organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-amino-2-propyl­quinazolin-4(3H)-one

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 2 July 2015; accepted 8 July 2015; online 22 July 2015)

In the title mol­ecule, C11H13N3O, the propyl group is almost perpendicular to the quinazolin-4(3H)-one mean plane, making a dihedral angle of 88.98 (9)°. In the crystal, mol­ecules related by an inversion centre are paired via ππ overlap, indicated by the short distances of 3.616 (5) and 3.619 (5) Å between the centroids of the aromatic rings of neighbouring mol­ecules. Inter­molecular N—H⋯N and N—H⋯O hydrogen bonds form R66(30) rings and C(5) chains, respectively, generating a three-dimensional network. Weak C—H⋯O inter­actions are also observed.

1. Related literature

For biological applications of related compounds, see: Sasmal et al. (2012[Sasmal, S., Balaji, G., Reddy, H. R. K., Balasubrahmanyam, D., Srinivas, G., Kyasa, S., Sasmal, P. K., Khanna, I., Talwar, R., Suresh, J., Jadhav, V. P., Muzeeb, S., Shashikumar, D., Reddy, K. H., Sebastian, V. J., Frimurer, T. M., Rist, Ø., Elster, L. & Högberg, T. (2012). Bioorg. Med. Chem. Lett. 22, 3157-3162.]); Rohini et al. (2010[Rohini, R., Reddy, P. M., Shanker, K., Hu, A. & Ravinder, V. (2010). Eur. J. Med. Chem. 45, 1200-1205.]); Chandregowda et al. (2009[Chandregowda, V., Kush, A. K. & Reddy, G. C. (2009). Eur. J. Med. Chem. 44, 3046-3055.]); Gupta et al. (2008[Gupta, V., Kashaw, S. K., Jatav, V. & Mishra, P. (2008). Med. Chem. Res. 17, 205-211.]); Alagarsamy et al. (2007[Alagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235-241.]). For the synthesis of substituted quinazolin-4(3H)-ones, see: Ma et al. (2013[Ma, J., Han, B., Song, J., Hu, J., Lu, W., Yang, D., Zhang, Z., Jiang, T. & Hou, M. (2013). Green Chem. 15, 1485-1489.]); Adib et al. (2012[Adib, M., Sheikhi, E. & Bijanzadeh, H. R. (2012). Synlett, pp. 85-88.]); Xu et al. (2012[Xu, L., Jiang, Y. & Ma, D. (2012). Org. Lett. 14, 1150-1153.]); Kumar et al. (2011[Kumar, P., Shrivastava, B., Pandeya, S. N. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 1006-1018.]). For modification of the quinazolin-4(3H)-one ring system via li­thia­tion, see: Smith et al. (2004[Smith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121-2130.], 1996[Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996). J. Org. Chem. 61, 647-655.], 1995[Smith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029-1033.]). For the crystal structures for related compounds, see: El-Hiti et al. (2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Jones, D. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o467.]); Yang et al. (2009[Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185-o186.]); Coogan et al. (1999[Coogan, M. P., Smart, E. & Hibbs, D. E. (1999). Chem. Commun. pp. 1991-1992.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H13N3O

  • Mr = 203.24

  • Trigonal, [R \overline 3:H ]

  • a = 24.1525 (5) Å

  • c = 9.6500 (2) Å

  • V = 4875.1 (2) Å3

  • Z = 18

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.19 mm

2.2. Data collection

  • Agilent SuperNova Dual Source diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.975, Tmax = 0.984

  • 3734 measured reflections

  • 2136 independent reflections

  • 1913 reflections with I > 2σ(I)

  • Rint = 0.013

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.06

  • 2136 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.91 (2) 2.16 (2) 3.0677 (17) 176.1 (16)
N3—H3B⋯O1ii 0.87 (2) 2.51 (2) 3.0599 (16) 122.0 (15)
C5—H5⋯O1iii 0.93 2.44 3.3163 (16) 157
Symmetry codes: (i) y, -x+y, -z; (ii) [-y+{\script{1\over 3}}, x-y-{\script{1\over 3}}, z-{\script{1\over 3}}]; (iii) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z+{\script{1\over 3}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Introduction top

Quinazolines have a range of biological activities such as anti-cancer (Chandregowda et al., 2009), anti-bacterial (Rohini et al., 2010), anti-inflammatory (Alagarsamy et al., 2007), anti-obesity (Sasmal et al., 2012) and anti-spasm (Gupta et al., 2008). Synthesis of quinazolin-4(3H)-ones involves use of various synthetic procedures. Recent examples involve reactions of 2-amino­benzo­nitrile with carbon dioxide in water (Ma et al., 2013), 2-bromo­benzamides with formamide catalysed by CuI and 4-hy­droxy-l-proline (Xu et al., 2012) and isatoic anhydride, benzyl halides and primary amines under mild Kornblum conditions (Adib et al., 2012). 2-Alkyl-3-amino­quinazolin-4(3H)-ones can be obtained from reactions of 2-alkyl-4H-3,1-benzoxazin-4-ones with hydrazine hydrate (Kumar et al., 2011). Li­thia­tion of 2-unsubstituted and 2-n-alkyl-3-acyl­amino­quinazolin-4(3H)-ones followed by reactions of the lithium reagents produced in-situ with electrophiles gave the corresponding substituted derivatives in high yields (Smith et al., 2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

Experimental top

Synthesis and crystallization top

3-Amino-2-propyl­quinazolin-4(3H)-one was obtained in 82% yield by reaction of 2-propyl-4H-3,1-benzoxazin-4-one with excess hydrazine hydrate (three mole equivalents) in methanol under reflux conditions for 3 h (Kumar et al., 2011). Crystallization from ethanol gave colourless crystals of the title compound. The NMR and mass spectral data for the title compound were identical with those reported (Kumar et al., 2011).

Refinement top

The amino hydrogen atoms were located in the difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Results and discussion top

In the title compound (I) (Fig. 1), the propyl group is perpendicular to the quinazolin-4(3H)-one group with a dihedral angle of 88.98 (9)° between the least-squares planes of the two groups. In the crystal (Fig. 2), ππ overlap is observed for paired molecules with a centroid-centroid distance of ca 3.62 (1) Å between the benzene and pyrimidine rings of parallel 3-amino­quinazolin-4(3H)-one groups. N—H···N hydrogen bonds form R66(30) rings and N—H···O form C(5) chains to generate three dimensional packing. Weak C—H···O contacts (C(5)) are also observed.

Related literature top

For biological applications of related compounds, see: Sasmal et al. (2012); Rohini et al. (2010); Chandregowda et al. (2009); Gupta et al. (2008); Alagarsamy et al. (2007). For thesynthesis of substituted quinazolin-4(3H)-ones, see: Ma et al. (2013); Adib et al. (2012); Xu et al. (2012); Kumar et al. (2011). For modification of the quinazolin-4(3H)-one ring system via lithiation, see: Smith et al. (2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

Structure description top

Quinazolines have a range of biological activities such as anti-cancer (Chandregowda et al., 2009), anti-bacterial (Rohini et al., 2010), anti-inflammatory (Alagarsamy et al., 2007), anti-obesity (Sasmal et al., 2012) and anti-spasm (Gupta et al., 2008). Synthesis of quinazolin-4(3H)-ones involves use of various synthetic procedures. Recent examples involve reactions of 2-amino­benzo­nitrile with carbon dioxide in water (Ma et al., 2013), 2-bromo­benzamides with formamide catalysed by CuI and 4-hy­droxy-l-proline (Xu et al., 2012) and isatoic anhydride, benzyl halides and primary amines under mild Kornblum conditions (Adib et al., 2012). 2-Alkyl-3-amino­quinazolin-4(3H)-ones can be obtained from reactions of 2-alkyl-4H-3,1-benzoxazin-4-ones with hydrazine hydrate (Kumar et al., 2011). Li­thia­tion of 2-unsubstituted and 2-n-alkyl-3-acyl­amino­quinazolin-4(3H)-ones followed by reactions of the lithium reagents produced in-situ with electrophiles gave the corresponding substituted derivatives in high yields (Smith et al., 2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

In the title compound (I) (Fig. 1), the propyl group is perpendicular to the quinazolin-4(3H)-one group with a dihedral angle of 88.98 (9)° between the least-squares planes of the two groups. In the crystal (Fig. 2), ππ overlap is observed for paired molecules with a centroid-centroid distance of ca 3.62 (1) Å between the benzene and pyrimidine rings of parallel 3-amino­quinazolin-4(3H)-one groups. N—H···N hydrogen bonds form R66(30) rings and N—H···O form C(5) chains to generate three dimensional packing. Weak C—H···O contacts (C(5)) are also observed.

For biological applications of related compounds, see: Sasmal et al. (2012); Rohini et al. (2010); Chandregowda et al. (2009); Gupta et al. (2008); Alagarsamy et al. (2007). For thesynthesis of substituted quinazolin-4(3H)-ones, see: Ma et al. (2013); Adib et al. (2012); Xu et al. (2012); Kumar et al. (2011). For modification of the quinazolin-4(3H)-one ring system via lithiation, see: Smith et al. (2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

Synthesis and crystallization top

3-Amino-2-propyl­quinazolin-4(3H)-one was obtained in 82% yield by reaction of 2-propyl-4H-3,1-benzoxazin-4-one with excess hydrazine hydrate (three mole equivalents) in methanol under reflux conditions for 3 h (Kumar et al., 2011). Crystallization from ethanol gave colourless crystals of the title compound. The NMR and mass spectral data for the title compound were identical with those reported (Kumar et al., 2011).

Refinement details top

The amino hydrogen atoms were located in the difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing viewed along the c axis.
3-Amino-2-propylquinazolin-4(3H)-one top
Crystal data top
C11H13N3ODx = 1.246 Mg m3
Mr = 203.24Cu Kα radiation, λ = 1.54184 Å
Trigonal, R3:HCell parameters from 2040 reflections
a = 24.1525 (5) Åθ = 5.0–74.1°
c = 9.6500 (2) ŵ = 0.67 mm1
V = 4875.1 (2) Å3T = 296 K
Z = 18Block, colourless
F(000) = 19440.34 × 0.25 × 0.19 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1913 reflections with I > 2σ(I)
ω scansRint = 0.013
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
θmax = 74.1°, θmin = 3.7°
Tmin = 0.975, Tmax = 0.984h = 2130
3734 measured reflectionsk = 2618
2136 independent reflectionsl = 1110
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0637P)2 + 1.4157P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.17 e Å3
2136 reflectionsΔρmin = 0.15 e Å3
146 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00114 (10)
Crystal data top
C11H13N3OZ = 18
Mr = 203.24Cu Kα radiation
Trigonal, R3:Hµ = 0.67 mm1
a = 24.1525 (5) ÅT = 296 K
c = 9.6500 (2) Å0.34 × 0.25 × 0.19 mm
V = 4875.1 (2) Å3
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2136 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1913 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.013
3734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
2136 reflectionsΔρmin = 0.15 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23343 (6)0.11120 (6)0.00970 (12)0.0453 (3)
C20.28221 (6)0.06090 (5)0.14259 (13)0.0457 (3)
C30.27352 (5)0.09197 (5)0.26270 (12)0.0440 (3)
C40.24674 (6)0.13113 (6)0.24439 (12)0.0450 (3)
C50.29168 (6)0.08293 (7)0.39466 (14)0.0535 (3)
H50.30890.05630.40640.064*
C60.28403 (7)0.11345 (8)0.50654 (14)0.0618 (4)
H60.29580.10740.59460.074*
C70.25865 (8)0.15367 (8)0.48822 (14)0.0630 (4)
H70.25440.17490.56430.076*
C80.23997 (7)0.16241 (7)0.36013 (14)0.0567 (3)
H80.22280.18910.34980.068*
C90.20961 (7)0.11882 (6)0.12831 (14)0.0546 (3)
H9A0.23570.11570.20090.066*
H9B0.21410.16100.13370.066*
C100.13977 (8)0.06846 (8)0.15299 (18)0.0697 (4)
H10A0.13590.02650.15540.084*
H10B0.11410.06910.07630.084*
C110.11417 (10)0.07946 (12)0.2869 (2)0.0996 (7)
H11A0.12220.12260.28940.149*
H11B0.06900.05030.29240.149*
H11C0.13510.07240.36390.149*
N10.25905 (5)0.07168 (5)0.01918 (10)0.0447 (3)
N20.22710 (5)0.14035 (5)0.11608 (11)0.0486 (3)
N30.26483 (7)0.04247 (6)0.10370 (12)0.0550 (3)
O10.30729 (5)0.02780 (5)0.14300 (11)0.0625 (3)
H3A0.2287 (9)0.0033 (10)0.1045 (18)0.069 (5)*
H3B0.2972 (10)0.0370 (9)0.087 (2)0.069 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0447 (6)0.0405 (6)0.0464 (6)0.0179 (5)0.0012 (5)0.0016 (4)
C20.0425 (6)0.0391 (5)0.0518 (7)0.0177 (5)0.0073 (5)0.0046 (5)
C30.0400 (6)0.0401 (6)0.0462 (6)0.0158 (5)0.0028 (4)0.0002 (4)
C40.0441 (6)0.0438 (6)0.0439 (6)0.0196 (5)0.0021 (4)0.0025 (4)
C50.0514 (7)0.0554 (7)0.0518 (7)0.0253 (6)0.0067 (5)0.0018 (5)
C60.0650 (8)0.0724 (9)0.0432 (7)0.0307 (7)0.0043 (6)0.0016 (6)
C70.0736 (9)0.0695 (9)0.0450 (7)0.0350 (7)0.0067 (6)0.0039 (6)
C80.0653 (8)0.0603 (8)0.0504 (7)0.0358 (7)0.0057 (6)0.0003 (6)
C90.0631 (8)0.0512 (7)0.0486 (7)0.0279 (6)0.0060 (5)0.0022 (5)
C100.0616 (9)0.0732 (10)0.0692 (9)0.0300 (8)0.0086 (7)0.0004 (7)
C110.0780 (12)0.1036 (15)0.0986 (15)0.0315 (11)0.0333 (11)0.0058 (12)
N10.0467 (5)0.0401 (5)0.0434 (5)0.0189 (4)0.0036 (4)0.0052 (4)
N20.0546 (6)0.0488 (6)0.0462 (6)0.0287 (5)0.0001 (4)0.0023 (4)
N30.0630 (7)0.0499 (6)0.0494 (6)0.0263 (6)0.0042 (5)0.0120 (4)
O10.0729 (6)0.0611 (6)0.0683 (6)0.0446 (5)0.0198 (5)0.0166 (4)
Geometric parameters (Å, º) top
C1—N21.2963 (16)C7—H70.9300
C1—N11.3760 (16)C8—H80.9300
C1—C91.4981 (17)C9—C101.526 (2)
C2—O11.2209 (15)C9—H9A0.9700
C2—N11.3945 (16)C9—H9B0.9700
C2—C31.4520 (17)C10—C111.512 (2)
C3—C41.3984 (18)C10—H10A0.9700
C3—C51.3991 (18)C10—H10B0.9700
C4—N21.3832 (16)C11—H11A0.9600
C4—C81.4032 (18)C11—H11B0.9600
C5—C61.371 (2)C11—H11C0.9600
C5—H50.9300N1—N31.4219 (14)
C6—C71.395 (2)N3—H3A0.91 (2)
C6—H60.9300N3—H3B0.87 (2)
C7—C81.368 (2)
N2—C1—N1122.69 (11)C1—C9—H9A109.1
N2—C1—C9118.73 (11)C10—C9—H9A109.1
N1—C1—C9118.53 (11)C1—C9—H9B109.1
O1—C2—N1120.11 (11)C10—C9—H9B109.1
O1—C2—C3125.67 (12)H9A—C9—H9B107.9
N1—C2—C3114.21 (10)C11—C10—C9112.30 (15)
C4—C3—C5120.51 (12)C11—C10—H10A109.1
C4—C3—C2118.94 (11)C9—C10—H10A109.1
C5—C3—C2120.55 (11)C11—C10—H10B109.1
N2—C4—C3122.27 (11)C9—C10—H10B109.1
N2—C4—C8118.95 (12)H10A—C10—H10B107.9
C3—C4—C8118.78 (12)C10—C11—H11A109.5
C6—C5—C3119.73 (13)C10—C11—H11B109.5
C6—C5—H5120.1H11A—C11—H11B109.5
C3—C5—H5120.1C10—C11—H11C109.5
C5—C6—C7119.93 (13)H11A—C11—H11C109.5
C5—C6—H6120.0H11B—C11—H11C109.5
C7—C6—H6120.0C1—N1—C2123.22 (10)
C8—C7—C6121.04 (13)C1—N1—N3118.60 (10)
C8—C7—H7119.5C2—N1—N3118.13 (10)
C6—C7—H7119.5C1—N2—C4118.58 (11)
C7—C8—C4119.99 (13)N1—N3—H3A104.0 (11)
C7—C8—H8120.0N1—N3—H3B103.8 (13)
C4—C8—H8120.0H3A—N3—H3B108.1 (17)
C1—C9—C10112.34 (12)
O1—C2—C3—C4176.78 (12)N2—C1—C9—C1089.31 (15)
N1—C2—C3—C43.10 (16)N1—C1—C9—C1088.39 (15)
O1—C2—C3—C53.2 (2)C1—C9—C10—C11175.23 (16)
N1—C2—C3—C5176.95 (11)N2—C1—N1—C21.99 (18)
C5—C3—C4—N2178.79 (11)C9—C1—N1—C2179.59 (11)
C2—C3—C4—N21.26 (17)N2—C1—N1—N3179.17 (11)
C5—C3—C4—C81.61 (18)C9—C1—N1—N33.23 (16)
C2—C3—C4—C8178.34 (11)O1—C2—N1—C1176.35 (11)
C4—C3—C5—C60.98 (19)C3—C2—N1—C13.54 (16)
C2—C3—C5—C6178.97 (12)O1—C2—N1—N30.84 (17)
C3—C5—C6—C70.4 (2)C3—C2—N1—N3179.27 (10)
C5—C6—C7—C81.2 (2)N1—C1—N2—C40.22 (18)
C6—C7—C8—C40.6 (2)C9—C1—N2—C4177.38 (11)
N2—C4—C8—C7179.55 (13)C3—C4—N2—C10.51 (18)
C3—C4—C8—C70.8 (2)C8—C4—N2—C1179.89 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.91 (2)2.16 (2)3.0677 (17)176.1 (16)
N3—H3B···O1ii0.87 (2)2.51 (2)3.0599 (16)122.0 (15)
C5—H5···O1iii0.932.443.3163 (16)157
Symmetry codes: (i) y, x+y, z; (ii) y+1/3, xy1/3, z1/3; (iii) x+y+2/3, x+1/3, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.91 (2)2.16 (2)3.0677 (17)176.1 (16)
N3—H3B···O1ii0.87 (2)2.51 (2)3.0599 (16)122.0 (15)
C5—H5···O1iii0.932.443.3163 (16)157.2
Symmetry codes: (i) y, x+y, z; (ii) y+1/3, xy1/3, z1/3; (iii) x+y+2/3, x+1/3, z+1/3.
 

Acknowledgements

The authors extend their appreciation to the British Council, Riyadh, Saudi Arabia, for funding this research, and to Cardiff University for continued support.

References

First citationAdib, M., Sheikhi, E. & Bijanzadeh, H. R. (2012). Synlett, pp. 85–88.  Web of Science CrossRef CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235–241.  CrossRef PubMed CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChandregowda, V., Kush, A. K. & Reddy, G. C. (2009). Eur. J. Med. Chem. 44, 3046–3055.  CrossRef PubMed CAS Google Scholar
First citationCoogan, M. P., Smart, E. & Hibbs, D. E. (1999). Chem. Commun. pp. 1991–1992.  Web of Science CSD CrossRef Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Jones, D. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o467.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGupta, V., Kashaw, S. K., Jatav, V. & Mishra, P. (2008). Med. Chem. Res. 17, 205–211.  CrossRef CAS Google Scholar
First citationKumar, P., Shrivastava, B., Pandeya, S. N. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 1006–1018.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMa, J., Han, B., Song, J., Hu, J., Lu, W., Yang, D., Zhang, Z., Jiang, T. & Hou, M. (2013). Green Chem. 15, 1485–1489.  Web of Science CrossRef CAS Google Scholar
First citationRohini, R., Reddy, P. M., Shanker, K., Hu, A. & Ravinder, V. (2010). Eur. J. Med. Chem. 45, 1200–1205.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSasmal, S., Balaji, G., Reddy, H. R. K., Balasubrahmanyam, D., Srinivas, G., Kyasa, S., Sasmal, P. K., Khanna, I., Talwar, R., Suresh, J., Jadhav, V. P., Muzeeb, S., Shashikumar, D., Reddy, K. H., Sebastian, V. J., Frimurer, T. M., Rist, Ø., Elster, L. & Högberg, T. (2012). Bioorg. Med. Chem. Lett. 22, 3157–3162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121–2130.  Web of Science CrossRef Google Scholar
First citationSmith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996). J. Org. Chem. 61, 647–655.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSmith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029–1033.  CrossRef Web of Science Google Scholar
First citationXu, L., Jiang, Y. & Ma, D. (2012). Org. Lett. 14, 1150–1153.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds