organic compounds
H)-one
of 3-amino-2-propylquinazolin-4(3aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk
In the title molecule, C11H13N3O, the propyl group is almost perpendicular to the quinazolin-4(3H)-one mean plane, making a dihedral angle of 88.98 (9)°. In the crystal, molecules related by an inversion centre are paired via π–π overlap, indicated by the short distances of 3.616 (5) and 3.619 (5) Å between the centroids of the aromatic rings of neighbouring molecules. Intermolecular N—H⋯N and N—H⋯O hydrogen bonds form R66(30) rings and C(5) chains, respectively, generating a three-dimensional network. Weak C—H⋯O interactions are also observed.
Keywords: crystal structure; quinazolin-4(3H)-one; hydrogen bonding; π–π overlap.
CCDC reference: 1411448
1. Related literature
For biological applications of related compounds, see: Sasmal et al. (2012); Rohini et al. (2010); Chandregowda et al. (2009); Gupta et al. (2008); Alagarsamy et al. (2007). For the synthesis of substituted quinazolin-4(3H)-ones, see: Ma et al. (2013); Adib et al. (2012); Xu et al. (2012); Kumar et al. (2011). For modification of the quinazolin-4(3H)-one ring system via lithiation, see: Smith et al. (2004, 1996, 1995). For the crystal structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).
Supporting information
CCDC reference: 1411448
https://doi.org/10.1107/S2056989015013134/cv5493sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013134/cv5493Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015013134/cv5493Isup3.cml
Quinazolines have a range of biological activities such as anti-cancer (Chandregowda et al., 2009), anti-bacterial (Rohini et al., 2010), anti-inflammatory (Alagarsamy et al., 2007), anti-obesity (Sasmal et al., 2012) and anti-spasm (Gupta et al., 2008). Synthesis of quinazolin-4(3H)-ones involves use of various synthetic procedures. Recent examples involve reactions of 2-aminobenzonitrile with carbon dioxide in water (Ma et al., 2013), 2-bromobenzamides with formamide catalysed by CuI and 4-hydroxy-l-proline (Xu et al., 2012) and isatoic anhydride, benzyl halides and primary
under mild Kornblum conditions (Adib et al., 2012). 2-Alkyl-3-aminoquinazolin-4(3H)-ones can be obtained from reactions of 2-alkyl-4H-3,1-benzoxazin-4-ones with hydrazine hydrate (Kumar et al., 2011). Lithiation of 2-unsubstituted and 2-n-alkyl-3-acylaminoquinazolin-4(3H)-ones followed by reactions of the lithium reagents produced in-situ with electrophiles gave the corresponding substituted derivatives in high yields (Smith et al., 2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).3-Amino-2-propylquinazolin-4(3H)-one was obtained in 82% yield by reaction of 2-propyl-4H-3,1-benzoxazin-4-one with excess hydrazine hydrate (three mole equivalents) in methanol under reflux conditions for 3 h (Kumar et al., 2011). Crystallization from ethanol gave colourless crystals of the title compound. The NMR and mass spectral data for the title compound were identical with those reported (Kumar et al., 2011).
The amino hydrogen atoms were located in the difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with
about the C—C bond.In the title compound (I) (Fig. 1), the propyl group is perpendicular to the quinazolin-4(3H)-one group with a dihedral angle of 88.98 (9)° between the least-squares planes of the two groups. In the crystal (Fig. 2), π–π overlap is observed for paired molecules with a centroid-centroid distance of ca 3.62 (1) Å between the benzene and pyrimidine rings of parallel 3-aminoquinazolin-4(3H)-one groups. N—H···N hydrogen bonds form R66(30) rings and N—H···O form C(5) chains to generate three dimensional packing. Weak C—H···O contacts (C(5)) are also observed.
Quinazolines have a range of biological activities such as anti-cancer (Chandregowda et al., 2009), anti-bacterial (Rohini et al., 2010), anti-inflammatory (Alagarsamy et al., 2007), anti-obesity (Sasmal et al., 2012) and anti-spasm (Gupta et al., 2008). Synthesis of quinazolin-4(3H)-ones involves use of various synthetic procedures. Recent examples involve reactions of 2-aminobenzonitrile with carbon dioxide in water (Ma et al., 2013), 2-bromobenzamides with formamide catalysed by CuI and 4-hydroxy-l-proline (Xu et al., 2012) and isatoic anhydride, benzyl halides and primary
under mild Kornblum conditions (Adib et al., 2012). 2-Alkyl-3-aminoquinazolin-4(3H)-ones can be obtained from reactions of 2-alkyl-4H-3,1-benzoxazin-4-ones with hydrazine hydrate (Kumar et al., 2011). Lithiation of 2-unsubstituted and 2-n-alkyl-3-acylaminoquinazolin-4(3H)-ones followed by reactions of the lithium reagents produced in-situ with electrophiles gave the corresponding substituted derivatives in high yields (Smith et al., 2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).In the title compound (I) (Fig. 1), the propyl group is perpendicular to the quinazolin-4(3H)-one group with a dihedral angle of 88.98 (9)° between the least-squares planes of the two groups. In the crystal (Fig. 2), π–π overlap is observed for paired molecules with a centroid-centroid distance of ca 3.62 (1) Å between the benzene and pyrimidine rings of parallel 3-aminoquinazolin-4(3H)-one groups. N—H···N hydrogen bonds form R66(30) rings and N—H···O form C(5) chains to generate three dimensional packing. Weak C—H···O contacts (C(5)) are also observed.
For biological applications of related compounds, see: Sasmal et al. (2012); Rohini et al. (2010); Chandregowda et al. (2009); Gupta et al. (2008); Alagarsamy et al. (2007). For thesynthesis of substituted quinazolin-4(3H)-ones, see: Ma et al. (2013); Adib et al. (2012); Xu et al. (2012); Kumar et al. (2011). For modification of the quinazolin-4(3H)-one ring system via lithiation, see: Smith et al. (2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).
3-Amino-2-propylquinazolin-4(3H)-one was obtained in 82% yield by reaction of 2-propyl-4H-3,1-benzoxazin-4-one with excess hydrazine hydrate (three mole equivalents) in methanol under reflux conditions for 3 h (Kumar et al., 2011). Crystallization from ethanol gave colourless crystals of the title compound. The NMR and mass spectral data for the title compound were identical with those reported (Kumar et al., 2011).
detailsThe amino hydrogen atoms were located in the difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with
about the C—C bond.Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).Fig. 1. View of (I) showing the atom labels and 50% probability displacement ellipsoids. | |
Fig. 2. Crystal packing viewed along the c axis. |
C11H13N3O | Dx = 1.246 Mg m−3 |
Mr = 203.24 | Cu Kα radiation, λ = 1.54184 Å |
Trigonal, R3:H | Cell parameters from 2040 reflections |
a = 24.1525 (5) Å | θ = 5.0–74.1° |
c = 9.6500 (2) Å | µ = 0.67 mm−1 |
V = 4875.1 (2) Å3 | T = 296 K |
Z = 18 | Block, colourless |
F(000) = 1944 | 0.34 × 0.25 × 0.19 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 1913 reflections with I > 2σ(I) |
ω scans | Rint = 0.013 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | θmax = 74.1°, θmin = 3.7° |
Tmin = 0.975, Tmax = 0.984 | h = −21→30 |
3734 measured reflections | k = −26→18 |
2136 independent reflections | l = −11→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0637P)2 + 1.4157P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.120 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.17 e Å−3 |
2136 reflections | Δρmin = −0.15 e Å−3 |
146 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00114 (10) |
C11H13N3O | Z = 18 |
Mr = 203.24 | Cu Kα radiation |
Trigonal, R3:H | µ = 0.67 mm−1 |
a = 24.1525 (5) Å | T = 296 K |
c = 9.6500 (2) Å | 0.34 × 0.25 × 0.19 mm |
V = 4875.1 (2) Å3 |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 2136 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 1913 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.984 | Rint = 0.013 |
3734 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.17 e Å−3 |
2136 reflections | Δρmin = −0.15 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.23343 (6) | 0.11120 (6) | 0.00970 (12) | 0.0453 (3) | |
C2 | 0.28221 (6) | 0.06090 (5) | 0.14259 (13) | 0.0457 (3) | |
C3 | 0.27352 (5) | 0.09197 (5) | 0.26270 (12) | 0.0440 (3) | |
C4 | 0.24674 (6) | 0.13113 (6) | 0.24439 (12) | 0.0450 (3) | |
C5 | 0.29168 (6) | 0.08293 (7) | 0.39466 (14) | 0.0535 (3) | |
H5 | 0.3089 | 0.0563 | 0.4064 | 0.064* | |
C6 | 0.28403 (7) | 0.11345 (8) | 0.50654 (14) | 0.0618 (4) | |
H6 | 0.2958 | 0.1074 | 0.5946 | 0.074* | |
C7 | 0.25865 (8) | 0.15367 (8) | 0.48822 (14) | 0.0630 (4) | |
H7 | 0.2544 | 0.1749 | 0.5643 | 0.076* | |
C8 | 0.23997 (7) | 0.16241 (7) | 0.36013 (14) | 0.0567 (3) | |
H8 | 0.2228 | 0.1891 | 0.3498 | 0.068* | |
C9 | 0.20961 (7) | 0.11882 (6) | −0.12831 (14) | 0.0546 (3) | |
H9A | 0.2357 | 0.1157 | −0.2009 | 0.066* | |
H9B | 0.2141 | 0.1610 | −0.1337 | 0.066* | |
C10 | 0.13977 (8) | 0.06846 (8) | −0.15299 (18) | 0.0697 (4) | |
H10A | 0.1359 | 0.0265 | −0.1554 | 0.084* | |
H10B | 0.1141 | 0.0691 | −0.0763 | 0.084* | |
C11 | 0.11417 (10) | 0.07946 (12) | −0.2869 (2) | 0.0996 (7) | |
H11A | 0.1222 | 0.1226 | −0.2894 | 0.149* | |
H11B | 0.0690 | 0.0503 | −0.2924 | 0.149* | |
H11C | 0.1351 | 0.0724 | −0.3639 | 0.149* | |
N1 | 0.25905 (5) | 0.07168 (5) | 0.01918 (10) | 0.0447 (3) | |
N2 | 0.22710 (5) | 0.14035 (5) | 0.11608 (11) | 0.0486 (3) | |
N3 | 0.26483 (7) | 0.04247 (6) | −0.10370 (12) | 0.0550 (3) | |
O1 | 0.30729 (5) | 0.02780 (5) | 0.14300 (11) | 0.0625 (3) | |
H3A | 0.2287 (9) | 0.0033 (10) | −0.1045 (18) | 0.069 (5)* | |
H3B | 0.2972 (10) | 0.0370 (9) | −0.087 (2) | 0.069 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0447 (6) | 0.0405 (6) | 0.0464 (6) | 0.0179 (5) | −0.0012 (5) | 0.0016 (4) |
C2 | 0.0425 (6) | 0.0391 (5) | 0.0518 (7) | 0.0177 (5) | −0.0073 (5) | −0.0046 (5) |
C3 | 0.0400 (6) | 0.0401 (6) | 0.0462 (6) | 0.0158 (5) | −0.0028 (4) | −0.0002 (4) |
C4 | 0.0441 (6) | 0.0438 (6) | 0.0439 (6) | 0.0196 (5) | 0.0021 (4) | 0.0025 (4) |
C5 | 0.0514 (7) | 0.0554 (7) | 0.0518 (7) | 0.0253 (6) | −0.0067 (5) | 0.0018 (5) |
C6 | 0.0650 (8) | 0.0724 (9) | 0.0432 (7) | 0.0307 (7) | −0.0043 (6) | 0.0016 (6) |
C7 | 0.0736 (9) | 0.0695 (9) | 0.0450 (7) | 0.0350 (7) | 0.0067 (6) | −0.0039 (6) |
C8 | 0.0653 (8) | 0.0603 (8) | 0.0504 (7) | 0.0358 (7) | 0.0057 (6) | −0.0003 (6) |
C9 | 0.0631 (8) | 0.0512 (7) | 0.0486 (7) | 0.0279 (6) | −0.0060 (5) | 0.0022 (5) |
C10 | 0.0616 (9) | 0.0732 (10) | 0.0692 (9) | 0.0300 (8) | −0.0086 (7) | 0.0004 (7) |
C11 | 0.0780 (12) | 0.1036 (15) | 0.0986 (15) | 0.0315 (11) | −0.0333 (11) | 0.0058 (12) |
N1 | 0.0467 (5) | 0.0401 (5) | 0.0434 (5) | 0.0189 (4) | −0.0036 (4) | −0.0052 (4) |
N2 | 0.0546 (6) | 0.0488 (6) | 0.0462 (6) | 0.0287 (5) | 0.0001 (4) | 0.0023 (4) |
N3 | 0.0630 (7) | 0.0499 (6) | 0.0494 (6) | 0.0263 (6) | −0.0042 (5) | −0.0120 (4) |
O1 | 0.0729 (6) | 0.0611 (6) | 0.0683 (6) | 0.0446 (5) | −0.0198 (5) | −0.0166 (4) |
C1—N2 | 1.2963 (16) | C7—H7 | 0.9300 |
C1—N1 | 1.3760 (16) | C8—H8 | 0.9300 |
C1—C9 | 1.4981 (17) | C9—C10 | 1.526 (2) |
C2—O1 | 1.2209 (15) | C9—H9A | 0.9700 |
C2—N1 | 1.3945 (16) | C9—H9B | 0.9700 |
C2—C3 | 1.4520 (17) | C10—C11 | 1.512 (2) |
C3—C4 | 1.3984 (18) | C10—H10A | 0.9700 |
C3—C5 | 1.3991 (18) | C10—H10B | 0.9700 |
C4—N2 | 1.3832 (16) | C11—H11A | 0.9600 |
C4—C8 | 1.4032 (18) | C11—H11B | 0.9600 |
C5—C6 | 1.371 (2) | C11—H11C | 0.9600 |
C5—H5 | 0.9300 | N1—N3 | 1.4219 (14) |
C6—C7 | 1.395 (2) | N3—H3A | 0.91 (2) |
C6—H6 | 0.9300 | N3—H3B | 0.87 (2) |
C7—C8 | 1.368 (2) | ||
N2—C1—N1 | 122.69 (11) | C1—C9—H9A | 109.1 |
N2—C1—C9 | 118.73 (11) | C10—C9—H9A | 109.1 |
N1—C1—C9 | 118.53 (11) | C1—C9—H9B | 109.1 |
O1—C2—N1 | 120.11 (11) | C10—C9—H9B | 109.1 |
O1—C2—C3 | 125.67 (12) | H9A—C9—H9B | 107.9 |
N1—C2—C3 | 114.21 (10) | C11—C10—C9 | 112.30 (15) |
C4—C3—C5 | 120.51 (12) | C11—C10—H10A | 109.1 |
C4—C3—C2 | 118.94 (11) | C9—C10—H10A | 109.1 |
C5—C3—C2 | 120.55 (11) | C11—C10—H10B | 109.1 |
N2—C4—C3 | 122.27 (11) | C9—C10—H10B | 109.1 |
N2—C4—C8 | 118.95 (12) | H10A—C10—H10B | 107.9 |
C3—C4—C8 | 118.78 (12) | C10—C11—H11A | 109.5 |
C6—C5—C3 | 119.73 (13) | C10—C11—H11B | 109.5 |
C6—C5—H5 | 120.1 | H11A—C11—H11B | 109.5 |
C3—C5—H5 | 120.1 | C10—C11—H11C | 109.5 |
C5—C6—C7 | 119.93 (13) | H11A—C11—H11C | 109.5 |
C5—C6—H6 | 120.0 | H11B—C11—H11C | 109.5 |
C7—C6—H6 | 120.0 | C1—N1—C2 | 123.22 (10) |
C8—C7—C6 | 121.04 (13) | C1—N1—N3 | 118.60 (10) |
C8—C7—H7 | 119.5 | C2—N1—N3 | 118.13 (10) |
C6—C7—H7 | 119.5 | C1—N2—C4 | 118.58 (11) |
C7—C8—C4 | 119.99 (13) | N1—N3—H3A | 104.0 (11) |
C7—C8—H8 | 120.0 | N1—N3—H3B | 103.8 (13) |
C4—C8—H8 | 120.0 | H3A—N3—H3B | 108.1 (17) |
C1—C9—C10 | 112.34 (12) | ||
O1—C2—C3—C4 | 176.78 (12) | N2—C1—C9—C10 | −89.31 (15) |
N1—C2—C3—C4 | −3.10 (16) | N1—C1—C9—C10 | 88.39 (15) |
O1—C2—C3—C5 | −3.2 (2) | C1—C9—C10—C11 | 175.23 (16) |
N1—C2—C3—C5 | 176.95 (11) | N2—C1—N1—C2 | −1.99 (18) |
C5—C3—C4—N2 | −178.79 (11) | C9—C1—N1—C2 | −179.59 (11) |
C2—C3—C4—N2 | 1.26 (17) | N2—C1—N1—N3 | −179.17 (11) |
C5—C3—C4—C8 | 1.61 (18) | C9—C1—N1—N3 | 3.23 (16) |
C2—C3—C4—C8 | −178.34 (11) | O1—C2—N1—C1 | −176.35 (11) |
C4—C3—C5—C6 | −0.98 (19) | C3—C2—N1—C1 | 3.54 (16) |
C2—C3—C5—C6 | 178.97 (12) | O1—C2—N1—N3 | 0.84 (17) |
C3—C5—C6—C7 | −0.4 (2) | C3—C2—N1—N3 | −179.27 (10) |
C5—C6—C7—C8 | 1.2 (2) | N1—C1—N2—C4 | −0.22 (18) |
C6—C7—C8—C4 | −0.6 (2) | C9—C1—N2—C4 | 177.38 (11) |
N2—C4—C8—C7 | 179.55 (13) | C3—C4—N2—C1 | 0.51 (18) |
C3—C4—C8—C7 | −0.8 (2) | C8—C4—N2—C1 | −179.89 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.91 (2) | 2.16 (2) | 3.0677 (17) | 176.1 (16) |
N3—H3B···O1ii | 0.87 (2) | 2.51 (2) | 3.0599 (16) | 122.0 (15) |
C5—H5···O1iii | 0.93 | 2.44 | 3.3163 (16) | 157 |
Symmetry codes: (i) y, −x+y, −z; (ii) −y+1/3, x−y−1/3, z−1/3; (iii) −x+y+2/3, −x+1/3, z+1/3. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.91 (2) | 2.16 (2) | 3.0677 (17) | 176.1 (16) |
N3—H3B···O1ii | 0.87 (2) | 2.51 (2) | 3.0599 (16) | 122.0 (15) |
C5—H5···O1iii | 0.93 | 2.44 | 3.3163 (16) | 157.2 |
Symmetry codes: (i) y, −x+y, −z; (ii) −y+1/3, x−y−1/3, z−1/3; (iii) −x+y+2/3, −x+1/3, z+1/3. |
Acknowledgements
The authors extend their appreciation to the British Council, Riyadh, Saudi Arabia, for funding this research, and to Cardiff University for continued support.
References
Adib, M., Sheikhi, E. & Bijanzadeh, H. R. (2012). Synlett, pp. 85–88. Web of Science CrossRef CAS Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Alagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235–241. CrossRef PubMed CAS Google Scholar
Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA. Google Scholar
Chandregowda, V., Kush, A. K. & Reddy, G. C. (2009). Eur. J. Med. Chem. 44, 3046–3055. CrossRef PubMed CAS Google Scholar
Coogan, M. P., Smart, E. & Hibbs, D. E. (1999). Chem. Commun. pp. 1991–1992. Web of Science CSD CrossRef Google Scholar
El-Hiti, G. A., Smith, K., Hegazy, A. S., Jones, D. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o467. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gupta, V., Kashaw, S. K., Jatav, V. & Mishra, P. (2008). Med. Chem. Res. 17, 205–211. CrossRef CAS Google Scholar
Kumar, P., Shrivastava, B., Pandeya, S. N. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 1006–1018. Web of Science CrossRef CAS PubMed Google Scholar
Ma, J., Han, B., Song, J., Hu, J., Lu, W., Yang, D., Zhang, Z., Jiang, T. & Hou, M. (2013). Green Chem. 15, 1485–1489. Web of Science CrossRef CAS Google Scholar
Rohini, R., Reddy, P. M., Shanker, K., Hu, A. & Ravinder, V. (2010). Eur. J. Med. Chem. 45, 1200–1205. Web of Science CrossRef CAS PubMed Google Scholar
Sasmal, S., Balaji, G., Reddy, H. R. K., Balasubrahmanyam, D., Srinivas, G., Kyasa, S., Sasmal, P. K., Khanna, I., Talwar, R., Suresh, J., Jadhav, V. P., Muzeeb, S., Shashikumar, D., Reddy, K. H., Sebastian, V. J., Frimurer, T. M., Rist, Ø., Elster, L. & Högberg, T. (2012). Bioorg. Med. Chem. Lett. 22, 3157–3162. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121–2130. Web of Science CrossRef Google Scholar
Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996). J. Org. Chem. 61, 647–655. CrossRef PubMed CAS Web of Science Google Scholar
Smith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029–1033. CrossRef Web of Science Google Scholar
Xu, L., Jiang, Y. & Ma, D. (2012). Org. Lett. 14, 1150–1153. Web of Science CrossRef CAS PubMed Google Scholar
Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.