2). These polyanions are formed into dimers and polymers (in [H6PtMo6O24]2− polyanions) by inter­polyanion hydrogen bonds. Recently, a hydrogen-bonded hexa­molybdoplatinate(IV) tetra­mer, [(PtMo6O24)4H23]9−, and the trimers, [(PtMo6O24)3H16]8− and [(PtMo6O24)3H14]10− have been reported as the tetra-n-butyl­ammonium and tetra-n-butyl­ammonium/tri­ethyl­ammonium salts, respectively (Day et al., 2009[Day, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079-5087.]). The same type of protonated species in a tungsten system, [H2.5PtW6O24]5.5−, has been reported by our group (Lee & Joo, 2004a[Lee, U. & Joo, H.-C. (2004a). Acta Cryst. E60, i33-i36.]). We report herein the crystal structure of the title compound containing a new protonated species in the hexa­molybdoplatinate(IV) system by hemi­penta H+, [H2.5PtMo6O24]5.5−.

2. Structural commentary

Fig. 1[link] shows the building units of the title compound. The complete polyanion has point group symmetry m whereas the dimer (held together by hydrogen bonds) has 2/m symmetry. The O atoms of the heteropolyanion have been designated as OT (terminal Mo=O atom), OB (bridging μ2-OB atom; Mo—O—Mo) and OC (centered μ3-O atom; Mo2-–OC-–Pt). The protonated O atoms in the polyanion were confirmed by bond-valence sums (BVS; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), charge balance, bond-length elongation (Table 1[link]) and the inter­polyanion hydrogen bonds (Fig. 2[link] and Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Pt1—O1C 2.003 (5) Mo1—O2C 2.110 (4)
Pt1—O2C 1.981 (3) Mo2—O2C 2.141 (3)
Pt1—O3C 2.000 (3) Mo2—O3C 2.307 (4)
Pt1—O4C 2.001 (5) Mo3—O3C 2.316 (4)
Mo1—O1C 2.277 (3) Mo3—O4C 2.140 (3)
       
Pt1—O1C—Mo1 98.38 (17) Pt1—O3C—Mo2 99.35 (15)
Mo1—O1C—Mo1i 92.86 (18) Pt1—O3C—Mo3 99.91 (14)
Pt1—O2C—Mo1 104.91 (15) Mo2—O3C—Mo3 92.10 (13)
Pt1—O2C—Mo2 105.82 (15) Pt1—O4C—Mo3 106.09 (17)
Mo1—O2C—Mo2 99.12 (14) Mo3—O4C—Mo3i 97.5 (2)
Symmetry code: (i) -x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1C—H1⋯O1Cii 0.99 (3) 1.62 (6) 2.595 (10) 165 (17)
O3C—H3⋯O9Tiii 0.97 (3) 1.64 (3) 2.605 (5) 171 (5)
O3W—H3B⋯O4Wi 0.85 (3) 2.07 (14) 2.697 (15) 130 (15)
O4W—H4A⋯O9Tiii 0.85 (3) 2.06 (7) 2.826 (11) 150 (12)
O4W—H4B⋯O3Wi 0.85 (3) 1.89 (5) 2.697 (15) 159 (5)
Symmetry codes: (i) -x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the [H2.5PtMo6O24]5.5− anion and surrounding K+ cations and water molecules. Displacement ellipsoids are drawn at the 30% probability level. The H atoms of the polyanion are presented as small spheres of arbitrary radius and the H atoms of water mol­ecules are omitted for clarity. [Symmetry code: (i) −x + 1, y, z.]
[Figure 2]
Figure 2
Polyhedral view of the heteropolyanion in the title compound with O—H⋯O contacts of the inter­anion hydrogen bonds shown as red dashed lines. [Symmetry codes: (i) x, − y + 1, − z + 1; (ii) − x + 1, y, z; (iii) − x + 1, − y + 1, − z + 1.]

Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The calculated BVSs for expected protonation atoms O1C and O3C are 1.46 and 1.39 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the O atom should be 2.0 v.u., the missing valences of O1C and O3C are 0.54 and 0.61 v.u., respectively, which corresponds to the valence of the O—H bonds. The BVS value for the unproton­ated O2C, O4C, O5B–O8B atoms are 1.87, 1.78, 1.88, 1.60, 1.88 and 1.76 v.u., respectively. The value of O6B is relatively small but it is not protonated. As a result, the protonated O atoms are O1C and O3C.

The positions of atoms H1 and H3 on the protonated atoms O1C and O3C, respectively, were obtained from difference Fourier maps. The heteropolyanion forms a 2/m symmetric dimer {[H2.5PtMo6O24]2}11−, held together by each of the four μ3(Mo2Pt)-O3C-–H3⋯μ1(Mo)-O9T and one disordered μ3(Mo2Pt)-O1C⋯H1⋯μ3-O1C hydrogen bonds (Table 2[link] and Fig. 2[link]).

While the structure of the dimeric polyanions is clear, the disorder among the potassium atoms and water mol­ecules makes it difficult to be as certain of the chemical structure in the regions in between. The K1–K3 ions were located in special positions, one on a mirror plane and two on twofold rotation axes. The calculated BVSs for the K1–K3 ions are 1.00, 0.90 and 1.00 v.u. (K+⋯O distance 〈 3.00 Å), respectively. Reasonable displacement parameters of K4 and K5 atoms were obtained by reducing the site occupancies to 0.5, and the BVSs for K4 and K5 ions are 1.04 and 0.91 v.u., respectively. The occupancy of K6 was further reduced to 0.25 for charge balance and reasonable displacement parameters. The calculated BVSs was 0.54 v.u. For the same reason, the occupancies of water mol­ecules O2W–O6W were reduced to 0.5. The K+ ions are variously coordinated by O atoms as [K1(OT)6]+, [K2(OT)4(OW)2]+, [K3(OC)2(OB)(OT)2(OW)2]+, [K4(OT)(OW)6]+, [K5(OT)2(OW)3]+ and [K6(OT)(OW)]+.

3. Supra­molecular features

The polyanion dimers are three-dimensionally linked only via K⋯OB, C and T inter­actions. Water mol­ecules O1W, O2W and O5W do not contribute to the hydrogen bonds.

4. Synthesis and crystallization

Crystals of the title compound were prepared by the reaction of K2MoO4·2H2O and K2Pt(OH)6 at pH = ca 6.0. as described in a previous report (Joo et al., 1994[Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.]).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atoms H1 and H3 in the polyanion were located in difference Fourier maps and refined with Uiso(H) = 1.5Ueq(O), and a distance restraint of O—H = 1.00 (3) Å using the DFIX command in SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The occupancy of atom H1 was reduced to 0.5 because of disorder. Reasonable displacement parameters for atoms K4–K6 and water mol­ecules O2W–O5W were obtained by reducing their site occupancies to 0.5 because of disorder. The occupancy of K6 was further reduced to 0.25 for charge balance and reasonable displacement parameters. All H atoms of water mol­ecules O1W–O4W were found in difference Fourier maps and refined with distance and angle restraints of O—H = 0.85 (3) Å and HA—OW—HB = 1.35 (3) Å, respectively, using the command DFIX, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The H atoms on O5W were positioned geometrically and refined using a riding model (HFIX 23), with OW—H = 0.97 Å and Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula K11[H2.5PtMo6O24]2·12H2O
Mr 1480.40
Crystal system, space group Orthorhombic, Cmce
Temperature (K) 173
a, b, c (Å) 16.8552 (4), 22.7112 (7), 15.5503 (4)
V3) 5952.7 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 8.00
Crystal size (mm) 0.25 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.424, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16741, 3826, 3257
Rint 0.044
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.06
No. of reflections 3826
No. of parameters 264
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.50, −1.32
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

The reflections (0,2,0) and (3,1,2) were omitted in the final refinement as they were obscured by the beamstop. The highest peak in the difference map is 0.86 Å from Pt1 and the deepest hole is 0.88 Å from Pt1.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Undecapotassium bis[α-hemipentahydrogen hexamolybdoplatinate(IV)] dodecahydrate top
Crystal data top
K11[H2.5PtMo6O24]2·12H2ODx = 3.304 Mg m3
Mr = 1480.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmceCell parameters from 3642 reflections
a = 16.8552 (4) Åθ = 2.4–28.2°
b = 22.7112 (7) ŵ = 8.00 mm1
c = 15.5503 (4) ÅT = 173 K
V = 5952.7 (3) Å3Block, pale yellow
Z = 80.25 × 0.15 × 0.14 mm
F(000) = 5512
Data collection top
Bruker SMART APEXII CCD
diffractometer
3826 independent reflections
Radiation source: rotating anode3257 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.044
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.424, Tmax = 0.746k = 3017
16741 measured reflectionsl = 1620
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0297P)2 + 46.2991P]
where P = (Fo2 + 2Fc2)/3
3826 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 1.50 e Å3
14 restraintsΔρmin = 1.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.50000.37721 (2)0.50594 (2)0.00882 (8)
Mo10.40210 (3)0.43798 (2)0.34971 (3)0.01424 (11)
Mo20.30535 (3)0.36824 (2)0.49776 (3)0.01495 (11)
Mo30.40452 (2)0.29903 (2)0.65278 (3)0.01481 (11)
O1C0.50000.4557 (2)0.4473 (3)0.0123 (10)
H10.50000.485 (6)0.495 (8)0.018*0.5
O2C0.41239 (19)0.36081 (16)0.4244 (2)0.0125 (7)
O3C0.41006 (19)0.39059 (16)0.5875 (2)0.0131 (7)
H30.402 (3)0.4250 (19)0.623 (3)0.020*
O4C0.50000.2979 (2)0.5621 (3)0.0131 (10)
O5B0.50000.4138 (2)0.2959 (3)0.0160 (11)
O6B0.3265 (2)0.44740 (18)0.4460 (2)0.0208 (8)
O7B0.3379 (2)0.29588 (17)0.5512 (2)0.0176 (8)
O8B0.50000.3212 (2)0.7162 (3)0.0158 (11)
O9T0.4015 (2)0.51246 (17)0.3235 (3)0.0187 (8)
O10T0.3402 (2)0.40612 (17)0.2754 (2)0.0196 (8)
O11T0.2431 (2)0.3418 (2)0.4200 (3)0.0266 (9)
O12T0.2448 (2)0.3962 (2)0.5763 (3)0.0273 (10)
O13T0.3397 (2)0.33250 (19)0.7226 (3)0.0237 (9)
O14T0.4017 (2)0.22555 (18)0.6778 (3)0.0228 (9)
K10.25000.30728 (8)0.25000.0221 (4)
K20.25000.43286 (8)0.75000.0267 (4)
K30.50000.28050 (8)0.33118 (12)0.0254 (4)
K40.09783 (17)0.43827 (17)0.5206 (2)0.0371 (7)0.5
K50.09202 (17)0.3486 (2)0.4765 (2)0.0595 (12)0.5
K60.1660 (5)0.2717 (3)0.6235 (4)0.0478 (19)0.25
O1W0.1839 (3)0.4814 (2)0.3701 (4)0.0412 (13)
H1A0.159 (4)0.451 (2)0.346 (5)0.062*
H1B0.219 (4)0.465 (3)0.402 (4)0.062*
O2W0.0345 (5)0.3851 (4)0.3785 (6)0.033 (2)0.5
H2A0.066 (6)0.355 (3)0.371 (10)0.049*0.5
H2B0.065 (6)0.414 (4)0.363 (10)0.049*0.5
O3W0.4326 (6)0.4488 (5)0.9311 (7)0.041 (3)0.5
H3A0.466 (7)0.470 (6)0.958 (7)0.062*0.5
H3B0.446 (9)0.452 (7)0.878 (3)0.062*0.5
O4W0.4571 (6)0.4175 (4)0.8141 (6)0.038 (2)0.5
H4A0.448 (8)0.448 (4)0.785 (8)0.057*0.5
H4B0.50000.424 (5)0.842 (4)0.057*
O5W0.0461 (6)0.2998 (5)0.5369 (7)0.051 (3)0.5
H5A0.06370.26100.51920.077*0.5
H5B0.06370.30540.59580.077*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00455 (12)0.00998 (13)0.01192 (13)0.0000.0000.00001 (10)
Mo10.0159 (2)0.0116 (2)0.0152 (2)0.00145 (17)0.00367 (16)0.00085 (17)
Mo20.0058 (2)0.0224 (3)0.0166 (2)0.00089 (16)0.00046 (15)0.00087 (18)
Mo30.0083 (2)0.0173 (2)0.0188 (2)0.00036 (17)0.00244 (16)0.00565 (18)
O1C0.013 (2)0.011 (2)0.014 (2)0.0000.0000.0032 (19)
O2C0.0108 (17)0.0133 (18)0.0134 (17)0.0018 (14)0.0018 (13)0.0013 (14)
O3C0.0082 (16)0.0160 (19)0.0151 (17)0.0009 (14)0.0038 (13)0.0016 (14)
O4C0.012 (2)0.010 (2)0.017 (3)0.0000.0000.003 (2)
O5B0.014 (2)0.017 (3)0.018 (3)0.0000.0000.005 (2)
O6B0.0136 (18)0.029 (2)0.0201 (19)0.0078 (17)0.0040 (15)0.0056 (17)
O7B0.0113 (18)0.021 (2)0.0211 (19)0.0064 (15)0.0024 (14)0.0052 (16)
O8B0.012 (2)0.018 (3)0.017 (3)0.0000.0000.001 (2)
O9T0.020 (2)0.0154 (19)0.021 (2)0.0003 (15)0.0019 (16)0.0000 (15)
O10T0.0150 (19)0.022 (2)0.0214 (19)0.0014 (16)0.0032 (15)0.0007 (16)
O11T0.0155 (19)0.045 (3)0.020 (2)0.0050 (19)0.0028 (15)0.0079 (19)
O12T0.0132 (19)0.046 (3)0.023 (2)0.0072 (18)0.0036 (16)0.006 (2)
O13T0.0104 (18)0.037 (3)0.024 (2)0.0049 (17)0.0041 (15)0.0083 (18)
O14T0.0162 (19)0.025 (2)0.028 (2)0.0049 (16)0.0038 (16)0.0080 (18)
K10.0160 (8)0.0282 (10)0.0223 (9)0.0000.0027 (6)0.000
K20.0275 (10)0.0299 (10)0.0227 (9)0.0000.0033 (7)0.000
K30.0253 (9)0.0248 (10)0.0262 (9)0.0000.0000.0107 (7)
K40.0198 (14)0.061 (2)0.0307 (16)0.0001 (13)0.0029 (12)0.0010 (15)
K50.0178 (15)0.118 (4)0.0425 (19)0.0099 (18)0.0007 (13)0.013 (2)
K60.091 (5)0.019 (3)0.034 (3)0.010 (3)0.037 (3)0.007 (2)
O1W0.038 (3)0.039 (3)0.047 (3)0.016 (2)0.017 (2)0.010 (2)
O2W0.039 (5)0.037 (5)0.022 (4)0.006 (4)0.007 (4)0.000 (4)
O3W0.024 (5)0.067 (8)0.032 (6)0.010 (5)0.009 (5)0.005 (5)
O4W0.052 (6)0.027 (5)0.035 (5)0.004 (5)0.002 (4)0.001 (4)
O5W0.059 (7)0.049 (7)0.045 (6)0.016 (6)0.003 (5)0.021 (5)
Geometric parameters (Å, º) top
Pt1—O1C2.003 (5)O13T—K22.768 (4)
Pt1—O2C1.981 (3)O14T—K1ii2.890 (4)
Pt1—O3C2.000 (3)O14T—K3iii2.907 (4)
Pt1—O4C2.001 (5)O14T—K5ii2.934 (6)
Mo1—O1C2.277 (3)K1—O10Tvi2.740 (4)
Mo1—O2C2.110 (4)K1—O11Tvi2.760 (4)
Mo2—O2C2.141 (3)K1—O14Tii2.890 (4)
Mo2—O3C2.307 (4)K1—O14Tvii2.890 (4)
Mo3—O3C2.316 (4)K2—O13Tv2.768 (4)
Mo3—O4C2.140 (3)K2—O12Tv2.828 (4)
Pt1—O2Ci1.981 (3)K2—O1Wviii2.919 (6)
Pt1—O3Ci2.000 (3)K2—O1Wix2.919 (6)
Pt1—K33.4943 (18)K2—O9Tviii3.060 (4)
Mo1—O10T1.717 (4)K2—O9Tix3.060 (4)
Mo1—O9T1.740 (4)K3—O2Ci2.759 (4)
Mo1—O5B1.930 (3)K3—O5Wx2.852 (12)
Mo1—O6B1.978 (4)K3—O5Wii2.852 (12)
Mo1—K33.9494 (17)K3—O14Tvii2.907 (4)
Mo2—O11T1.709 (4)K3—O14Txi2.907 (4)
Mo2—O12T1.714 (4)K3—O8Bxi2.921 (5)
Mo2—O7B1.921 (4)K4—O3Wv0.940 (11)
Mo2—O6B2.002 (4)K4—O2W2.735 (10)
Mo3—O14T1.714 (4)K4—O4Wv2.773 (11)
Mo3—O13T1.717 (4)K4—O1Wix2.884 (6)
Mo3—O7B1.939 (4)K4—O3Wxii2.894 (10)
Mo3—O8B1.953 (3)K4—O1W2.923 (7)
Mo3—Mo3i3.2187 (8)K4—O3Wiv2.963 (12)
O1C—Mo1i2.278 (3)K4—O5W3.274 (12)
O1C—H10.99 (3)K5—O5W1.647 (13)
O2C—K32.759 (4)K5—O2W1.987 (10)
O2C—K6ii3.370 (7)K5—O3Wv2.723 (13)
O3C—H30.97 (3)K5—O5Wxiii2.744 (11)
O4C—Mo3i2.140 (3)K5—O2Wxiii2.750 (9)
O5B—Mo1i1.930 (3)K5—O14Tii2.934 (6)
O5B—K33.077 (6)K6—O5W2.512 (14)
O7B—K6ii3.121 (7)K6—O13Tv2.765 (7)
O7B—K63.155 (8)K6—O11Tii3.074 (8)
O8B—Mo3i1.953 (3)K6—O7Bii3.121 (7)
O8B—K3iii2.921 (5)K6—O2Cii3.370 (7)
O9T—K2iv3.060 (4)O1W—H1A0.88 (3)
O10T—K12.740 (4)O1W—H1B0.86 (3)
O11T—K52.698 (5)O2W—H2A0.86 (3)
O11T—K12.760 (4)O2W—H2B0.87 (3)
O11T—K6ii3.074 (8)O3W—H3A0.86 (3)
O12T—K42.792 (5)O3W—H3B0.85 (3)
O12T—K22.828 (4)O4W—H4A0.85 (3)
O12T—K53.195 (6)O4W—H4B0.85 (3)
O12T—K63.210 (7)O5W—H5A0.9700
O13T—K6v2.765 (7)O5W—H5B0.9700
Pt1—O1C—Mo198.38 (17)O2C—K3—O5Wx101.0 (2)
Mo1—O1C—Mo1i92.86 (18)O2Ci—K3—O5Wx84.2 (2)
Pt1—O2C—Mo1104.91 (15)O2C—K3—O5Wii84.2 (2)
Pt1—O2C—Mo2105.82 (15)O2Ci—K3—O5Wii101.0 (2)
Mo1—O2C—Mo299.12 (14)O5Wx—K3—O5Wii31.6 (4)
Pt1—O3C—Mo299.35 (15)O2C—K3—O14Tvii99.06 (11)
Pt1—O3C—Mo399.91 (14)O2Ci—K3—O14Tvii140.13 (13)
Mo2—O3C—Mo392.10 (13)O5Wx—K3—O14Tvii135.6 (2)
Pt1—O4C—Mo3106.09 (17)O5Wii—K3—O14Tvii113.9 (2)
Mo3—O4C—Mo3i97.5 (2)O2C—K3—O14Txi140.14 (13)
O2Ci—Pt1—O2C96.4 (2)O2Ci—K3—O14Txi99.06 (11)
O2Ci—Pt1—O3C177.79 (14)O5Wx—K3—O14Txi113.9 (2)
O2C—Pt1—O3C82.50 (15)O5Wii—K3—O14Txi135.6 (2)
O2Ci—Pt1—O3Ci82.50 (15)O14Tvii—K3—O14Txi69.49 (16)
O2C—Pt1—O3Ci177.79 (14)O2C—K3—O8Bxi147.63 (7)
O3C—Pt1—O3Ci98.6 (2)O2Ci—K3—O8Bxi147.63 (7)
O2Ci—Pt1—O4C96.31 (14)O5Wx—K3—O8Bxi86.3 (2)
O2C—Pt1—O4C96.31 (14)O5Wii—K3—O8Bxi86.3 (2)
O3C—Pt1—O4C81.95 (14)O14Tvii—K3—O8Bxi57.34 (11)
O3Ci—Pt1—O4C81.94 (14)O14Txi—K3—O8Bxi57.34 (11)
O2Ci—Pt1—O1C82.88 (14)O2C—K3—O5B56.17 (11)
O2C—Pt1—O1C82.88 (14)O2Ci—K3—O5B56.16 (11)
O3C—Pt1—O1C98.84 (14)O5Wx—K3—O5B139.2 (2)
O3Ci—Pt1—O1C98.84 (14)O5Wii—K3—O5B139.2 (2)
O4C—Pt1—O1C178.8 (2)O14Tvii—K3—O5B84.27 (12)
O10T—Mo1—O9T104.34 (18)O14Txi—K3—O5B84.27 (12)
O10T—Mo1—O5B96.18 (18)O8Bxi—K3—O5B131.98 (15)
O9T—Mo1—O5B100.4 (2)O3Wv—K4—O2W123.0 (7)
O10T—Mo1—O6B99.42 (17)O3Wv—K4—O4Wv28.4 (7)
O9T—Mo1—O6B93.92 (17)O2W—K4—O4Wv122.9 (3)
O5B—Mo1—O6B155.52 (18)O3Wv—K4—O12T108.9 (6)
O10T—Mo1—O2C94.06 (16)O2W—K4—O12T116.4 (2)
O9T—Mo1—O2C159.58 (16)O4Wv—K4—O12T87.2 (2)
O5B—Mo1—O2C86.13 (18)O3Wv—K4—O1Wix69.1 (7)
O6B—Mo1—O2C74.10 (15)O2W—K4—O1Wix162.1 (3)
O10T—Mo1—O1C164.43 (18)O4Wv—K4—O1Wix74.3 (3)
O9T—Mo1—O1C89.35 (18)O12T—K4—O1Wix65.64 (16)
O5B—Mo1—O1C73.73 (16)O3Wv—K4—O3Wxii41.1 (6)
O6B—Mo1—O1C86.76 (15)O2W—K4—O3Wxii82.6 (3)
O2C—Mo1—O1C73.78 (15)O4Wv—K4—O3Wxii56.8 (3)
O11T—Mo2—O12T105.6 (2)O12T—K4—O3Wxii143.3 (2)
O11T—Mo2—O7B100.41 (18)O1Wix—K4—O3Wxii106.2 (3)
O12T—Mo2—O7B100.32 (18)O3Wv—K4—O1W145.6 (8)
O11T—Mo2—O6B98.06 (18)O2W—K4—O1W72.2 (2)
O12T—Mo2—O6B93.40 (19)O4Wv—K4—O1W164.8 (3)
O7B—Mo2—O6B153.03 (15)O12T—K4—O1W85.57 (15)
O11T—Mo2—O2C96.48 (16)O1Wix—K4—O1W90.59 (19)
O12T—Mo2—O2C155.60 (17)O3Wxii—K4—O1W131.1 (3)
O7B—Mo2—O2C85.55 (15)O3Wv—K4—O3Wiv93.5 (8)
O6B—Mo2—O2C72.94 (14)O2W—K4—O3Wiv86.3 (3)
O11T—Mo2—O3C167.10 (17)O4Wv—K4—O3Wiv121.7 (3)
O12T—Mo2—O3C86.74 (16)O12T—K4—O3Wiv126.5 (2)
O7B—Mo2—O3C73.03 (14)O1Wix—K4—O3Wiv79.4 (3)
O6B—Mo2—O3C84.81 (14)O3Wxii—K4—O3Wiv83.3 (3)
O2C—Mo2—O3C72.23 (13)O1W—K4—O3Wiv54.5 (2)
O14T—Mo3—O13T105.6 (2)O3Wv—K4—O5W92.1 (8)
O14T—Mo3—O7B97.66 (17)O2W—K4—O5W62.3 (3)
O13T—Mo3—O7B99.35 (17)O4Wv—K4—O5W71.1 (3)
O14T—Mo3—O8B99.1 (2)O12T—K4—O5W83.3 (2)
O13T—Mo3—O8B95.24 (18)O1Wix—K4—O5W134.1 (2)
O7B—Mo3—O8B153.87 (17)O3Wxii—K4—O5W78.6 (3)
O14T—Mo3—O4C99.17 (19)O1W—K4—O5W121.1 (2)
O13T—Mo3—O4C154.17 (19)O3Wiv—K4—O5W145.3 (3)
O7B—Mo3—O4C84.17 (15)O5W—K5—O11T126.2 (4)
O8B—Mo3—O4C73.51 (16)O2W—K5—O11T103.6 (3)
O14T—Mo3—O3C167.13 (17)O5W—K5—O3Wv100.9 (4)
O13T—Mo3—O3C84.56 (16)O2W—K5—O3Wv89.0 (4)
O7B—Mo3—O3C72.52 (14)O11T—K5—O3Wv111.3 (3)
O8B—Mo3—O3C87.51 (17)O5W—K5—O5Wxiii30.0 (4)
O4C—Mo3—O3C72.02 (15)O2W—K5—O5Wxiii91.0 (4)
Pt1—O1C—Mo1i98.38 (17)O11T—K5—O5Wxiii152.7 (3)
Mo1—O5B—Mo1i117.5 (3)O3Wv—K5—O5Wxiii91.6 (3)
Mo1—O6B—Mo2108.78 (18)O5W—K5—O2Wxiii98.9 (4)
Mo2—O7B—Mo3119.1 (2)O2W—K5—O2Wxiii21.7 (3)
Mo3i—O8B—Mo3111.0 (2)O11T—K5—O2Wxiii124.7 (3)
O10T—K1—O10Tvi69.96 (16)O3Wv—K5—O2Wxiii85.5 (3)
O10T—K1—O11Tvi83.21 (13)O5Wxiii—K5—O2Wxiii69.7 (3)
O10Tvi—K1—O11Tvi69.68 (12)O5W—K5—O14Tii95.6 (4)
O10T—K1—O11T69.68 (12)O2W—K5—O14Tii68.3 (3)
O10Tvi—K1—O11T83.21 (13)O11T—K5—O14Tii70.56 (14)
O11Tvi—K1—O11T147.0 (2)O3Wv—K5—O14Tii156.5 (3)
O10T—K1—O14Tii130.28 (12)O5Wxiii—K5—O14Tii94.5 (3)
O10Tvi—K1—O14Tii77.07 (11)O2Wxiii—K5—O14Tii75.4 (2)
O11Tvi—K1—O14Tii118.84 (11)O5W—K5—K5xiii62.0 (4)
O11T—K1—O14Tii70.39 (12)O2W—K5—K5xiii60.8 (3)
O10T—K1—O14Tvii77.07 (11)O5W—K5—O12T109.2 (4)
O10Tvi—K1—O14Tvii130.28 (12)O2W—K5—O12T128.6 (4)
O11Tvi—K1—O14Tvii70.39 (12)O11T—K5—O12T54.31 (13)
O11T—K1—O14Tvii118.84 (11)O3Wv—K5—O12T65.4 (2)
O14Tii—K1—O14Tvii150.10 (18)O5Wxiii—K5—O12T130.8 (3)
O13T—K2—O13Tv69.14 (16)O2Wxiii—K5—O12T142.4 (3)
O13T—K2—O12T68.14 (12)O14Tii—K5—O12T124.24 (14)
O13Tv—K2—O12T83.57 (13)O5W—K6—O13Tv108.0 (3)
O13T—K2—O12Tv83.57 (13)O5W—K6—O11Tii119.7 (3)
O13Tv—K2—O12Tv68.14 (12)O13Tv—K6—O11Tii128.8 (3)
O12T—K2—O12Tv145.8 (2)O5W—K6—O7Bii69.0 (3)
O13T—K2—O1Wviii116.05 (13)O13Tv—K6—O7Bii176.7 (3)
O13Tv—K2—O1Wviii131.23 (13)O11Tii—K6—O7Bii53.59 (14)
O12T—K2—O1Wviii145.01 (14)O5W—K6—O7B120.2 (3)
O12Tv—K2—O1Wviii64.73 (13)O13Tv—K6—O7B104.7 (3)
O13T—K2—O1Wix131.23 (13)O11Tii—K6—O7B67.06 (18)
O13Tv—K2—O1Wix116.05 (13)O7Bii—K6—O7B78.15 (17)
O12T—K2—O1Wix64.73 (13)O5W—K6—O12T89.2 (3)
O12Tv—K2—O1Wix145.01 (14)O13Tv—K6—O12T76.85 (18)
O1Wviii—K2—O1Wix96.3 (2)O11Tii—K6—O12T118.9 (2)
O13T—K2—O9Tviii147.91 (12)O7Bii—K6—O12T104.03 (19)
O13Tv—K2—O9Tviii79.69 (11)O7B—K6—O12T52.07 (14)
O12T—K2—O9Tviii116.73 (11)O5W—K6—O2Cii78.0 (3)
O12Tv—K2—O9Tviii77.81 (11)O13Tv—K6—O2Cii128.6 (2)
O1Wviii—K2—O9Tviii79.00 (12)O11Tii—K6—O2Cii52.97 (13)
O1Wix—K2—O9Tviii69.48 (13)O7Bii—K6—O2Cii50.21 (13)
O13T—K2—O9Tix79.69 (11)O7B—K6—O2Cii115.9 (2)
O13Tv—K2—O9Tix147.92 (12)O12T—K6—O2Cii153.9 (2)
O12T—K2—O9Tix77.81 (11)H1A—O1W—H1B103 (4)
O12Tv—K2—O9Tix116.74 (11)H2A—O2W—H2B101 (5)
O1Wviii—K2—O9Tix69.48 (13)H3A—O3W—H3B105 (5)
O1Wix—K2—O9Tix79.00 (12)H4A—O4W—H4B107 (5)
O9Tviii—K2—O9Tix132.12 (16)H5A—O5W—H5B107.1
O2C—K3—O2Ci64.72 (14)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y+1, z1/2; (v) x+1/2, y, z+3/2; (vi) x+1/2, y, z+1/2; (vii) x, y+1/2, z1/2; (viii) x+1/2, y+1, z+1/2; (ix) x, y+1, z+1; (x) x+1/2, y+1/2, z+1; (xi) x+1, y+1/2, z1/2; (xii) x1/2, y, z+3/2; (xiii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O1Cxiv0.99 (3)1.62 (6)2.595 (10)165 (17)
O3C—H3···O9Tix0.97 (3)1.64 (3)2.605 (5)171 (5)
O3W—H3B···O4Wi0.85 (3)2.07 (14)2.697 (15)130 (15)
O4W—H4A···O9Tix0.85 (3)2.06 (7)2.826 (11)150 (12)
O4W—H4B···O3Wi0.85 (3)1.89 (5)2.697 (15)159 (5)
Symmetry codes: (i) x+1, y, z; (ix) x, y+1, z+1; (xiv) x+1, y+1, z+1.
 

References

First citationAnderson, J. S. (1937). Nature, 140, 850.  CrossRef Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079–5087.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659–1661.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2015). Acta Cryst. E71, 268–271.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311–e312.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2004a). Acta Cryst. E60, i33–i36.  CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2004b). Acta Cryst. E60, i61–i63.  CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231–i233.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241–i243.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8–i9.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Sasaki, Y. (1998). Bull. Korean Chem. Soc., 15, 37–45.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds