research communications
μ3-methanolato-tetra-μ2-methanolato-tetrairon(III)
of tetrakis(acetylacetonato)dichloridodi-aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Correspondence e-mail: dgray@illinois.edu
The title complex, [Fe4(C5H7O2)4(CH3O)6Cl2] or [Fe4(acac)4(μ2-OMe)4(μ3-OMe)2Cl2] (acac = acetylacetonate), crystallizes in the orthorhombic Pbca with one half of the molecule per the other half being completed by inversion symmetry. The core structure consists of a face-sharing double pseudo-cubane entity with two opposite corners missing. Weak C—H⋯Cl intermolecular interactions result in a two-dimensional layered structure parallel to the ac plane.
Keywords: crystal structure; cluster; iron(III); acetylacetonate; ouble cubane.
CCDC reference: 1412851
1. Chemical context
Metal silanolate complexes bearing methoxy and ethoxy groups on silicon are relatively rare (Dupuy et al., 2012) in comparison to tert-butoxysilanolate complexes (McMullen et al., 1989, 1990; Nozaki et al., 2002; Terry et al., 1993, 1996; Truscott et al., 2013). Nevertheless, such compounds may play a pivotal role in sol-gel reactions and in metal-catalysed curing reactions, such as room-temperature vulcanization (Cervantes et al., 2012; Levitsky et al., 2007; van Der Weij, 1980).
We have investigated the syntheses of metal methoxysilanolates via the additions of NaOSi(OMe)2Me to metal halides and discovered that, in certain cases, the addition of NaOSi(OMe)2Me to a metal halide results in the formation of a methanolate complex instead of silanolate complex. In line with this observation, we now report that the addition of NaOSi(OMe)2Me to Fe(acac)2Cl results in the formation of a tetranuclear iron(III) methanolate compound, Fe4(acac)4(μ2-OMe)4(μ3-OMe)2Cl2, (I).
2. Structural commentary
The structure of (I) contains two crystallographically independent FeIII metal atoms. Both cations are in approximately octahedral coordination environments. The coordination sphere of Fe1 is filled by the O atoms of one κ2-acac ligand [Fe1—O1 = 1.9971 (13) Å and Fe1—O2 = 1.9934 (13) Å], two μ2-methanolate groups [Fe1—O3 = 1.9861 (12) Å and Fe1—O5i = 1.9885 (12) Å; symmetry code: (i) −x + 1, −y + 1, −z + 1], one μ3-methanolate group [Fe1—O4 = 2.2135 (12) Å], and one terminal chloride ligand [Fe1—Cl1 = 2.2776 (5) Å]. The coordination sphere of Fe2 is filled by the O atoms of one κ2-acac ligand [Fe2—O6 = 1.9717 (13) Å and Fe2—O7 = 1.9692 (12) Å], two μ2-methanolate groups [Fe2—O3 = 1.9755 (12) Å and Fe2—O5 = 1.9823 (12) Å], and two μ3-methanolate groups [Fe2—O4 = 2.0815 (12) Å and Fe2—O4i = 2.0809 (12) Å]. The angles around both Fe1 and Fe2 distort significantly from the ideal values of 90 and 180° of a perfect octahedron. For Fe1, the cis angles range from 75.69 (5) to 98.40 (4)°, while the trans angles range from 164.47 (5) to 170.40 (3)°. The angles around Fe2 have narrower ranges, with cis being 78.95 (5)–96.48 (5)° and trans being 170.08 (5)–170.16 (5)°.
The molecular structure of (I) (Fig. 1) can be described as an [Fe4(OMe)6] face-sharing double pseudo-cubane entity with two opposite corners missing. The outside of the cluster is decorated by one acac ligand per metal and the Fe atoms at either end of the cluster are coordinated by one chloride ion. Neighboring Fe⋯Fe distances range from 3.1997 (4) to 3.2175 (6) Å, while the Fe1⋯Fe1i distance is 5.5702 (6) Å.
3. Supramolecular features
There are no significant supramolecular features to discuss with the extended structure of (I). There are weak interactions between the Cl− ion and an acac ligand on neighboring molecules (Table 1). Taking into account these weak interactions, the extended structure becomes layers of two-dimensional 44-nets normal to the b axis (Fig. 2).
4. Database survey
One closely related complex, [Fe4(acac)4(OMe)6(N3)2], has previously been reported (Li et al., 1997) in which N3− takes the position of Cl− in (I). The molecular structure of the azide complex is very similar to that of (I), and can be described as the same [Fe4(OMe)6] face-sharing double cubane cluster with two opposite corners missing. The average Fe—Oacac distance of 1.978 Å is quite close to the average Fe—Oacac distance of 1.982 Å in (I). The average Fe—OMe distances in the azide complex (μ2-OMe: 1.977 Å; μ3-OMe: 2.124 Å) are also comparable to those in (I) (μ2-OMe: 1.983 Å; μ3-OMe: 2.125 Å).
A search of the Cambridge Structural Database (Groom & Allen, 2014) returned 14 complexes with an [Fe4(OR)6] cluster core similar to (I) (Abu-Nawwas et al., 2009; Mulyana et al., 2009). All of these materials, except the azide compound described above, use more complex, multidentate ligands to form the polynuclear entity. The [Fe4(OR)6] motif is present is 63 additional materials as part of a higher-order cluster complex (Ferguson et al., 2013; Murugesu et al., 2004).
5. Synthesis and crystallization
A solution of NaOSi(OMe)2Me (57 mg, 3.96 × 10 −4 mol, 1 equivalent) in THF (3 ml) was added to a solution of Fe(acac)2Cl (200 mg, 3.96 × 10 −4 mol, 1 equivalent) in THF (see Scheme). The mixture was stirred rapidly at room temperature, and a slight color change from a dark-red to a lighter red was observed. Removal of the solvent under vacuum resulted in the precipitation of an orange solid, which upon washing with dry Et2O (2 × 10 ml) left a yellow solid. The yellow solid was extracted into dry CH2Cl2 and filtered through Celite. The CH2Cl2 was then removed under vacuum, leaving a yellow solid (54 mg, 6.16 × 10 −5 mol, 62% yield). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH2Cl2 solution of the yellow solid.
6. Refinement
Crystal data, data collection and structure . Methyl-H atom positions, RCH3, were optimized by rotation about R—C bonds, with idealized C—H, R—H and H⋯H distances (C—H = 0.98 Å). The remaining H atoms were included as riding idealized contributors (C—H = 0.95 Å). H atoms were assigned Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) otherwise. The 102 reflection was omitted from the final because it was partially obscured by the shadow of the beam stop.
details are summarized in Table 2Supporting information
CCDC reference: 1412851
https://doi.org/10.1107/S2056989015013535/cv5491sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013535/cv5491Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013), XPREP (Bruker, 2013), SADABS (Bruker, 2012) and TWINABS (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2013) and CrystalMaker (CrystalMaker, 2014); software used to prepare material for publication: XCIF (Bruker, 2013) and publCIF (Westrip, 2010).[Fe4(C5H7O2)4(CH3O)6Cl2] | Dx = 1.590 Mg m−3 |
Mr = 876.93 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9882 reflections |
a = 14.0714 (6) Å | θ = 2.4–28.3° |
b = 12.1888 (4) Å | µ = 1.76 mm−1 |
c = 21.3543 (7) Å | T = 102 K |
V = 3662.6 (2) Å3 | Prism, orange |
Z = 4 | 0.38 × 0.37 × 0.23 mm |
F(000) = 1808 |
Bruker D8 Venture/Photon 100 diffractometer | 4559 independent reflections |
Radiation source: microfocus sealed tube | 3837 reflections with I > 2σ(I) |
Multilayer mirrors monochromator | Rint = 0.060 |
profile data from φ and ω scans | θmax = 28.3°, θmin = 2.9° |
Absorption correction: integration (SADABS; Bruker, 2012) | h = −18→18 |
Tmin = 0.568, Tmax = 0.718 | k = −15→16 |
46682 measured reflections | l = −28→28 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0352P)2 + 1.8648P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4559 reflections | Δρmax = 0.39 e Å−3 |
215 parameters | Δρmin = −0.34 e Å−3 |
Experimental. One distinct cell was identified using APEX2 (Bruker, 2013). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SADABS v2012/1 (Bruker, 2012). No decay correction was applied. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Structure was phased by intrinsic phasing methods (XT, Sheldrick, 2013). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final difference Fourier had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.44600 (2) | 0.60052 (2) | 0.38841 (2) | 0.01161 (7) | |
Fe2 | 0.49483 (2) | 0.38287 (2) | 0.46636 (2) | 0.01051 (7) | |
Cl1 | 0.31634 (3) | 0.65927 (4) | 0.33408 (2) | 0.01952 (11) | |
O1 | 0.52694 (10) | 0.73202 (11) | 0.37204 (6) | 0.0177 (3) | |
O2 | 0.51458 (9) | 0.52865 (11) | 0.31778 (6) | 0.0170 (3) | |
O3 | 0.39890 (9) | 0.45244 (10) | 0.41172 (5) | 0.0126 (2) | |
O4 | 0.55491 (8) | 0.53740 (10) | 0.45395 (5) | 0.0106 (2) | |
O5 | 0.59118 (9) | 0.33767 (10) | 0.52897 (5) | 0.0130 (3) | |
O6 | 0.41693 (9) | 0.25001 (10) | 0.47819 (6) | 0.0158 (3) | |
O7 | 0.56371 (9) | 0.31011 (10) | 0.39767 (6) | 0.0153 (3) | |
C1 | 0.63600 (17) | 0.85947 (17) | 0.33019 (11) | 0.0306 (5) | |
H1A | 0.5958 | 0.9116 | 0.3530 | 0.046* | |
H1B | 0.6452 | 0.8854 | 0.2872 | 0.046* | |
H1C | 0.6978 | 0.8535 | 0.3511 | 0.046* | |
C2 | 0.58856 (14) | 0.74858 (16) | 0.32912 (9) | 0.0190 (4) | |
C3 | 0.61526 (14) | 0.67189 (17) | 0.28427 (9) | 0.0204 (4) | |
H3 | 0.6604 | 0.6933 | 0.2535 | 0.024* | |
C4 | 0.57959 (13) | 0.56530 (16) | 0.28188 (8) | 0.0169 (4) | |
C5 | 0.61965 (15) | 0.48447 (18) | 0.23600 (9) | 0.0246 (4) | |
H5A | 0.6607 | 0.4323 | 0.2581 | 0.037* | |
H5B | 0.6568 | 0.5236 | 0.2042 | 0.037* | |
H5C | 0.5676 | 0.4447 | 0.2157 | 0.037* | |
C6 | 0.34499 (14) | 0.38938 (16) | 0.36761 (9) | 0.0201 (4) | |
H6A | 0.3847 | 0.3723 | 0.3312 | 0.030* | |
H6B | 0.2894 | 0.4317 | 0.3541 | 0.030* | |
H6C | 0.3240 | 0.3210 | 0.3874 | 0.030* | |
C7 | 0.65434 (12) | 0.54563 (16) | 0.43948 (8) | 0.0151 (4) | |
H7A | 0.6918 | 0.5215 | 0.4756 | 0.023* | |
H7B | 0.6701 | 0.6220 | 0.4296 | 0.023* | |
H7C | 0.6690 | 0.4990 | 0.4034 | 0.023* | |
C8 | 0.63734 (16) | 0.23375 (17) | 0.52457 (10) | 0.0242 (5) | |
H8A | 0.5895 | 0.1754 | 0.5233 | 0.036* | |
H8B | 0.6785 | 0.2232 | 0.5611 | 0.036* | |
H8C | 0.6757 | 0.2313 | 0.4863 | 0.036* | |
C9 | 0.35287 (16) | 0.07273 (17) | 0.46844 (10) | 0.0258 (5) | |
H9A | 0.3624 | 0.0571 | 0.5130 | 0.039* | |
H9B | 0.3634 | 0.0057 | 0.4440 | 0.039* | |
H9C | 0.2878 | 0.0987 | 0.4617 | 0.039* | |
C10 | 0.42174 (14) | 0.15947 (15) | 0.44786 (9) | 0.0171 (4) | |
C11 | 0.48468 (15) | 0.13917 (15) | 0.39877 (9) | 0.0198 (4) | |
H11 | 0.4823 | 0.0689 | 0.3796 | 0.024* | |
C12 | 0.55074 (14) | 0.21388 (16) | 0.37582 (9) | 0.0175 (4) | |
C13 | 0.61370 (17) | 0.18240 (18) | 0.32192 (10) | 0.0286 (5) | |
H13A | 0.6064 | 0.2360 | 0.2881 | 0.043* | |
H13B | 0.5957 | 0.1095 | 0.3067 | 0.043* | |
H13C | 0.6801 | 0.1812 | 0.3358 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01076 (13) | 0.01374 (13) | 0.01034 (12) | −0.00004 (9) | 0.00102 (9) | 0.00161 (9) |
Fe2 | 0.01094 (13) | 0.01008 (12) | 0.01050 (13) | −0.00020 (9) | 0.00027 (9) | −0.00061 (9) |
Cl1 | 0.0182 (2) | 0.0259 (2) | 0.0145 (2) | 0.00438 (18) | −0.00364 (17) | 0.00256 (17) |
O1 | 0.0174 (7) | 0.0180 (7) | 0.0179 (7) | −0.0018 (5) | 0.0040 (5) | 0.0027 (5) |
O2 | 0.0156 (7) | 0.0208 (7) | 0.0146 (6) | 0.0001 (5) | 0.0040 (5) | 0.0015 (5) |
O3 | 0.0119 (6) | 0.0147 (6) | 0.0112 (6) | −0.0025 (5) | −0.0017 (5) | −0.0005 (5) |
O4 | 0.0074 (6) | 0.0125 (6) | 0.0121 (6) | −0.0004 (5) | 0.0015 (4) | 0.0004 (5) |
O5 | 0.0127 (6) | 0.0126 (6) | 0.0138 (6) | 0.0031 (5) | −0.0001 (5) | −0.0005 (5) |
O6 | 0.0164 (7) | 0.0139 (6) | 0.0171 (6) | −0.0030 (5) | 0.0016 (5) | 0.0001 (5) |
O7 | 0.0166 (7) | 0.0144 (6) | 0.0149 (6) | −0.0002 (5) | 0.0029 (5) | −0.0029 (5) |
C1 | 0.0292 (12) | 0.0239 (11) | 0.0388 (13) | −0.0074 (9) | 0.0114 (10) | 0.0021 (9) |
C2 | 0.0147 (9) | 0.0205 (10) | 0.0216 (10) | −0.0003 (8) | −0.0005 (8) | 0.0080 (8) |
C3 | 0.0154 (10) | 0.0280 (10) | 0.0177 (9) | −0.0016 (8) | 0.0047 (7) | 0.0064 (8) |
C4 | 0.0134 (9) | 0.0268 (10) | 0.0105 (8) | 0.0042 (8) | −0.0008 (7) | 0.0044 (7) |
C5 | 0.0230 (11) | 0.0302 (11) | 0.0205 (10) | 0.0037 (9) | 0.0077 (8) | −0.0007 (8) |
C6 | 0.0198 (10) | 0.0216 (10) | 0.0191 (9) | −0.0059 (8) | −0.0080 (8) | −0.0011 (7) |
C7 | 0.0076 (8) | 0.0205 (9) | 0.0172 (9) | −0.0002 (7) | 0.0020 (7) | 0.0018 (7) |
C8 | 0.0272 (11) | 0.0190 (10) | 0.0263 (11) | 0.0127 (8) | −0.0064 (9) | −0.0051 (8) |
C9 | 0.0244 (11) | 0.0176 (10) | 0.0353 (12) | −0.0064 (8) | 0.0005 (9) | 0.0005 (8) |
C10 | 0.0164 (9) | 0.0131 (9) | 0.0217 (9) | −0.0005 (7) | −0.0053 (7) | 0.0014 (7) |
C11 | 0.0236 (11) | 0.0129 (9) | 0.0229 (10) | −0.0008 (7) | −0.0019 (8) | −0.0056 (7) |
C12 | 0.0193 (10) | 0.0182 (9) | 0.0151 (9) | 0.0044 (8) | −0.0013 (7) | −0.0035 (7) |
C13 | 0.0334 (13) | 0.0252 (11) | 0.0274 (11) | 0.0016 (9) | 0.0113 (9) | −0.0107 (9) |
Fe1—O3 | 1.9861 (12) | C3—C4 | 1.394 (3) |
Fe1—O5i | 1.9885 (12) | C3—H3 | 0.9500 |
Fe1—O2 | 1.9934 (13) | C4—C5 | 1.499 (3) |
Fe1—O1 | 1.9971 (13) | C5—H5A | 0.9800 |
Fe1—O4 | 2.2135 (12) | C5—H5B | 0.9800 |
Fe1—Cl1 | 2.2776 (5) | C5—H5C | 0.9800 |
Fe2—O7 | 1.9692 (12) | C6—H6A | 0.9800 |
Fe2—O6 | 1.9717 (13) | C6—H6B | 0.9800 |
Fe2—O3 | 1.9755 (12) | C6—H6C | 0.9800 |
Fe2—O5 | 1.9823 (12) | C7—H7A | 0.9800 |
Fe2—O4i | 2.0809 (12) | C7—H7B | 0.9800 |
Fe2—O4 | 2.0815 (12) | C7—H7C | 0.9800 |
O1—C2 | 1.278 (2) | C8—H8A | 0.9800 |
O2—C4 | 1.274 (2) | C8—H8B | 0.9800 |
O3—C6 | 1.433 (2) | C8—H8C | 0.9800 |
O4—C7 | 1.436 (2) | C9—C10 | 1.500 (3) |
O4—Fe2i | 2.0808 (12) | C9—H9A | 0.9800 |
O5—C8 | 1.426 (2) | C9—H9B | 0.9800 |
O5—Fe1i | 1.9885 (12) | C9—H9C | 0.9800 |
O6—C10 | 1.281 (2) | C10—C11 | 1.394 (3) |
O7—C12 | 1.275 (2) | C11—C12 | 1.391 (3) |
C1—C2 | 1.508 (3) | C11—H11 | 0.9500 |
C1—H1A | 0.9800 | C12—C13 | 1.502 (3) |
C1—H1B | 0.9800 | C13—H13A | 0.9800 |
C1—H1C | 0.9800 | C13—H13B | 0.9800 |
C2—C3 | 1.390 (3) | C13—H13C | 0.9800 |
O3—Fe1—O5i | 91.96 (5) | O1—C2—C1 | 115.54 (18) |
O3—Fe1—O2 | 87.24 (5) | C3—C2—C1 | 119.58 (18) |
O5i—Fe1—O2 | 164.84 (5) | C2—C3—C4 | 123.69 (17) |
O3—Fe1—O1 | 164.47 (5) | C2—C3—H3 | 118.2 |
O5i—Fe1—O1 | 90.08 (5) | C4—C3—H3 | 118.2 |
O2—Fe1—O1 | 86.80 (5) | O2—C4—C3 | 124.28 (18) |
O3—Fe1—O4 | 75.92 (5) | O2—C4—C5 | 115.63 (18) |
O5i—Fe1—O4 | 75.69 (5) | C3—C4—C5 | 120.07 (17) |
O2—Fe1—O4 | 89.45 (5) | C4—C5—H5A | 109.5 |
O1—Fe1—O4 | 89.70 (5) | C4—C5—H5B | 109.5 |
O3—Fe1—Cl1 | 98.40 (4) | H5A—C5—H5B | 109.5 |
O5i—Fe1—Cl1 | 97.01 (4) | C4—C5—H5C | 109.5 |
O2—Fe1—Cl1 | 98.08 (4) | H5A—C5—H5C | 109.5 |
O1—Fe1—Cl1 | 96.63 (4) | H5B—C5—H5C | 109.5 |
O4—Fe1—Cl1 | 170.40 (3) | O3—C6—H6A | 109.5 |
O7—Fe2—O6 | 89.95 (5) | O3—C6—H6B | 109.5 |
O7—Fe2—O3 | 95.14 (5) | H6A—C6—H6B | 109.5 |
O6—Fe2—O3 | 92.77 (5) | O3—C6—H6C | 109.5 |
O7—Fe2—O5 | 92.33 (5) | H6A—C6—H6C | 109.5 |
O6—Fe2—O5 | 93.76 (5) | H6B—C6—H6C | 109.5 |
O3—Fe2—O5 | 170.08 (5) | O4—C7—H7A | 109.5 |
O7—Fe2—O4i | 170.08 (5) | O4—C7—H7B | 109.5 |
O6—Fe2—O4i | 95.27 (5) | H7A—C7—H7B | 109.5 |
O3—Fe2—O4i | 93.02 (5) | O4—C7—H7C | 109.5 |
O5—Fe2—O4i | 78.95 (5) | H7A—C7—H7C | 109.5 |
O7—Fe2—O4 | 96.48 (5) | H7B—C7—H7C | 109.5 |
O6—Fe2—O4 | 170.16 (5) | O5—C8—H8A | 109.5 |
O3—Fe2—O4 | 79.28 (5) | O5—C8—H8B | 109.5 |
O5—Fe2—O4 | 93.41 (5) | H8A—C8—H8B | 109.5 |
O4i—Fe2—O4 | 79.52 (5) | O5—C8—H8C | 109.5 |
C2—O1—Fe1 | 129.75 (13) | H8A—C8—H8C | 109.5 |
C4—O2—Fe1 | 130.44 (13) | H8B—C8—H8C | 109.5 |
C6—O3—Fe2 | 121.31 (11) | C10—C9—H9A | 109.5 |
C6—O3—Fe1 | 119.96 (11) | C10—C9—H9B | 109.5 |
Fe2—O3—Fe1 | 108.06 (6) | H9A—C9—H9B | 109.5 |
C7—O4—Fe2i | 118.09 (10) | C10—C9—H9C | 109.5 |
C7—O4—Fe2 | 119.09 (10) | H9A—C9—H9C | 109.5 |
Fe2i—O4—Fe2 | 100.48 (5) | H9B—C9—H9C | 109.5 |
C7—O4—Fe1 | 120.95 (10) | O6—C10—C11 | 124.49 (18) |
Fe2i—O4—Fe1 | 97.00 (5) | O6—C10—C9 | 115.14 (17) |
Fe2—O4—Fe1 | 96.53 (5) | C11—C10—C9 | 120.37 (18) |
C8—O5—Fe2 | 120.92 (11) | C12—C11—C10 | 124.99 (17) |
C8—O5—Fe1i | 120.97 (11) | C12—C11—H11 | 117.5 |
Fe2—O5—Fe1i | 108.25 (6) | C10—C11—H11 | 117.5 |
C10—O6—Fe2 | 127.83 (12) | O7—C12—C11 | 124.67 (17) |
C12—O7—Fe2 | 128.04 (12) | O7—C12—C13 | 115.52 (18) |
C2—C1—H1A | 109.5 | C11—C12—C13 | 119.81 (17) |
C2—C1—H1B | 109.5 | C12—C13—H13A | 109.5 |
H1A—C1—H1B | 109.5 | C12—C13—H13B | 109.5 |
C2—C1—H1C | 109.5 | H13A—C13—H13B | 109.5 |
H1A—C1—H1C | 109.5 | C12—C13—H13C | 109.5 |
H1B—C1—H1C | 109.5 | H13A—C13—H13C | 109.5 |
O1—C2—C3 | 124.85 (18) | H13B—C13—H13C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cl1ii | 0.95 | 2.91 | 3.797 (2) | 155 |
C5—H5B···Cl1ii | 0.98 | 2.91 | 3.800 (2) | 152 |
Symmetry code: (ii) x+1/2, y, −z+1/2. |
Acknowledgements
This research was conducted under contract DEFG02-90ER14146 with the US Department of Energy by its Division of Chemical Sciences, Office of Basic Energy Sciences.
References
Abu-Nawwas, A. H., Muryn, C. A. & Malik, M. A. (2009). Inorg. Chem. Commun. 12, 125–127. CAS Google Scholar
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). APEX2, SAINT, SHELXTL, XCIF, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cervantes, J., Zárraga, R. & Salazar-Hernández, C. (2012). Appl. Organomet. Chem. 26, 157–163. CrossRef CAS Google Scholar
CrystalMaker (2014). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England. http://www.crystalmaker.com. Google Scholar
Der Weij, F. W. van (1980). Makromol. Chem. 181, 2541–2548. Google Scholar
Dupuy, S., Slawin, A. M. Z. & Nolan, S. P. (2012). Chem. Eur. J. 18, 14923–14928. CSD CrossRef CAS PubMed Google Scholar
Ferguson, A., Thomas, L. H. & Murrie, M. (2013). Polyhedron, 52, 227–233. CSD CrossRef CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Levitsky, M. M., Zavin, B. G. & Bilyachenko, A. N. (2007). Russ. Chem. Rev. 76, 847–866. CrossRef CAS Google Scholar
Li, H., Zhong, Z. J., Chen, W. & You, X. Z. (1997). J. Chem. Soc. Dalton Trans. pp. 463–464. CSD CrossRef CAS Web of Science Google Scholar
McMullen, A. K., Tilley, T. D., Rheingold, A. L. & Geib, S. J. (1989). Inorg. Chem. 28, 3772–3774. CSD CrossRef CAS Google Scholar
McMullen, A. K., Tilley, T. D., Rheingold, A. L. & Geib, S. J. (1990). Inorg. Chem. 29, 2228–2232. CSD CrossRef CAS Google Scholar
Mulyana, Y., Nafady, A., Mukherjee, A., Bircher, R., Moubaraki, B., Murray, K. S., Bond, A. M., Abrahams, B. F. & Boskovic, C. (2009). Inorg. Chem. 48, 7765–7781. CSD CrossRef PubMed CAS Google Scholar
Murugesu, M., Abboud, K. A. & Christou, G. (2004). Polyhedron, 23, 2779–2788. CSD CrossRef CAS Google Scholar
Nozaki, C., Lugmair, C. G., Bell, A. T. & Tilley, T. D. (2002). J. Am. Chem. Soc. 124, 13194–13203. CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Terry, K. W., Gantzel, P. K. & Tilley, T. D. (1993). Inorg. Chem. 32, 5402–5404. CSD CrossRef CAS Web of Science Google Scholar
Terry, K. W., Lugmair, C. G., Gantzel, P. K. & Tilley, T. D. (1996). Chem. Mater. 8, 274–280. CSD CrossRef CAS Google Scholar
Truscott, B. J., Nelson, D. J., Lujan, C., Slawin, A. M. Z. & Nolan, S. P. (2013). Chem. Eur. J. 19, 7904–7916. CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.