research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­bis­­[4-(methyl­sulfan­yl)benzoato-κO](1,10-phenanthroline-κ2N,N′)copper(II) monohydrate

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: jgq3518@163.com

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 11 May 2015; accepted 17 July 2015; online 29 July 2015)

In the title compound, [Cu(C8H7O2S)2(C12H8N2)(H2O)]·H2O, the central CuII atom is five-coordinated in a slightly distorted square-pyramidal environment by two N atoms from a 1,10-phenanthroline ligand, one O atom from the carboxylate group of one 4-(methyl­sulfan­yl)benzoate anion and one water O atom in the equatorial plane while the apical position is occupied by the O atom of a carboxylate group of the second anion. In the crystal, a three-dimensional supra­molecular network is formed through weak inter­molecular C—H⋯O and C—H⋯S inter­actions and π-stacking between the 1,10-phenanthroline ligand and the aromatic rings of symmetry-related 4-(methyl­sulfan­yl)benzoate ligands.

1. Chemical context

There are numerous reasons for the rapidly increasing inter­est in the design and synthesis of metal-organic frameworks based on transition metal carboxyl­ate ligands. Not only do they often display fascinating structures in crystal engineering, but also have value due to their potential applications, including as homogeneous catalysts for various oxidation reactions (Bilgrien et al., 1987[Bilgrien, C., Davis, S. & Drago, R. S. (1987). J. Am. Chem. Soc. 109, 3786-3787.]; Zhang et al., 2011[Zhang, S. L., Liang, S. J., Wang, X. W., Long, J. L., Li, Z. H. & Wu, L. (2011). Catal. Today, 175, 362-369.]), elucidation of electrical conductivity (Campbell et al., 2015[Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. (2015). Angew. Chem. Int. Ed. 54, 4349-4352.]; Talin et al., 2014[Talin, A. A., Centrone, A., Ford, A. C., Foster, M. E., Stavila, V., Haney, P., Kinney, R. A., Szalai, V., El Gabaly, F., Yoon, H. P., Léonard, F. & Allendorf, M. D. (2014). Science, 343, 66-69.]), and as attractive mol­ecular magnetic materials (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Janiak et al., 2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]). Transition metal complexes with thiol groups in their periphery are likely to play a vital role in the development of advanced functional materials because the functionalized thio­methyl groups around the periphery of the complex may provide binding sites for the surfaces of some specific materials, such as gold, silver, or palladium (Naitabdi et al., 2005[Naitabdi, A., Bucher, J. P., Gerbier, P., Rabu, P. & Drillon, M. (2005). Adv. Mater. 17, 1612-1616.]; Jiang et al., 2014[Jiang, G. M., Wang, M., Gu, X. F., Chen, T. T., Shang, Y. F., Tang Y. F., Jiang, G. Q. & Shi, Y. J. (2014). CrystEngComm, 16, 472-478.]). As part of the above-mentioned systematic investigations, we report here the crystal structure of the title compound, Cu(OOCPhSCH3)2(N2C12H12)·H2O (I)[link].

[Scheme 1]

2. Structure commentary

In (I)[link], the central CuII atom has a slightly distorted square-pyramidal coordination geometry (Fig. 1[link]). The equatorial plane is formed by two nitro­gen atoms from the 1,10-phenanthroline ligand, one oxygen atom from the carboxyl­ate group of a 4-(methyl­sulfan­yl)benzoate anion and one water oxygen atom, whereas the apical position is occupied by a carboxylate O atom from the second anion. The average Cu—N bond length is 2.014 (6) Å, the Cu—O(carboxyl­ate) bond length is 1.945 (2) Å, while the Cu—O(water) is 1.953 (2) Å. The apical Cu—O distance is 2.301 (2) Å. Two intra­molecular hydrogen bonds involving the coordinating water mol­ecule, O5—H5A⋯O3 and O5—H5B⋯O1, are observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3 0.79 1.90 2.614 (3) 149
O5—H5B⋯O1 0.79 1.82 2.554 (3) 154
C8—H8B⋯S2i 0.96 2.97 3.672 (5) 131
O6—H6B⋯O1ii 0.85 2.06 2.845 (4) 154
C18—H18⋯O6iii 0.93 2.45 3.361 (6) 168
C22—H22⋯O3iv 0.93 2.51 3.364 (4) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the coordination sphere around the CuII atom in the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the complex mol­ecules are linked into a supramolecular framework (Fig. 2[link]) by significant offset C—H⋯O and C—H⋯S hydrogen bonds (see Table 1[link]). The complex mol­ecule is linked to the solvent water mol­ecule by an O—H⋯O hydrogen bond. The overall three-dimensional supra­molecular structure is also stabilized by π-stacking between the 1,10-phenanthroline ligands and the aromatic rings of 4-(methyl­sulfan­yl)benzoic acid of symmetry-related mol­ecules (Fig. 3[link]).

[Figure 2]
Figure 2
C—H⋯O and C—H⋯S hydrogen-bonding inter­actions in (I)[link] [symmetry codes: (i) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z; (ii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z]. H atoms and water mol­ecules have been omitted for clarity.
[Figure 3]
Figure 3
Projection along the c axis of the three-dimensional framework in (I)[link], showing the cavities. H atoms and water mol­ecules have been omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iii) x, −y + 1, z + [{1\over 2}]; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1.]

4. Synthesis and Crystallization

Copper(II) acetate monohydrate (0.1997 g, 1 mmol) in H2O (10 mL) was added to a stirred solution of the sodium salt of 4-(methyl­sulfan­yl)benzoic acid (0.19 g, 1 mmol) in H2O (10 mL) and phenanthroline (0.18 g, 1 mmol) in anhydrous alcohol (10 mL). The mixture was then stirred for two h, and then filtrated. Single crystals of the title complex were obtained by slow evaporation of this filtrate.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound H atoms were positioned geometrically, with C—H = 0.97 Å for methyl­ene and 0.93 Å for aromatic, and refined using a riding model, with Uiso (H) = 1.2 Ueq(C). The water H atoms were located from difference maps and refined with d(O—H) = 0.79 Å and Uiso(H) = 1.5Ueq(O) for the coordinating water molecule, and with d(O—H) = 0.85 Å and Uiso(H) = 1.5Ueq(O) for the solvent water molecule. The hydroxyl H atom was positioned geometrically and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C8H7O2S)2(C12H8N2)(H2O)]·H2O
Mr 614.18
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 30.2105 (12), 17.2468 (6), 10.7009 (4)
β (°) 101.426 (2)
V3) 5465.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.23 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.879, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 24423, 6357, 4364
Rint 0.033
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.178, 1.04
No. of reflections 6357
No. of parameters 354
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.67
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Aquabis[4-(methylsulfanyl)benzoato-κO](1,10-phenanthroline-κ2N,N')copper(II) monohydrate top
Crystal data top
[Cu(C8H7O2S)2(C12H8N2)(H2O)]·H2OZ = 8
Mr = 614.18F(000) = 2536
Monoclinic, C2/cDx = 1.493 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 30.2105 (12) Åθ = 3.2–24.5°
b = 17.2468 (6) ŵ = 1.00 mm1
c = 10.7009 (4) ÅT = 293 K
β = 101.426 (2)°Block, blue
V = 5465.0 (4) Å30.23 × 0.18 × 0.13 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6357 independent reflections
Radiation source: fine-focus sealed tube4364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3937
Tmin = 0.879, Tmax = 0.956k = 1822
24423 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1167P)2]
where P = (Fo2 + 2Fc2)/3
6357 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91367 (10)0.80765 (19)0.6949 (3)0.0395 (7)
C20.94361 (12)0.8504 (2)0.7863 (3)0.0473 (8)
H20.94470.90400.77830.057*
C30.97159 (12)0.8147 (2)0.8880 (3)0.0507 (9)
H30.99140.84430.94690.061*
C40.97032 (12)0.7360 (2)0.9025 (3)0.0487 (8)
C50.94020 (15)0.6925 (2)0.8154 (4)0.0624 (10)
H50.93880.63910.82580.075*
C60.91192 (14)0.7280 (2)0.7125 (3)0.0568 (9)
H60.89170.69810.65520.068*
C70.88454 (10)0.8481 (2)0.5835 (3)0.0420 (7)
C81.03311 (16)0.7601 (3)1.1220 (4)0.0782 (13)
H8A1.05360.78391.07560.117*
H8B1.04980.73901.20040.117*
H8C1.01210.79821.14040.117*
C90.70228 (11)0.94306 (18)0.6029 (3)0.0395 (7)
C100.69449 (13)0.99837 (19)0.6908 (3)0.0464 (8)
H100.71501.03860.71330.056*
C110.65679 (13)0.9942 (2)0.7449 (3)0.0530 (9)
H110.65181.03220.80230.064*
C120.62624 (12)0.9342 (2)0.7147 (3)0.0515 (9)
C130.63413 (13)0.8776 (2)0.6289 (3)0.0516 (9)
H130.61410.83650.60850.062*
C140.67156 (13)0.88267 (18)0.5744 (3)0.0458 (8)
H140.67640.84470.51690.055*
C150.74312 (11)0.94912 (18)0.5455 (3)0.0398 (7)
C160.58169 (19)0.9886 (3)0.9050 (4)0.0901 (16)
H16A0.60900.97760.96550.135*
H16B0.55620.98290.94550.135*
H16C0.58271.04070.87430.135*
C170.86956 (12)0.9017 (2)0.2168 (4)0.0549 (9)
H170.87820.94710.26210.066*
C180.89325 (14)0.8779 (3)0.1231 (4)0.0674 (12)
H180.91700.90790.10680.081*
C190.88197 (13)0.8122 (3)0.0567 (4)0.0629 (11)
H190.89810.79670.00460.076*
C200.84605 (12)0.7673 (2)0.0800 (3)0.0475 (8)
C210.83066 (14)0.6981 (2)0.0145 (3)0.0549 (9)
H210.84610.67860.04560.066*
C220.79377 (13)0.6595 (2)0.0372 (3)0.0525 (9)
H220.78430.61460.00830.063*
C230.76929 (11)0.68729 (18)0.1307 (3)0.0416 (7)
C240.73153 (12)0.65166 (19)0.1591 (3)0.0447 (8)
H240.72010.60680.11620.054*
C250.71115 (12)0.68223 (19)0.2497 (3)0.0445 (8)
H250.68540.65910.26790.053*
C260.72889 (11)0.74829 (18)0.3155 (3)0.0400 (7)
H260.71480.76790.37860.048*
C270.78475 (10)0.75391 (17)0.1992 (3)0.0362 (7)
C280.82339 (10)0.79504 (18)0.1740 (3)0.0378 (7)
H5B0.85180.97120.46390.045*
Cu10.797423 (13)0.87819 (2)0.37570 (3)0.03815 (16)
N10.83506 (9)0.86080 (16)0.2421 (3)0.0430 (6)
N20.76492 (8)0.78433 (15)0.2920 (2)0.0368 (6)
O10.89755 (8)0.91478 (15)0.5570 (2)0.0581 (7)
O20.85009 (8)0.81458 (13)0.5254 (2)0.0458 (5)
O30.76917 (8)1.00411 (14)0.5740 (3)0.0558 (6)
O40.74829 (8)0.89487 (13)0.4657 (2)0.0439 (5)
O50.82673 (8)0.97740 (12)0.4260 (2)0.0489 (6)
H5A0.81590.99850.47860.073*
O60.97937 (10)0.00119 (17)0.1092 (3)0.0822 (9)
H6B0.96090.03630.09100.099*
H6C1.00660.01190.11010.099*
S11.00341 (4)0.68523 (7)1.02966 (10)0.0694 (3)
S20.57647 (4)0.92277 (9)0.77475 (13)0.0935 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (16)0.0469 (19)0.0395 (16)0.0020 (13)0.0083 (13)0.0057 (13)
C20.0399 (19)0.0486 (19)0.0525 (19)0.0084 (15)0.0070 (15)0.0088 (15)
C30.0421 (19)0.067 (2)0.0403 (17)0.0142 (17)0.0018 (15)0.0081 (16)
C40.0395 (19)0.066 (2)0.0411 (17)0.0069 (16)0.0082 (15)0.0065 (16)
C50.073 (3)0.044 (2)0.064 (2)0.0081 (19)0.002 (2)0.0067 (17)
C60.059 (2)0.052 (2)0.052 (2)0.0027 (18)0.0051 (18)0.0054 (16)
C70.0313 (16)0.054 (2)0.0401 (16)0.0002 (15)0.0059 (13)0.0022 (14)
C80.077 (3)0.102 (4)0.048 (2)0.018 (3)0.006 (2)0.002 (2)
C90.0458 (18)0.0377 (17)0.0316 (15)0.0016 (14)0.0005 (13)0.0005 (12)
C100.059 (2)0.0433 (18)0.0351 (16)0.0090 (15)0.0050 (15)0.0059 (13)
C110.066 (2)0.053 (2)0.0409 (17)0.0049 (18)0.0134 (17)0.0128 (15)
C120.053 (2)0.064 (2)0.0388 (17)0.0093 (17)0.0111 (16)0.0106 (15)
C130.053 (2)0.053 (2)0.0487 (19)0.0111 (16)0.0089 (17)0.0131 (15)
C140.051 (2)0.0438 (19)0.0411 (17)0.0023 (15)0.0056 (15)0.0104 (14)
C150.0417 (18)0.0358 (16)0.0376 (16)0.0002 (14)0.0026 (14)0.0021 (13)
C160.107 (4)0.097 (4)0.080 (3)0.016 (3)0.051 (3)0.034 (3)
C170.046 (2)0.054 (2)0.063 (2)0.0111 (17)0.0098 (18)0.0098 (18)
C180.047 (2)0.082 (3)0.078 (3)0.010 (2)0.024 (2)0.023 (2)
C190.055 (2)0.072 (3)0.070 (2)0.003 (2)0.034 (2)0.013 (2)
C200.0464 (19)0.052 (2)0.0472 (18)0.0092 (16)0.0162 (16)0.0163 (15)
C210.067 (2)0.056 (2)0.0467 (18)0.0110 (18)0.0229 (18)0.0013 (16)
C220.073 (3)0.0426 (19)0.0441 (18)0.0016 (18)0.0170 (18)0.0016 (15)
C230.050 (2)0.0378 (17)0.0369 (15)0.0023 (14)0.0097 (14)0.0034 (13)
C240.055 (2)0.0387 (17)0.0386 (16)0.0060 (15)0.0049 (15)0.0007 (13)
C250.0444 (19)0.0447 (18)0.0439 (17)0.0101 (14)0.0075 (15)0.0037 (14)
C260.0414 (18)0.0430 (17)0.0366 (15)0.0035 (14)0.0100 (14)0.0003 (13)
C270.0387 (17)0.0391 (16)0.0302 (14)0.0035 (13)0.0052 (12)0.0088 (12)
C280.0386 (17)0.0384 (16)0.0356 (15)0.0036 (13)0.0053 (13)0.0109 (12)
Cu10.0367 (2)0.0361 (2)0.0400 (2)0.00390 (15)0.00356 (17)0.00118 (15)
N10.0383 (15)0.0448 (15)0.0454 (15)0.0032 (12)0.0068 (12)0.0104 (12)
N20.0373 (14)0.0416 (14)0.0314 (12)0.0016 (11)0.0065 (11)0.0024 (10)
O10.0417 (14)0.0576 (16)0.0684 (16)0.0104 (12)0.0048 (12)0.0218 (12)
O20.0392 (13)0.0479 (13)0.0464 (12)0.0033 (10)0.0008 (10)0.0060 (10)
O30.0497 (15)0.0448 (14)0.0723 (16)0.0081 (11)0.0101 (13)0.0149 (12)
O40.0457 (13)0.0413 (12)0.0445 (12)0.0041 (10)0.0083 (10)0.0057 (9)
O50.0430 (13)0.0382 (12)0.0610 (15)0.0046 (10)0.0003 (11)0.0019 (10)
O60.0511 (17)0.0655 (18)0.134 (3)0.0018 (14)0.0276 (18)0.0165 (17)
S10.0648 (7)0.0801 (7)0.0561 (6)0.0082 (5)0.0055 (5)0.0215 (5)
S20.0787 (8)0.1247 (12)0.0894 (9)0.0404 (8)0.0461 (7)0.0575 (8)
Geometric parameters (Å, º) top
C1—C61.389 (5)C16—H16C0.9600
C1—C21.403 (5)C17—N11.330 (4)
C1—C71.505 (4)C17—C181.403 (6)
C2—C31.384 (5)C17—H170.9300
C2—H20.9300C18—C191.345 (6)
C3—C41.366 (5)C18—H180.9300
C3—H30.9300C19—C201.395 (5)
C4—C51.387 (5)C19—H190.9300
C4—S11.755 (4)C20—C281.408 (4)
C5—C61.395 (5)C20—C211.415 (5)
C5—H50.9300C21—C221.361 (5)
C6—H60.9300C21—H210.9300
C7—O21.243 (4)C22—C231.439 (4)
C7—O11.266 (4)C22—H220.9300
C8—S11.759 (5)C23—C241.382 (4)
C8—H8A0.9600C23—C271.392 (4)
C8—H8B0.9600C24—C251.354 (4)
C8—H8C0.9600C24—H240.9300
C9—C141.388 (4)C25—C261.390 (4)
C9—C101.392 (4)C25—H250.9300
C9—C151.487 (5)C26—N21.320 (4)
C10—C111.378 (5)C26—H260.9300
C10—H100.9300C27—N21.363 (4)
C11—C121.382 (5)C27—C281.436 (4)
C11—H110.9300C28—N11.356 (4)
C12—C131.392 (5)Cu1—O41.945 (2)
C12—S21.759 (4)Cu1—O51.953 (2)
C13—C141.374 (5)Cu1—N22.010 (3)
C13—H130.9300Cu1—N12.018 (3)
C14—H140.9300Cu1—O22.301 (2)
C15—O31.232 (4)O5—H5B0.7928
C15—O41.296 (4)O5—H5A0.7938
C16—S21.780 (4)O6—H6B0.8499
C16—H16A0.9600O6—H6C0.8500
C16—H16B0.9600
C6—C1—C2117.5 (3)C19—C18—C17120.8 (3)
C6—C1—C7122.2 (3)C19—C18—H18119.6
C2—C1—C7120.3 (3)C17—C18—H18119.6
C3—C2—C1121.6 (3)C18—C19—C20119.8 (4)
C3—C2—H2119.2C18—C19—H19120.1
C1—C2—H2119.2C20—C19—H19120.1
C4—C3—C2120.3 (3)C19—C20—C28116.4 (3)
C4—C3—H3119.8C19—C20—C21124.8 (3)
C2—C3—H3119.8C28—C20—C21118.8 (3)
C3—C4—C5119.4 (3)C22—C21—C20121.6 (3)
C3—C4—S1124.0 (3)C22—C21—H21119.2
C5—C4—S1116.6 (3)C20—C21—H21119.2
C4—C5—C6120.7 (4)C21—C22—C23120.9 (3)
C4—C5—H5119.7C21—C22—H22119.6
C6—C5—H5119.7C23—C22—H22119.6
C1—C6—C5120.5 (4)C24—C23—C27117.2 (3)
C1—C6—H6119.8C24—C23—C22124.4 (3)
C5—C6—H6119.8C27—C23—C22118.4 (3)
O2—C7—O1125.2 (3)C25—C24—C23119.8 (3)
O2—C7—C1118.7 (3)C25—C24—H24120.1
O1—C7—C1116.1 (3)C23—C24—H24120.1
S1—C8—H8A109.5C24—C25—C26119.8 (3)
S1—C8—H8B109.5C24—C25—H25120.1
H8A—C8—H8B109.5C26—C25—H25120.1
S1—C8—H8C109.5N2—C26—C25122.6 (3)
H8A—C8—H8C109.5N2—C26—H26118.7
H8B—C8—H8C109.5C25—C26—H26118.7
C14—C9—C10117.9 (3)N2—C27—C23123.4 (3)
C14—C9—C15122.4 (3)N2—C27—C28115.9 (3)
C10—C9—C15119.7 (3)C23—C27—C28120.6 (3)
C11—C10—C9120.8 (3)N1—C28—C20123.8 (3)
C11—C10—H10119.6N1—C28—C27116.6 (3)
C9—C10—H10119.6C20—C28—C27119.6 (3)
C10—C11—C12120.7 (3)O4—Cu1—O594.74 (10)
C10—C11—H11119.7O4—Cu1—N289.22 (9)
C12—C11—H11119.7O5—Cu1—N2169.62 (9)
C11—C12—C13119.0 (3)O4—Cu1—N1164.97 (11)
C11—C12—S2125.3 (3)O5—Cu1—N192.14 (11)
C13—C12—S2115.7 (3)N2—Cu1—N181.88 (10)
C14—C13—C12119.9 (3)O4—Cu1—O2102.47 (9)
C14—C13—H13120.1O5—Cu1—O290.72 (9)
C12—C13—H13120.1N2—Cu1—O297.80 (9)
C13—C14—C9121.7 (3)N1—Cu1—O290.77 (10)
C13—C14—H14119.2C17—N1—C28117.7 (3)
C9—C14—H14119.2C17—N1—Cu1129.8 (3)
O3—C15—O4124.4 (3)C28—N1—Cu1112.4 (2)
O3—C15—C9119.6 (3)C26—N2—C27117.1 (3)
O4—C15—C9116.0 (3)C26—N2—Cu1130.0 (2)
S2—C16—H16A109.5C27—N2—Cu1112.9 (2)
S2—C16—H16B109.5C7—O2—Cu1121.4 (2)
H16A—C16—H16B109.5C15—O4—Cu1129.5 (2)
S2—C16—H16C109.5Cu1—O5—H5B111.0
H16A—C16—H16C109.5Cu1—O5—H5A111.7
H16B—C16—H16C109.5H5B—O5—H5A100.8
N1—C17—C18121.4 (4)H6B—O6—H6C112.9
N1—C17—H17119.3C4—S1—C8102.6 (2)
C18—C17—H17119.3C12—S2—C16105.4 (2)
C6—C1—C2—C32.2 (5)N2—C27—C28—N12.1 (4)
C7—C1—C2—C3178.4 (3)C23—C27—C28—N1177.7 (3)
C1—C2—C3—C40.6 (5)N2—C27—C28—C20179.7 (3)
C2—C3—C4—C51.1 (5)C23—C27—C28—C200.5 (4)
C2—C3—C4—S1178.6 (3)C18—C17—N1—C280.1 (5)
C3—C4—C5—C61.2 (6)C18—C17—N1—Cu1176.6 (3)
S1—C4—C5—C6178.9 (3)C20—C28—N1—C171.0 (5)
C2—C1—C6—C52.1 (5)C27—C28—N1—C17177.2 (3)
C7—C1—C6—C5178.6 (3)C20—C28—N1—Cu1176.3 (2)
C4—C5—C6—C10.4 (6)C27—C28—N1—Cu15.5 (3)
C6—C1—C7—O219.7 (5)O4—Cu1—N1—C17123.6 (4)
C2—C1—C7—O2159.7 (3)O5—Cu1—N1—C176.4 (3)
C6—C1—C7—O1160.6 (3)N2—Cu1—N1—C17177.9 (3)
C2—C1—C7—O120.0 (4)O2—Cu1—N1—C1784.4 (3)
C14—C9—C10—C111.7 (5)O4—Cu1—N1—C2859.5 (5)
C15—C9—C10—C11179.7 (3)O5—Cu1—N1—C28176.7 (2)
C9—C10—C11—C121.2 (5)N2—Cu1—N1—C285.3 (2)
C10—C11—C12—C130.2 (6)O2—Cu1—N1—C2892.5 (2)
C10—C11—C12—S2179.0 (3)C25—C26—N2—C270.2 (5)
C11—C12—C13—C140.9 (6)C25—C26—N2—Cu1178.5 (2)
S2—C12—C13—C14178.4 (3)C23—C27—N2—C260.8 (4)
C12—C13—C14—C90.3 (6)C28—C27—N2—C26178.9 (3)
C10—C9—C14—C131.0 (5)C23—C27—N2—Cu1177.7 (2)
C15—C9—C14—C13179.6 (3)C28—C27—N2—Cu12.5 (3)
C14—C9—C15—O3179.8 (3)O4—Cu1—N2—C269.6 (3)
C10—C9—C15—O31.7 (5)O5—Cu1—N2—C26122.2 (5)
C14—C9—C15—O40.6 (4)N1—Cu1—N2—C26177.5 (3)
C10—C9—C15—O4179.1 (3)O2—Cu1—N2—C2692.9 (3)
N1—C17—C18—C190.7 (6)O4—Cu1—N2—C27172.0 (2)
C17—C18—C19—C200.6 (6)O5—Cu1—N2—C2759.5 (6)
C18—C19—C20—C280.2 (6)N1—Cu1—N2—C274.2 (2)
C18—C19—C20—C21178.7 (4)O2—Cu1—N2—C2785.5 (2)
C19—C20—C21—C22176.3 (4)O1—C7—O2—Cu19.7 (4)
C28—C20—C21—C222.2 (5)C1—C7—O2—Cu1170.0 (2)
C20—C21—C22—C230.9 (6)O4—Cu1—O2—C7105.1 (2)
C21—C22—C23—C24179.8 (3)O5—Cu1—O2—C710.1 (2)
C21—C22—C23—C271.2 (5)N2—Cu1—O2—C7164.0 (2)
C27—C23—C24—C250.4 (5)N1—Cu1—O2—C782.1 (2)
C22—C23—C24—C25179.5 (3)O3—C15—O4—Cu13.7 (5)
C23—C24—C25—C261.4 (5)C9—C15—O4—Cu1177.1 (2)
C24—C25—C26—N21.3 (5)O5—Cu1—O4—C159.0 (3)
C24—C23—C27—N20.7 (5)N2—Cu1—O4—C15179.4 (3)
C22—C23—C27—N2178.4 (3)N1—Cu1—O4—C15126.0 (4)
C24—C23—C27—C28179.0 (3)O2—Cu1—O4—C1582.8 (3)
C22—C23—C27—C281.8 (5)C3—C4—S1—C81.7 (4)
C19—C20—C28—N11.0 (5)C5—C4—S1—C8175.8 (3)
C21—C20—C28—N1179.6 (3)C11—C12—S2—C1613.4 (4)
C19—C20—C28—C27177.1 (3)C13—C12—S2—C16167.4 (3)
C21—C20—C28—C271.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O30.791.902.614 (3)149
O5—H5B···O10.791.822.554 (3)154
C8—H8B···S2i0.962.973.672 (5)131
O6—H6B···O1ii0.852.062.845 (4)154
C18—H18···O6iii0.932.453.361 (6)168
C22—H22···O3iv0.932.513.364 (4)153
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 21173122 and 21476117).

References

First citationBilgrien, C., Davis, S. & Drago, R. S. (1987). J. Am. Chem. Soc. 109, 3786–3787.  CrossRef CAS Google Scholar
First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. (2015). Angew. Chem. Int. Ed. 54, 4349–4352.  CrossRef CAS Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationJiang, G. M., Wang, M., Gu, X. F., Chen, T. T., Shang, Y. F., Tang Y. F., Jiang, G. Q. & Shi, Y. J. (2014). CrystEngComm, 16, 472–478.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationNaitabdi, A., Bucher, J. P., Gerbier, P., Rabu, P. & Drillon, M. (2005). Adv. Mater. 17, 1612–1616.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalin, A. A., Centrone, A., Ford, A. C., Foster, M. E., Stavila, V., Haney, P., Kinney, R. A., Szalai, V., El Gabaly, F., Yoon, H. P., Léonard, F. & Allendorf, M. D. (2014). Science, 343, 66–69.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, S. L., Liang, S. J., Wang, X. W., Long, J. L., Li, Z. H. & Wu, L. (2011). Catal. Today, 175, 362–369.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds