research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­­(acetyl­acetonato)di­chloridodi-μ3-methano­lato-tetra-μ2-methano­lato-tetra­iron(III)

aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Correspondence e-mail: dgray@illinois.edu

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 26 June 2015; accepted 14 July 2015; online 29 July 2015)

The title complex, [Fe4(C5H7O2)4(CH3O)6Cl2] or [Fe4(acac)4(μ2-OMe)4(μ3-OMe)2Cl2] (acac = acetyl­acetonate), crystallizes in the ortho­rhom­bic Pbca space group with one half of the mol­ecule per asymmetric unit, the other half being completed by inversion symmetry. The core structure consists of a face-sharing double pseudo-cubane entity with two opposite corners missing. Weak C—H⋯Cl inter­molecular inter­actions result in a two-dimensional layered structure parallel to the ac plane.

1. Chemical context

Metal silanolate complexes bearing meth­oxy and eth­oxy groups on silicon are relatively rare (Dupuy et al., 2012[Dupuy, S., Slawin, A. M. Z. & Nolan, S. P. (2012). Chem. Eur. J. 18, 14923-14928.]) in comparison to tert-but­oxy­silanolate complexes (McMullen et al., 1989[McMullen, A. K., Tilley, T. D., Rheingold, A. L. & Geib, S. J. (1989). Inorg. Chem. 28, 3772-3774.], 1990[McMullen, A. K., Tilley, T. D., Rheingold, A. L. & Geib, S. J. (1990). Inorg. Chem. 29, 2228-2232.]; Nozaki et al., 2002[Nozaki, C., Lugmair, C. G., Bell, A. T. & Tilley, T. D. (2002). J. Am. Chem. Soc. 124, 13194-13203.]; Terry et al., 1993[Terry, K. W., Gantzel, P. K. & Tilley, T. D. (1993). Inorg. Chem. 32, 5402-5404.], 1996[Terry, K. W., Lugmair, C. G., Gantzel, P. K. & Tilley, T. D. (1996). Chem. Mater. 8, 274-280.]; Truscott et al., 2013[Truscott, B. J., Nelson, D. J., Lujan, C., Slawin, A. M. Z. & Nolan, S. P. (2013). Chem. Eur. J. 19, 7904-7916.]). Nevertheless, such compounds may play a pivotal role in sol-gel reactions and in metal-catalysed curing reactions, such as room-temperature vulcanization (Cervantes et al., 2012[Cervantes, J., Zárraga, R. & Salazar-Hernández, C. (2012). Appl. Organomet. Chem. 26, 157-163.]; Levitsky et al., 2007[Levitsky, M. M., Zavin, B. G. & Bilyachenko, A. N. (2007). Russ. Chem. Rev. 76, 847-866.]; van Der Weij, 1980[Der Weij, F. W. van (1980). Makromol. Chem. 181, 2541-2548.]).

[Scheme 1]

We have investigated the syntheses of metal meth­oxy­silanolates via the additions of NaOSi(OMe)2Me to metal halides and discovered that, in certain cases, the addition of NaOSi(OMe)2Me to a metal halide results in the formation of a methano­late complex instead of silanolate complex. In line with this observation, we now report that the addition of NaOSi(OMe)2Me to Fe(acac)2Cl results in the formation of a tetra­nuclear iron(III) methano­late compound, Fe4(acac)4(μ2-OMe)4(μ3-OMe)2Cl2, (I)[link].

2. Structural commentary

The structure of (I)[link] contains two crystallographically independent FeIII metal atoms. Both cations are in approximately octa­hedral coordination environments. The coordination sphere of Fe1 is filled by the O atoms of one κ2-acac ligand [Fe1—O1 = 1.9971 (13) Å and Fe1—O2 = 1.9934 (13) Å], two μ2-methano­late groups [Fe1—O3 = 1.9861 (12) Å and Fe1—O5i = 1.9885 (12) Å; symmetry code: (i) −x + 1, −y + 1, −z + 1], one μ3-methano­late group [Fe1—O4 = 2.2135 (12) Å], and one terminal chloride ligand [Fe1—Cl1 = 2.2776 (5) Å]. The coordination sphere of Fe2 is filled by the O atoms of one κ2-acac ligand [Fe2—O6 = 1.9717 (13) Å and Fe2—O7 = 1.9692 (12) Å], two μ2-methano­late groups [Fe2—O3 = 1.9755 (12) Å and Fe2—O5 = 1.9823 (12) Å], and two μ3-methano­late groups [Fe2—O4 = 2.0815 (12) Å and Fe2—O4i = 2.0809 (12) Å]. The angles around both Fe1 and Fe2 distort significantly from the ideal values of 90 and 180° of a perfect octa­hedron. For Fe1, the cis angles range from 75.69 (5) to 98.40 (4)°, while the trans angles range from 164.47 (5) to 170.40 (3)°. The angles around Fe2 have narrower ranges, with cis being 78.95 (5)–96.48 (5)° and trans being 170.08 (5)–170.16 (5)°.

The mol­ecular structure of (I)[link] (Fig. 1[link]) can be described as an [Fe4(OMe)6] face-sharing double pseudo-cubane entity with two opposite corners missing. The outside of the cluster is decorated by one acac ligand per metal and the Fe atoms at either end of the cluster are coordinated by one chloride ion. Neighboring Fe⋯Fe distances range from 3.1997 (4) to 3.2175 (6) Å, while the Fe1⋯Fe1i distance is 5.5702 (6) Å.

[Figure 1]
Figure 1
View of the molecular structure of (I)[link], showing the atomic numbering and 35% probability displacement ellipsoids for the non-H atoms. The unlabeled atoms are related to the labeled ones by the symmetry operator (−x + 1, −y + 1, −z + 1). H atoms have been removed for clarity.

3. Supra­molecular features

There are no significant supra­molecular features to discuss with the extended structure of (I)[link]. There are weak inter­actions between the Cl ion and an acac ligand on neighboring mol­ecules (Table 1[link]). Taking into account these weak inter­actions, the extended structure becomes layers of two-dimensional 44-nets normal to the b axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1i 0.95 2.91 3.797 (2) 155
C5—H5B⋯Cl1i 0.98 2.91 3.800 (2) 152
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the extended two-dimensional network of (I)[link] with an overlay of the unit cell. The inter­molecular Cl—H inter­ations are shown as dashed red lines. All C atoms except those in the hydrogen-bonded acac ligand and all H atoms except those of the hydrogen-bonded methyl group have been removed for clarity. Color key: blue = Fe, light-green = Cl, red = O, gray = C, and green = H.

4. Database survey

One closely related complex, [Fe4(acac)4(OMe)6(N3)2], has previously been reported (Li et al., 1997[Li, H., Zhong, Z. J., Chen, W. & You, X. Z. (1997). J. Chem. Soc. Dalton Trans. pp. 463-464.]) in which N3 takes the position of Cl in (I)[link]. The mol­ecular structure of the azide complex is very similar to that of (I)[link], and can be described as the same [Fe4(OMe)6] face-sharing double cubane cluster with two opposite corners missing. The average Fe—Oacac distance of 1.978 Å is quite close to the average Fe—Oacac distance of 1.982 Å in (I)[link]. The average Fe—OMe distances in the azide complex (μ2-OMe: 1.977 Å; μ3-OMe: 2.124 Å) are also comparable to those in (I)[link] (μ2-OMe: 1.983 Å; μ3-OMe: 2.125 Å).

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned 14 complexes with an [Fe4(OR)6] cluster core similar to (I)[link] (Abu-Nawwas et al., 2009[Abu-Nawwas, A. H., Muryn, C. A. & Malik, M. A. (2009). Inorg. Chem. Commun. 12, 125-127.]; Mulyana et al., 2009[Mulyana, Y., Nafady, A., Mukherjee, A., Bircher, R., Moubaraki, B., Murray, K. S., Bond, A. M., Abrahams, B. F. & Boskovic, C. (2009). Inorg. Chem. 48, 7765-7781.]). All of these materials, except the azide compound described above, use more complex, multidentate ligands to form the polynuclear entity. The [Fe4(OR)6] motif is present is 63 additional materials as part of a higher-order cluster complex (Ferguson et al., 2013[Ferguson, A., Thomas, L. H. & Murrie, M. (2013). Polyhedron, 52, 227-233.]; Murugesu et al., 2004[Murugesu, M., Abboud, K. A. & Christou, G. (2004). Polyhedron, 23, 2779-2788.]).

5. Synthesis and crystallization

A solution of NaOSi(OMe)2Me (57 mg, 3.96 × 10 −4 mol, 1 equivalent) in THF (3 ml) was added to a solution of Fe(acac)2Cl (200 mg, 3.96 × 10 −4 mol, 1 equivalent) in THF (see Scheme). The mixture was stirred rapidly at room temperature, and a slight color change from a dark-red to a lighter red was observed. Removal of the solvent under vacuum resulted in the precipitation of an orange solid, which upon washing with dry Et2O (2 × 10 ml) left a yellow solid. The yellow solid was extracted into dry CH2Cl2 and filtered through Celite. The CH2Cl­2 was then removed under vacuum, leaving a yellow solid (54 mg, 6.16 × 10 −5 mol, 62% yield). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH2Cl2 solution of the yellow solid.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Methyl-H atom positions, RCH3, were optimized by rotation about R—C bonds, with idealized C—H, R—H and H⋯H distances (C—H = 0.98 Å). The remaining H atoms were included as riding idealized contributors (C—H = 0.95 Å). H atoms were assigned Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) otherwise. The 102 reflection was omitted from the final refinement because it was partially obscured by the shadow of the beam stop.

Table 2
Experimental details

Crystal data
Chemical formula [Fe4(C5H7O2)4(CH3O)6Cl2]
Mr 876.93
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 102
a, b, c (Å) 14.0714 (6), 12.1888 (4), 21.3543 (7)
V3) 3662.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.76
Crystal size (mm) 0.38 × 0.37 × 0.23
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100
Absorption correction Integration (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.568, 0.718
No. of measured, independent and observed [I > 2σ(I)] reflections 46682, 4559, 3837
Rint 0.060
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.04
No. of reflections 4559
No. of parameters 215
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.34
Computer programs: APEX2, SAINT, XPREP and XCIF (Bruker, 2013[Bruker (2013). APEX2, SAINT, SHELXTL, XCIF, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalMaker (CrystalMaker, 2014[CrystalMaker (2014). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England. http://www.crystalmaker.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013), XPREP (Bruker, 2013), SADABS (Bruker, 2012) and TWINABS (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2013) and CrystalMaker (CrystalMaker, 2014); software used to prepare material for publication: XCIF (Bruker, 2013) and publCIF (Westrip, 2010).

Tetrakis(acetylacetonato)dichloridodi-µ3-methanolato-tetra-µ2-methanolato-tetrairon(III) top
Crystal data top
[Fe4(C5H7O2)4(CH3O)6Cl2]Dx = 1.590 Mg m3
Mr = 876.93Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9882 reflections
a = 14.0714 (6) Åθ = 2.4–28.3°
b = 12.1888 (4) ŵ = 1.76 mm1
c = 21.3543 (7) ÅT = 102 K
V = 3662.6 (2) Å3Prism, orange
Z = 40.38 × 0.37 × 0.23 mm
F(000) = 1808
Data collection top
Bruker D8 Venture/Photon 100
diffractometer
4559 independent reflections
Radiation source: microfocus sealed tube3837 reflections with I > 2σ(I)
Multilayer mirrors monochromatorRint = 0.060
profile data from φ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: integration
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.568, Tmax = 0.718k = 1516
46682 measured reflectionsl = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.8648P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4559 reflectionsΔρmax = 0.39 e Å3
215 parametersΔρmin = 0.34 e Å3
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2013). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SADABS v2012/1 (Bruker, 2012). No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by intrinsic phasing methods (XT, Sheldrick, 2013). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final difference Fourier had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.44600 (2)0.60052 (2)0.38841 (2)0.01161 (7)
Fe20.49483 (2)0.38287 (2)0.46636 (2)0.01051 (7)
Cl10.31634 (3)0.65927 (4)0.33408 (2)0.01952 (11)
O10.52694 (10)0.73202 (11)0.37204 (6)0.0177 (3)
O20.51458 (9)0.52865 (11)0.31778 (6)0.0170 (3)
O30.39890 (9)0.45244 (10)0.41172 (5)0.0126 (2)
O40.55491 (8)0.53740 (10)0.45395 (5)0.0106 (2)
O50.59118 (9)0.33767 (10)0.52897 (5)0.0130 (3)
O60.41693 (9)0.25001 (10)0.47819 (6)0.0158 (3)
O70.56371 (9)0.31011 (10)0.39767 (6)0.0153 (3)
C10.63600 (17)0.85947 (17)0.33019 (11)0.0306 (5)
H1A0.59580.91160.35300.046*
H1B0.64520.88540.28720.046*
H1C0.69780.85350.35110.046*
C20.58856 (14)0.74858 (16)0.32912 (9)0.0190 (4)
C30.61526 (14)0.67189 (17)0.28427 (9)0.0204 (4)
H30.66040.69330.25350.024*
C40.57959 (13)0.56530 (16)0.28188 (8)0.0169 (4)
C50.61965 (15)0.48447 (18)0.23600 (9)0.0246 (4)
H5A0.66070.43230.25810.037*
H5B0.65680.52360.20420.037*
H5C0.56760.44470.21570.037*
C60.34499 (14)0.38938 (16)0.36761 (9)0.0201 (4)
H6A0.38470.37230.33120.030*
H6B0.28940.43170.35410.030*
H6C0.32400.32100.38740.030*
C70.65434 (12)0.54563 (16)0.43948 (8)0.0151 (4)
H7A0.69180.52150.47560.023*
H7B0.67010.62200.42960.023*
H7C0.66900.49900.40340.023*
C80.63734 (16)0.23375 (17)0.52457 (10)0.0242 (5)
H8A0.58950.17540.52330.036*
H8B0.67850.22320.56110.036*
H8C0.67570.23130.48630.036*
C90.35287 (16)0.07273 (17)0.46844 (10)0.0258 (5)
H9A0.36240.05710.51300.039*
H9B0.36340.00570.44400.039*
H9C0.28780.09870.46170.039*
C100.42174 (14)0.15947 (15)0.44786 (9)0.0171 (4)
C110.48468 (15)0.13917 (15)0.39877 (9)0.0198 (4)
H110.48230.06890.37960.024*
C120.55074 (14)0.21388 (16)0.37582 (9)0.0175 (4)
C130.61370 (17)0.18240 (18)0.32192 (10)0.0286 (5)
H13A0.60640.23600.28810.043*
H13B0.59570.10950.30670.043*
H13C0.68010.18120.33580.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01076 (13)0.01374 (13)0.01034 (12)0.00004 (9)0.00102 (9)0.00161 (9)
Fe20.01094 (13)0.01008 (12)0.01050 (13)0.00020 (9)0.00027 (9)0.00061 (9)
Cl10.0182 (2)0.0259 (2)0.0145 (2)0.00438 (18)0.00364 (17)0.00256 (17)
O10.0174 (7)0.0180 (7)0.0179 (7)0.0018 (5)0.0040 (5)0.0027 (5)
O20.0156 (7)0.0208 (7)0.0146 (6)0.0001 (5)0.0040 (5)0.0015 (5)
O30.0119 (6)0.0147 (6)0.0112 (6)0.0025 (5)0.0017 (5)0.0005 (5)
O40.0074 (6)0.0125 (6)0.0121 (6)0.0004 (5)0.0015 (4)0.0004 (5)
O50.0127 (6)0.0126 (6)0.0138 (6)0.0031 (5)0.0001 (5)0.0005 (5)
O60.0164 (7)0.0139 (6)0.0171 (6)0.0030 (5)0.0016 (5)0.0001 (5)
O70.0166 (7)0.0144 (6)0.0149 (6)0.0002 (5)0.0029 (5)0.0029 (5)
C10.0292 (12)0.0239 (11)0.0388 (13)0.0074 (9)0.0114 (10)0.0021 (9)
C20.0147 (9)0.0205 (10)0.0216 (10)0.0003 (8)0.0005 (8)0.0080 (8)
C30.0154 (10)0.0280 (10)0.0177 (9)0.0016 (8)0.0047 (7)0.0064 (8)
C40.0134 (9)0.0268 (10)0.0105 (8)0.0042 (8)0.0008 (7)0.0044 (7)
C50.0230 (11)0.0302 (11)0.0205 (10)0.0037 (9)0.0077 (8)0.0007 (8)
C60.0198 (10)0.0216 (10)0.0191 (9)0.0059 (8)0.0080 (8)0.0011 (7)
C70.0076 (8)0.0205 (9)0.0172 (9)0.0002 (7)0.0020 (7)0.0018 (7)
C80.0272 (11)0.0190 (10)0.0263 (11)0.0127 (8)0.0064 (9)0.0051 (8)
C90.0244 (11)0.0176 (10)0.0353 (12)0.0064 (8)0.0005 (9)0.0005 (8)
C100.0164 (9)0.0131 (9)0.0217 (9)0.0005 (7)0.0053 (7)0.0014 (7)
C110.0236 (11)0.0129 (9)0.0229 (10)0.0008 (7)0.0019 (8)0.0056 (7)
C120.0193 (10)0.0182 (9)0.0151 (9)0.0044 (8)0.0013 (7)0.0035 (7)
C130.0334 (13)0.0252 (11)0.0274 (11)0.0016 (9)0.0113 (9)0.0107 (9)
Geometric parameters (Å, º) top
Fe1—O31.9861 (12)C3—C41.394 (3)
Fe1—O5i1.9885 (12)C3—H30.9500
Fe1—O21.9934 (13)C4—C51.499 (3)
Fe1—O11.9971 (13)C5—H5A0.9800
Fe1—O42.2135 (12)C5—H5B0.9800
Fe1—Cl12.2776 (5)C5—H5C0.9800
Fe2—O71.9692 (12)C6—H6A0.9800
Fe2—O61.9717 (13)C6—H6B0.9800
Fe2—O31.9755 (12)C6—H6C0.9800
Fe2—O51.9823 (12)C7—H7A0.9800
Fe2—O4i2.0809 (12)C7—H7B0.9800
Fe2—O42.0815 (12)C7—H7C0.9800
O1—C21.278 (2)C8—H8A0.9800
O2—C41.274 (2)C8—H8B0.9800
O3—C61.433 (2)C8—H8C0.9800
O4—C71.436 (2)C9—C101.500 (3)
O4—Fe2i2.0808 (12)C9—H9A0.9800
O5—C81.426 (2)C9—H9B0.9800
O5—Fe1i1.9885 (12)C9—H9C0.9800
O6—C101.281 (2)C10—C111.394 (3)
O7—C121.275 (2)C11—C121.391 (3)
C1—C21.508 (3)C11—H110.9500
C1—H1A0.9800C12—C131.502 (3)
C1—H1B0.9800C13—H13A0.9800
C1—H1C0.9800C13—H13B0.9800
C2—C31.390 (3)C13—H13C0.9800
O3—Fe1—O5i91.96 (5)O1—C2—C1115.54 (18)
O3—Fe1—O287.24 (5)C3—C2—C1119.58 (18)
O5i—Fe1—O2164.84 (5)C2—C3—C4123.69 (17)
O3—Fe1—O1164.47 (5)C2—C3—H3118.2
O5i—Fe1—O190.08 (5)C4—C3—H3118.2
O2—Fe1—O186.80 (5)O2—C4—C3124.28 (18)
O3—Fe1—O475.92 (5)O2—C4—C5115.63 (18)
O5i—Fe1—O475.69 (5)C3—C4—C5120.07 (17)
O2—Fe1—O489.45 (5)C4—C5—H5A109.5
O1—Fe1—O489.70 (5)C4—C5—H5B109.5
O3—Fe1—Cl198.40 (4)H5A—C5—H5B109.5
O5i—Fe1—Cl197.01 (4)C4—C5—H5C109.5
O2—Fe1—Cl198.08 (4)H5A—C5—H5C109.5
O1—Fe1—Cl196.63 (4)H5B—C5—H5C109.5
O4—Fe1—Cl1170.40 (3)O3—C6—H6A109.5
O7—Fe2—O689.95 (5)O3—C6—H6B109.5
O7—Fe2—O395.14 (5)H6A—C6—H6B109.5
O6—Fe2—O392.77 (5)O3—C6—H6C109.5
O7—Fe2—O592.33 (5)H6A—C6—H6C109.5
O6—Fe2—O593.76 (5)H6B—C6—H6C109.5
O3—Fe2—O5170.08 (5)O4—C7—H7A109.5
O7—Fe2—O4i170.08 (5)O4—C7—H7B109.5
O6—Fe2—O4i95.27 (5)H7A—C7—H7B109.5
O3—Fe2—O4i93.02 (5)O4—C7—H7C109.5
O5—Fe2—O4i78.95 (5)H7A—C7—H7C109.5
O7—Fe2—O496.48 (5)H7B—C7—H7C109.5
O6—Fe2—O4170.16 (5)O5—C8—H8A109.5
O3—Fe2—O479.28 (5)O5—C8—H8B109.5
O5—Fe2—O493.41 (5)H8A—C8—H8B109.5
O4i—Fe2—O479.52 (5)O5—C8—H8C109.5
C2—O1—Fe1129.75 (13)H8A—C8—H8C109.5
C4—O2—Fe1130.44 (13)H8B—C8—H8C109.5
C6—O3—Fe2121.31 (11)C10—C9—H9A109.5
C6—O3—Fe1119.96 (11)C10—C9—H9B109.5
Fe2—O3—Fe1108.06 (6)H9A—C9—H9B109.5
C7—O4—Fe2i118.09 (10)C10—C9—H9C109.5
C7—O4—Fe2119.09 (10)H9A—C9—H9C109.5
Fe2i—O4—Fe2100.48 (5)H9B—C9—H9C109.5
C7—O4—Fe1120.95 (10)O6—C10—C11124.49 (18)
Fe2i—O4—Fe197.00 (5)O6—C10—C9115.14 (17)
Fe2—O4—Fe196.53 (5)C11—C10—C9120.37 (18)
C8—O5—Fe2120.92 (11)C12—C11—C10124.99 (17)
C8—O5—Fe1i120.97 (11)C12—C11—H11117.5
Fe2—O5—Fe1i108.25 (6)C10—C11—H11117.5
C10—O6—Fe2127.83 (12)O7—C12—C11124.67 (17)
C12—O7—Fe2128.04 (12)O7—C12—C13115.52 (18)
C2—C1—H1A109.5C11—C12—C13119.81 (17)
C2—C1—H1B109.5C12—C13—H13A109.5
H1A—C1—H1B109.5C12—C13—H13B109.5
C2—C1—H1C109.5H13A—C13—H13B109.5
H1A—C1—H1C109.5C12—C13—H13C109.5
H1B—C1—H1C109.5H13A—C13—H13C109.5
O1—C2—C3124.85 (18)H13B—C13—H13C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1ii0.952.913.797 (2)155
C5—H5B···Cl1ii0.982.913.800 (2)152
Symmetry code: (ii) x+1/2, y, z+1/2.
 

Acknowledgements

This research was conducted under contract DEFG02-90ER14146 with the US Department of Energy by its Division of Chemical Sciences, Office of Basic Energy Sciences.

References

First citationAbu-Nawwas, A. H., Muryn, C. A. & Malik, M. A. (2009). Inorg. Chem. Commun. 12, 125–127.  CAS Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2, SAINT, SHELXTL, XCIF, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCervantes, J., Zárraga, R. & Salazar-Hernández, C. (2012). Appl. Organomet. Chem. 26, 157–163.  CrossRef CAS Google Scholar
First citationCrystalMaker (2014). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England. http://www.crystalmaker.com.  Google Scholar
First citationDer Weij, F. W. van (1980). Makromol. Chem. 181, 2541–2548.  Google Scholar
First citationDupuy, S., Slawin, A. M. Z. & Nolan, S. P. (2012). Chem. Eur. J. 18, 14923–14928.  CSD CrossRef CAS PubMed Google Scholar
First citationFerguson, A., Thomas, L. H. & Murrie, M. (2013). Polyhedron, 52, 227–233.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLevitsky, M. M., Zavin, B. G. & Bilyachenko, A. N. (2007). Russ. Chem. Rev. 76, 847–866.  CrossRef CAS Google Scholar
First citationLi, H., Zhong, Z. J., Chen, W. & You, X. Z. (1997). J. Chem. Soc. Dalton Trans. pp. 463–464.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcMullen, A. K., Tilley, T. D., Rheingold, A. L. & Geib, S. J. (1989). Inorg. Chem. 28, 3772–3774.  CSD CrossRef CAS Google Scholar
First citationMcMullen, A. K., Tilley, T. D., Rheingold, A. L. & Geib, S. J. (1990). Inorg. Chem. 29, 2228–2232.  CSD CrossRef CAS Google Scholar
First citationMulyana, Y., Nafady, A., Mukherjee, A., Bircher, R., Moubaraki, B., Murray, K. S., Bond, A. M., Abrahams, B. F. & Boskovic, C. (2009). Inorg. Chem. 48, 7765–7781.  CSD CrossRef PubMed CAS Google Scholar
First citationMurugesu, M., Abboud, K. A. & Christou, G. (2004). Polyhedron, 23, 2779–2788.  CSD CrossRef CAS Google Scholar
First citationNozaki, C., Lugmair, C. G., Bell, A. T. & Tilley, T. D. (2002). J. Am. Chem. Soc. 124, 13194–13203.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerry, K. W., Gantzel, P. K. & Tilley, T. D. (1993). Inorg. Chem. 32, 5402–5404.  CSD CrossRef CAS Web of Science Google Scholar
First citationTerry, K. W., Lugmair, C. G., Gantzel, P. K. & Tilley, T. D. (1996). Chem. Mater. 8, 274–280.  CSD CrossRef CAS Google Scholar
First citationTruscott, B. J., Nelson, D. J., Lujan, C., Slawin, A. M. Z. & Nolan, S. P. (2013). Chem. Eur. J. 19, 7904–7916.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds