organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-chloro-2-(2-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by L. Fabian, University of East Anglia, England (Received 22 July 2015; accepted 22 July 2015; online 31 July 2015)

In the title compound, C15H10ClFO2S, the dihedral angle between the mean planes of the benzo­furan ring [r.m.s. deviation = 0.007 (1) Å] and the 2-fluoro­phenyl ring is 32.53 (5)°. In the crystal, mol­ecules related by inversion are paired into dimers via two different C—H⋯O hydrogen bonds. Further, Cl⋯O halogen bonds [3.114 (1) Å], and F⋯π [F-to-furan-centroid distance = 3.109 (1) Å] and S⋯F [3.1984 (9) Å] inter­actions link these into a three-dimensional network.

1. Related literature

For the pharmacological properties of benzo­furan compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Wahab Khan et al. (2005[Wahab Khan, M., Jahangir Alam, M., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]); Ono et al. (2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). For a related structure, see: Choi & Lee (2014[Choi, H. D. & Lee, U. (2014). Acta Cryst. E70, o991-o992.]). For further synthetic details, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H10ClFO2S

  • Mr = 308.74

  • Triclinic, [P \overline 1]

  • a = 7.9626 (1) Å

  • b = 8.3518 (1) Å

  • c = 10.7127 (2) Å

  • α = 92.758 (1)°

  • β = 95.509 (1)°

  • γ = 112.373 (1)°

  • V = 652.97 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.45 × 0.36 × 0.32 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.690, Tmax = 0.746

  • 12250 measured reflections

  • 3263 independent reflections

  • 3030 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.05

  • 3263 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.53 3.4756 (16) 176
C14—H14⋯O2ii 0.95 2.44 3.3591 (17) 163
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Many compounds involving a benzofuran ring show significant pharmacological properties, such as antibacterial, antifungal, antitumor, antiviral and antimicrobial activities (Aslam et al. 2009; Galal et al., 2009; Wahab Khan et al., 2005), and are potential inhibitors of β-amyloid aggregation (Howlett et al., 1999; Ono et al., 2002). As a part of our continuing project on benzofuran derivatives (Choi & Lee, 2014), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 2-fluorophenyl ring is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring and the 2-fluorophenyl ring is 32.53 (5)°. In the crystal structure (Fig. 2), molecules related by inversion are paired into dimers via two different C–H···O hydrogen bonds (Table 1), and a Cl···O halogen bond between the chlorine and the oxygen of the SO unit [Cl1···O2iii = 3.114 (1) Å, C4–Cl1···O2iii = 171.16 (5)°] (Politzer et al., 2007), F1···Cgv [3.109 (1) Å] (Cg is the centroid of the C1/C2/C7/O1/C8 furan ring) and S1···F1iv [3.1984 (9) Å] interactions, forming a three–dimensional network. [Symmetry codes: (i) - x + 2, - y + 1, - z; (ii) - x + 1, - y + 1, - z; (iii) - x + 1 , - y + 1, - z + 1; (iv) - x, - y, - z ; (v) - x + 1, - y, - z.]

Related literature top

For the pharmacological properties of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Wahab Khan et al. (2005); Ono et al. (2002). For a related structure, see: Choi & Lee (2014). For further synthetic details, see: Choi et al. (1999). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

The starting material 5-chloro-2-(2-fluorophenyl)-3-methylsulfanyl-1-benzofuran was prepared by a literature method (Choi et al., 1999). 3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-chloro-2-(2-fluorophenyl)-3-methylsulfanyl-1-benzofuran (263 mg, 0.9 mmol) in dichloromethane (25 ml) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution (2 × 10 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 68% (188 mg); m.p. 431-432 K; Rf = 0.55 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (18 mg) in ethyl acetate (20 ml) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms and Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-2014/7 command AFIX 137 (Sheldrick, 2015).

Structure description top

Many compounds involving a benzofuran ring show significant pharmacological properties, such as antibacterial, antifungal, antitumor, antiviral and antimicrobial activities (Aslam et al. 2009; Galal et al., 2009; Wahab Khan et al., 2005), and are potential inhibitors of β-amyloid aggregation (Howlett et al., 1999; Ono et al., 2002). As a part of our continuing project on benzofuran derivatives (Choi & Lee, 2014), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 2-fluorophenyl ring is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring and the 2-fluorophenyl ring is 32.53 (5)°. In the crystal structure (Fig. 2), molecules related by inversion are paired into dimers via two different C–H···O hydrogen bonds (Table 1), and a Cl···O halogen bond between the chlorine and the oxygen of the SO unit [Cl1···O2iii = 3.114 (1) Å, C4–Cl1···O2iii = 171.16 (5)°] (Politzer et al., 2007), F1···Cgv [3.109 (1) Å] (Cg is the centroid of the C1/C2/C7/O1/C8 furan ring) and S1···F1iv [3.1984 (9) Å] interactions, forming a three–dimensional network. [Symmetry codes: (i) - x + 2, - y + 1, - z; (ii) - x + 1, - y + 1, - z; (iii) - x + 1 , - y + 1, - z + 1; (iv) - x, - y, - z ; (v) - x + 1, - y, - z.]

For the pharmacological properties of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Wahab Khan et al. (2005); Ono et al. (2002). For a related structure, see: Choi & Lee (2014). For further synthetic details, see: Choi et al. (1999). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O, Cl···O, F···π and S···F interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 2, - y + 1, - z; (ii) - x + 1, - y + 1, - z; (iii) - x + 1 , - y + 1, - z + 1; (iv) - x, - y, - z ; (v) - x + 1, - y, - z.]
5-Chloro-2-(2-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C15H10ClFO2SZ = 2
Mr = 308.74F(000) = 316
Triclinic, P1Dx = 1.570 Mg m3
a = 7.9626 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3518 (1) ÅCell parameters from 6796 reflections
c = 10.7127 (2) Åθ = 2.7–28.4°
α = 92.758 (1)°µ = 0.46 mm1
β = 95.509 (1)°T = 173 K
γ = 112.373 (1)°Block, colourless
V = 652.97 (2) Å30.45 × 0.36 × 0.32 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3263 independent reflections
Radiation source: rotating anode3030 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.023
φ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.690, Tmax = 0.746k = 1111
12250 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2911P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3263 reflectionsΔρmax = 0.34 e Å3
183 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)
Crystal data top
C15H10ClFO2Sγ = 112.373 (1)°
Mr = 308.74V = 652.97 (2) Å3
Triclinic, P1Z = 2
a = 7.9626 (1) ÅMo Kα radiation
b = 8.3518 (1) ŵ = 0.46 mm1
c = 10.7127 (2) ÅT = 173 K
α = 92.758 (1)°0.45 × 0.36 × 0.32 mm
β = 95.509 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3263 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3030 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.746Rint = 0.023
12250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
3263 reflectionsΔρmin = 0.26 e Å3
183 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 8.21 (d, J = 2.04 Hz, 1H), 7.66-7.71 (m, 1H), 7.50-7.57 (m, 2H), 7.32-7.41 (m, 2H), 7.21-7.26 (m, 1H), 3.15 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80773 (5)0.60679 (5)0.52105 (3)0.03134 (11)
S10.20658 (4)0.19225 (4)0.10339 (3)0.02090 (10)
F10.22939 (12)0.06448 (11)0.07604 (8)0.0324 (2)
O10.70194 (12)0.36314 (12)0.00857 (8)0.02229 (19)
O20.18502 (13)0.32691 (13)0.18956 (10)0.0283 (2)
C10.44206 (16)0.27158 (16)0.08330 (11)0.0198 (2)
C20.58981 (17)0.37914 (16)0.17693 (11)0.0198 (2)
C30.60633 (18)0.43369 (17)0.30452 (12)0.0220 (3)
H30.50320.40090.34980.026*
C40.77958 (18)0.53749 (17)0.36158 (12)0.0231 (3)
C50.93409 (18)0.58960 (18)0.29751 (13)0.0258 (3)
H51.05020.66200.34110.031*
C60.91896 (18)0.53654 (18)0.17133 (13)0.0255 (3)
H61.02200.57010.12600.031*
C70.74560 (17)0.43207 (16)0.11491 (12)0.0208 (2)
C80.51654 (17)0.26585 (16)0.02553 (12)0.0201 (2)
C90.44641 (17)0.17903 (16)0.15243 (12)0.0210 (2)
C100.30426 (18)0.01690 (17)0.17542 (13)0.0242 (3)
C110.2375 (2)0.06907 (19)0.29337 (14)0.0304 (3)
H110.13900.17960.30490.036*
C120.3186 (2)0.0106 (2)0.39495 (14)0.0341 (3)
H120.27440.04500.47780.041*
C130.4640 (2)0.1712 (2)0.37641 (13)0.0311 (3)
H130.51980.22380.44660.037*
C140.52834 (19)0.25528 (17)0.25675 (12)0.0244 (3)
H140.62820.36490.24510.029*
C150.2029 (2)0.02115 (19)0.20017 (15)0.0323 (3)
H15A0.29500.06970.27410.048*
H15B0.23020.06650.15160.048*
H15C0.08140.03300.22760.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02955 (19)0.0403 (2)0.02092 (16)0.01176 (15)0.00124 (12)0.00425 (13)
S10.01618 (16)0.02104 (16)0.02386 (16)0.00518 (12)0.00408 (11)0.00099 (11)
F10.0333 (5)0.0245 (4)0.0318 (4)0.0018 (3)0.0101 (4)0.0004 (3)
O10.0179 (4)0.0253 (4)0.0208 (4)0.0049 (4)0.0045 (3)0.0002 (3)
O20.0243 (5)0.0265 (5)0.0342 (5)0.0092 (4)0.0093 (4)0.0024 (4)
C10.0168 (6)0.0198 (6)0.0214 (6)0.0054 (4)0.0033 (4)0.0016 (4)
C20.0176 (6)0.0194 (6)0.0223 (6)0.0068 (4)0.0031 (4)0.0021 (4)
C30.0211 (6)0.0247 (6)0.0212 (6)0.0095 (5)0.0042 (5)0.0024 (5)
C40.0245 (6)0.0250 (6)0.0199 (6)0.0102 (5)0.0007 (5)0.0000 (5)
C50.0191 (6)0.0268 (6)0.0270 (6)0.0054 (5)0.0012 (5)0.0009 (5)
C60.0185 (6)0.0280 (7)0.0274 (6)0.0056 (5)0.0054 (5)0.0017 (5)
C70.0200 (6)0.0216 (6)0.0201 (5)0.0069 (5)0.0041 (4)0.0014 (4)
C80.0174 (6)0.0188 (5)0.0232 (6)0.0057 (4)0.0032 (4)0.0022 (4)
C90.0213 (6)0.0221 (6)0.0213 (6)0.0104 (5)0.0028 (5)0.0004 (4)
C100.0230 (6)0.0235 (6)0.0265 (6)0.0092 (5)0.0051 (5)0.0009 (5)
C110.0286 (7)0.0263 (7)0.0319 (7)0.0083 (6)0.0015 (6)0.0066 (5)
C120.0409 (9)0.0368 (8)0.0247 (7)0.0177 (7)0.0020 (6)0.0067 (6)
C130.0395 (8)0.0347 (7)0.0221 (6)0.0176 (6)0.0047 (6)0.0025 (5)
C140.0259 (6)0.0244 (6)0.0240 (6)0.0106 (5)0.0048 (5)0.0027 (5)
C150.0310 (7)0.0285 (7)0.0386 (8)0.0097 (6)0.0134 (6)0.0126 (6)
Geometric parameters (Å, º) top
Cl1—C41.7425 (13)C6—C71.3800 (18)
S1—O21.4913 (10)C6—H60.9500
S1—C11.7739 (12)C8—C91.4618 (17)
S1—C151.7983 (14)C9—C101.3867 (18)
F1—C101.3542 (15)C9—C141.4043 (18)
O1—C71.3741 (15)C10—C111.3740 (19)
O1—C81.3762 (15)C11—C121.386 (2)
C1—C81.3647 (17)C11—H110.9500
C1—C21.4420 (17)C12—C131.388 (2)
C2—C71.3945 (17)C12—H120.9500
C2—C31.3976 (17)C13—C141.3830 (19)
C3—C41.3802 (18)C13—H130.9500
C3—H30.9500C14—H140.9500
C4—C51.3990 (19)C15—H15A0.9800
C5—C61.3815 (19)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
O2—S1—C1105.84 (6)C1—C8—C9135.10 (12)
O2—S1—C15105.10 (7)O1—C8—C9114.01 (10)
C1—S1—C1597.80 (6)C10—C9—C14117.07 (12)
C7—O1—C8106.59 (9)C10—C9—C8122.54 (12)
C8—C1—C2106.80 (11)C14—C9—C8120.32 (12)
C8—C1—S1127.53 (10)F1—C10—C11117.65 (12)
C2—C1—S1125.04 (9)F1—C10—C9118.49 (12)
C7—C2—C3119.16 (11)C11—C10—C9123.83 (13)
C7—C2—C1105.31 (11)C10—C11—C12117.90 (14)
C3—C2—C1135.52 (12)C10—C11—H11121.1
C4—C3—C2116.81 (12)C12—C11—H11121.0
C4—C3—H3121.6C11—C12—C13120.39 (13)
C2—C3—H3121.6C11—C12—H12119.8
C3—C4—C5123.12 (12)C13—C12—H12119.8
C3—C4—Cl1118.55 (10)C14—C13—C12120.60 (13)
C5—C4—Cl1118.33 (10)C14—C13—H13119.7
C6—C5—C4120.45 (12)C12—C13—H13119.7
C6—C5—H5119.8C13—C14—C9120.18 (13)
C4—C5—H5119.8C13—C14—H14119.9
C7—C6—C5116.19 (12)C9—C14—H14119.9
C7—C6—H6121.9S1—C15—H15A109.5
C5—C6—H6121.9S1—C15—H15B109.5
O1—C7—C6125.31 (11)H15A—C15—H15B109.5
O1—C7—C2110.42 (11)S1—C15—H15C109.5
C6—C7—C2124.26 (12)H15A—C15—H15C109.5
C1—C8—O1110.87 (11)H15B—C15—H15C109.5
O2—S1—C1—C8138.17 (12)C1—C2—C7—C6179.34 (12)
C15—S1—C1—C8113.63 (13)C2—C1—C8—O10.33 (14)
O2—S1—C1—C231.48 (12)S1—C1—C8—O1170.83 (9)
C15—S1—C1—C276.71 (12)C2—C1—C8—C9178.19 (13)
C8—C1—C2—C70.43 (14)S1—C1—C8—C910.6 (2)
S1—C1—C2—C7171.01 (9)C7—O1—C8—C10.10 (14)
C8—C1—C2—C3178.84 (14)C7—O1—C8—C9178.76 (10)
S1—C1—C2—C39.7 (2)C1—C8—C9—C1033.0 (2)
C7—C2—C3—C40.38 (18)O1—C8—C9—C10145.51 (12)
C1—C2—C3—C4178.82 (13)C1—C8—C9—C14150.06 (15)
C2—C3—C4—C50.61 (19)O1—C8—C9—C1431.45 (17)
C2—C3—C4—Cl1179.26 (9)C14—C9—C10—F1176.27 (11)
C3—C4—C5—C60.5 (2)C8—C9—C10—F10.78 (19)
Cl1—C4—C5—C6179.35 (11)C14—C9—C10—C111.8 (2)
C4—C5—C6—C70.2 (2)C8—C9—C10—C11178.88 (13)
C8—O1—C7—C6179.14 (12)F1—C10—C11—C12177.47 (13)
C8—O1—C7—C20.19 (14)C9—C10—C11—C120.6 (2)
C5—C6—C7—O1178.76 (12)C10—C11—C12—C130.8 (2)
C5—C6—C7—C20.0 (2)C11—C12—C13—C141.0 (2)
C3—C2—C7—O1179.03 (11)C12—C13—C14—C90.2 (2)
C1—C2—C7—O10.39 (14)C10—C9—C14—C131.59 (19)
C3—C2—C7—C60.1 (2)C8—C9—C14—C13178.71 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.533.4756 (16)176
C14—H14···O2ii0.952.443.3591 (17)163
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.533.4756 (16)175.5
C14—H14···O2ii0.952.443.3591 (17)162.5
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D. & Lee, U. (2014). Acta Cryst. E70, o991–o992.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWahab Khan, M., Jahangir Alam, M., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds