organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-3-[5-chloro-2-(prop-2-yn­yl­oxy)phen­yl]-3-hy­dr­oxy-1-[4-(tri­fluoro­meth­yl)phen­yl]­prop-2-en-1-one

aDepartment of Chemistry, Kurukshetra University, Kurukshetra 136 119, Haryana, India, bDepartment of Chemistry, Hindu College, University of Delhi, Delhi 110 007, India, and cDepartment of Chemistry, Indian Institute of Technology, New Delhi 110 016, India
*Correspondence e-mail: rckamboj@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 June 2015; accepted 1 July 2015; online 8 July 2015)

The title compound, C19H12ClF3O3, obtained by the photochemical transformation of 2-[5-chloro-2-(prop-2-yn­yloxy)benzo­yl]-3-[4-(tri­fluoro­meth­yl)phen­yl]oxirane adopts a Z conformation with respect to the enolic C=C double bond. The dihedral angle between the benzene rings is 12.25 (16)° and an intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. An intra­molecular C—H⋯O inter­action also leads to an S(6) ring. In the crystal, very weak C—H⋯O inter­actions and short Cl⋯Cl contacts [3.3221 (16) Å] are seen, as well as weak aromatic ππ stacking inter­actions [centroid–centroid separation = 3.879 (2) Å].

1. Related literature

For background to 1,3-diketones, see: Andrae et al. (1997[Andrae, I., Bringhen, A., Böhm, F., Gonzenbach, H., Hill, T., Mulroy, L. & Truscott, T. A. (1997). J. Photochem. Photobiol. B, 37, 147-150.]); Crouse et al. (1989[Crouse, G. D., McGowan, M. J. & Boisvenue, R. J. (1989). J. Med. Chem. 32, 2148-2151.]); Diana et al. (1978[Diana, G. D., Carabateas, P. M., Johnson, R. E., Williams, G. L., Pancic, F. & Collins, J. C. (1978). J. Med. Chem. 21, 889-894.]); Nishiyama et al. (2002[Nishiyama, T., Shiotsu, S. & Tsujita, H. (2002). Polym. Degrad. Stab. 76, 435-439.]); Sheikh et al. (2009[Sheikh, J. I., Ingle, V. N. & Juneja, H. D. (2009). E-J. Chem. 6, 705-712.], 2013[Sheikh, J., Juneja, H., Ingle, V., Ali, P. & Hadda, T. B. (2013). J. Saudi Chem. Soc. 17, 269-276.]); Tchertanov & Mouscadet (2007[Tchertanov, L. & Mouscadet, J. F. (2007). J. Med. Chem. 50, 1133-1145.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H12ClF3O3

  • Mr = 380.74

  • Triclinic, [P \overline 1]

  • a = 8.2203 (12) Å

  • b = 9.3822 (14) Å

  • c = 12.3140 (18) Å

  • α = 90.150 (2)°

  • β = 109.201 (2)°

  • γ = 106.212 (2)°

  • V = 856.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 273 K

  • 0.34 × 0.29 × 0.14 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.962

  • 8272 measured reflections

  • 3016 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.191

  • S = 1.10

  • 3003 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H24⋯O1 0.82 1.79 2.529 (3) 149
C11—H11⋯O3 0.93 2.09 2.747 (3) 126
C7—H7B⋯O1i 0.97 2.62 3.476 (4) 147
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Chemical context top

The functionalized β-hy­droxy­enones (or 1,3-diketones) are medicinal significant compounds showing anti­viral (Diana et al., 1978), insecticidal (Crouse et al., 1989), anti-sunscreen (Andrae et al., 1997), anti­oxidant (Nishiyama et al., 2002), and more important HIV-1 Integrase (IN) inhibitor (Tchertanov & Mouscadet, 2007) activity. Also, 1,3-diketones are the building blocks for the synthesis of core heterocycles (Sheikh et al., 2009), and biologically important metal complexes (Sheikh et al., 2013). Our inter­est in the catalyst free photochemical organic transformation led us to synthesize the title compound and we report herein on its crystal structure (Fig. 1).

Synthesis and crystallization top

A de­oxy­genated solution of 2-{5-chloro-2-(prop-2-ynyl­oxy)benzoyl}-3-{4-(tri­fluoro­methyl)­phenyl}­oxirane (2.0 mmol, 760 mg) in aceto­nitrile (100 ml) contained in a Pyrex glass vessel was purged with N2 for 30 min. and then irradiated under N2 atmosphere with light from a 125W Hg-vapor lamp for 90 min. The removal of solvent under reduced pressure yielded a gummy mass that was chromatographed over a silica gel column. The column was eluted with increasing proportion of ethyl acetate in pet ether-ethyl acetate mixture to obtain the desired photoproduct. In addition to this, another photoproduct 8-chloro-2-(4-tri­fluoro­methyl­phenyl) benzo[b]furo[2,3-e]oxepin-10(4H)-one was also separated from the photolysate. The resulting pale yellow solid was filtered, washed several times with pet ether and then dried in vacuo overnight to yield the desired (Z)-3-{5-chloro-2-(prop-2-ynyl­oxy)phenyl}-1-{4-(tri­fluoro­methyl)­phenyl}-3-hy­droxy­prop-2-en-1-one, (267 mg, 35% yield). The pale yellow re­cta­ngular crystals, suitable for X-ray structure analysis, were obtained by recrystallization from ethanol by slow evaporation at room temperature after several days (m.p. 383-385 K).

FT—IR (KBr) ν: 3418 (-OH), 2150 (CC), 1713 (C=O), 1605 (C=C) cm-1; 1H NMR (400 MHz, CDCl3) δ, ppm: 8.08 (2H, d, J = 8.2 Hz, H-3'', 5''), 7.95 (1H, d, J = 2.7 Hz, H-6'), 7.73 (2H, d, J = 8.3 Hz, H-2'', 6''), 7.44 (1H, dd, J = 8.8, 2.7 Hz, H-4'), 7.23(1H, s, H-2), 7.03 (1H, d, J = 8.8 Hz, H-3'), 4.82 (2H, d, J = 2.4 Hz, OCH2-1'''), 2.63 (1H, t, J = 2.3 Hz, CH-3'''); 13C NMR (100 MHz, CDCl3):δ, ppm: 57.00, 99.21, 114.67, 122.34, 125.05, 125.63,126.58, 127.40, 127.62, 130.30, 132.84, 133.54, 133.86, 138.72, 154.99, 183.24, 183.69.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were fixed according to a riding model and were refined isotropically.

Related literature top

For background to 1,3-diketones, see: Andrae et al. (1997); Crouse et al. (1989); Diana et al. (1978); Nishiyama et al. (2002); Sheikh et al. (2009, 2013); Tchertanov & Mouscadet (2007).

Structure description top

The functionalized β-hy­droxy­enones (or 1,3-diketones) are medicinal significant compounds showing anti­viral (Diana et al., 1978), insecticidal (Crouse et al., 1989), anti-sunscreen (Andrae et al., 1997), anti­oxidant (Nishiyama et al., 2002), and more important HIV-1 Integrase (IN) inhibitor (Tchertanov & Mouscadet, 2007) activity. Also, 1,3-diketones are the building blocks for the synthesis of core heterocycles (Sheikh et al., 2009), and biologically important metal complexes (Sheikh et al., 2013). Our inter­est in the catalyst free photochemical organic transformation led us to synthesize the title compound and we report herein on its crystal structure (Fig. 1).

For background to 1,3-diketones, see: Andrae et al. (1997); Crouse et al. (1989); Diana et al. (1978); Nishiyama et al. (2002); Sheikh et al. (2009, 2013); Tchertanov & Mouscadet (2007).

Synthesis and crystallization top

A de­oxy­genated solution of 2-{5-chloro-2-(prop-2-ynyl­oxy)benzoyl}-3-{4-(tri­fluoro­methyl)­phenyl}­oxirane (2.0 mmol, 760 mg) in aceto­nitrile (100 ml) contained in a Pyrex glass vessel was purged with N2 for 30 min. and then irradiated under N2 atmosphere with light from a 125W Hg-vapor lamp for 90 min. The removal of solvent under reduced pressure yielded a gummy mass that was chromatographed over a silica gel column. The column was eluted with increasing proportion of ethyl acetate in pet ether-ethyl acetate mixture to obtain the desired photoproduct. In addition to this, another photoproduct 8-chloro-2-(4-tri­fluoro­methyl­phenyl) benzo[b]furo[2,3-e]oxepin-10(4H)-one was also separated from the photolysate. The resulting pale yellow solid was filtered, washed several times with pet ether and then dried in vacuo overnight to yield the desired (Z)-3-{5-chloro-2-(prop-2-ynyl­oxy)phenyl}-1-{4-(tri­fluoro­methyl)­phenyl}-3-hy­droxy­prop-2-en-1-one, (267 mg, 35% yield). The pale yellow re­cta­ngular crystals, suitable for X-ray structure analysis, were obtained by recrystallization from ethanol by slow evaporation at room temperature after several days (m.p. 383-385 K).

FT—IR (KBr) ν: 3418 (-OH), 2150 (CC), 1713 (C=O), 1605 (C=C) cm-1; 1H NMR (400 MHz, CDCl3) δ, ppm: 8.08 (2H, d, J = 8.2 Hz, H-3'', 5''), 7.95 (1H, d, J = 2.7 Hz, H-6'), 7.73 (2H, d, J = 8.3 Hz, H-2'', 6''), 7.44 (1H, dd, J = 8.8, 2.7 Hz, H-4'), 7.23(1H, s, H-2), 7.03 (1H, d, J = 8.8 Hz, H-3'), 4.82 (2H, d, J = 2.4 Hz, OCH2-1'''), 2.63 (1H, t, J = 2.3 Hz, CH-3'''); 13C NMR (100 MHz, CDCl3):δ, ppm: 57.00, 99.21, 114.67, 122.34, 125.05, 125.63,126.58, 127.40, 127.62, 130.30, 132.84, 133.54, 133.86, 138.72, 154.99, 183.24, 183.69.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were fixed according to a riding model and were refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the inter- and intramolecular hydrogen bonds in the title compound (shown as dashed lines, see Table 1 for details). Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 3] Fig. 3. A view along the a axis showing F···F and Cl···Cl contact distances (dashed lines). Hydrogen atoms not involved in the interactions are excluded for clarity.
[Figure 4] Fig. 4. A partial view along b axis of the ππ interactions (dashed lines) in the crystal packing of the title compound. All hydrogen atoms are omitted for clarity.
(Z)-3-[5-Chloro-2-(prop-2-ynyloxy)phenyl]-3-hydroxy-1-[4-(trifluoromethyl)phenyl]prop-2-en-1-one top
Crystal data top
C19H12ClF3O3Z = 2
Mr = 380.74F(000) = 388.0
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2203 (12) ÅCell parameters from 3035 reflections
b = 9.3822 (14) Åθ = 2.3–25.6°
c = 12.3140 (18) ŵ = 0.27 mm1
α = 90.150 (2)°T = 273 K
β = 109.201 (2)°Block, colorless
γ = 106.212 (2)°0.34 × 0.29 × 0.14 mm
V = 856.5 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
3016 independent reflections
Radiation source: fine-focus sealed tube2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.912, Tmax = 0.962k = 1111
8272 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0963P)2 + 0.390P]
where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H12ClF3O3γ = 106.212 (2)°
Mr = 380.74V = 856.5 (2) Å3
Triclinic, P1Z = 2
a = 8.2203 (12) ÅMo Kα radiation
b = 9.3822 (14) ŵ = 0.27 mm1
c = 12.3140 (18) ÅT = 273 K
α = 90.150 (2)°0.34 × 0.29 × 0.14 mm
β = 109.201 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3016 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2503 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.962Rint = 0.022
8272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.52 e Å3
3003 reflectionsΔρmin = 0.35 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10694 (14)1.10578 (13)1.42182 (7)0.0913 (4)
O30.2888 (3)1.16996 (19)0.99885 (16)0.0600 (5)
O20.1279 (3)0.7541 (2)1.1146 (2)0.0766 (7)
H240.12370.68131.07560.115*
C130.2457 (4)0.7250 (3)0.8037 (2)0.0508 (6)
C120.2108 (4)0.7295 (3)0.9149 (2)0.0525 (7)
C40.1949 (3)1.0149 (3)1.1317 (2)0.0474 (6)
C20.1511 (4)1.0020 (3)1.2318 (2)0.0558 (7)
H20.11470.90801.25570.067*
C60.2471 (3)1.1588 (3)1.0975 (2)0.0485 (6)
C100.1852 (3)0.8758 (3)1.0691 (2)0.0493 (6)
C110.2284 (4)0.8668 (3)0.9711 (2)0.0531 (7)
H110.27070.95450.94080.064*
C150.3271 (4)0.8532 (3)0.7619 (3)0.0585 (7)
H150.36430.94490.80540.070*
C180.3000 (4)0.7117 (3)0.5930 (2)0.0575 (7)
C50.2558 (4)1.2823 (3)1.1638 (3)0.0602 (7)
H50.29061.37711.14100.072*
C170.3537 (4)0.8470 (3)0.6579 (3)0.0618 (7)
H170.40770.93390.63130.074*
C10.1610 (4)1.1259 (4)1.2959 (2)0.0620 (8)
F30.4185 (4)0.8295 (3)0.4541 (2)0.1194 (9)
C70.3400 (4)1.3122 (3)0.9602 (3)0.0611 (7)
H7A0.44851.37601.01790.073*
H7B0.24481.35900.94730.073*
C140.1936 (4)0.5899 (3)0.7376 (3)0.0633 (8)
H140.14000.50260.76410.076*
C30.2136 (4)1.2658 (4)1.2624 (3)0.0656 (8)
H30.22041.34911.30670.079*
C80.3725 (5)1.2911 (4)0.8531 (3)0.0750 (9)
C160.2202 (5)0.5826 (3)0.6329 (3)0.0686 (8)
H160.18440.49110.58930.082*
C190.3237 (5)0.7041 (4)0.4781 (3)0.0763 (9)
C90.3999 (8)1.2763 (5)0.7678 (4)0.1171 (17)
H90.42191.26450.69940.140*
F20.1707 (4)0.6729 (5)0.3933 (2)0.1649 (15)
F10.4002 (7)0.6064 (4)0.4652 (3)0.1871 (19)
O10.1593 (3)0.6070 (2)0.9541 (2)0.0759 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0980 (7)0.1272 (9)0.0637 (6)0.0341 (6)0.0464 (5)0.0084 (5)
O30.0908 (14)0.0395 (10)0.0603 (12)0.0176 (9)0.0411 (11)0.0111 (8)
O20.1181 (19)0.0490 (12)0.0843 (15)0.0281 (12)0.0595 (14)0.0234 (10)
C130.0497 (14)0.0436 (14)0.0584 (16)0.0184 (11)0.0138 (12)0.0050 (12)
C120.0546 (15)0.0452 (14)0.0606 (16)0.0198 (12)0.0194 (13)0.0107 (12)
C40.0428 (13)0.0516 (15)0.0478 (14)0.0153 (11)0.0147 (11)0.0084 (11)
C20.0511 (15)0.0652 (17)0.0518 (15)0.0155 (13)0.0199 (12)0.0142 (13)
C60.0479 (14)0.0473 (14)0.0502 (14)0.0137 (11)0.0168 (11)0.0048 (11)
C100.0491 (14)0.0440 (14)0.0553 (15)0.0151 (11)0.0173 (12)0.0134 (11)
C110.0618 (16)0.0408 (14)0.0579 (16)0.0137 (12)0.0235 (13)0.0104 (12)
C150.0625 (17)0.0463 (15)0.0667 (18)0.0101 (13)0.0272 (14)0.0019 (13)
C180.0556 (16)0.0593 (17)0.0560 (16)0.0204 (13)0.0145 (13)0.0020 (13)
C50.0659 (18)0.0521 (16)0.0641 (17)0.0166 (13)0.0252 (15)0.0005 (13)
C170.0632 (17)0.0519 (16)0.0696 (19)0.0092 (13)0.0284 (15)0.0047 (14)
C10.0552 (16)0.084 (2)0.0492 (15)0.0215 (15)0.0204 (13)0.0054 (14)
F30.152 (2)0.1049 (18)0.1022 (17)0.0047 (16)0.0797 (17)0.0060 (14)
C70.0781 (19)0.0425 (14)0.0730 (19)0.0208 (13)0.0367 (16)0.0161 (13)
C140.082 (2)0.0418 (15)0.0623 (18)0.0163 (14)0.0211 (15)0.0068 (13)
C30.0672 (18)0.071 (2)0.0613 (18)0.0240 (15)0.0219 (15)0.0085 (15)
C80.109 (3)0.0563 (18)0.085 (2)0.0361 (18)0.057 (2)0.0315 (16)
C160.091 (2)0.0459 (16)0.0621 (18)0.0197 (15)0.0182 (16)0.0030 (13)
C190.094 (3)0.067 (2)0.062 (2)0.0193 (19)0.0233 (19)0.0047 (16)
C90.196 (5)0.104 (3)0.111 (3)0.073 (3)0.105 (4)0.051 (3)
F20.118 (2)0.248 (4)0.0599 (14)0.032 (2)0.0136 (14)0.0125 (18)
F10.372 (6)0.176 (3)0.126 (2)0.180 (4)0.148 (3)0.048 (2)
O10.1138 (18)0.0424 (11)0.0871 (15)0.0259 (11)0.0525 (14)0.0177 (10)
Geometric parameters (Å, º) top
Cl1—C11.745 (3)C18—C171.377 (4)
O3—C61.364 (3)C18—C161.382 (4)
O3—C71.416 (3)C18—C191.494 (4)
O2—C101.310 (3)C5—C31.366 (4)
O2—H240.8200C5—H50.9300
C13—C141.384 (4)C17—H170.9300
C13—C151.393 (4)C1—C31.372 (5)
C13—C121.491 (4)F3—C191.312 (4)
C12—O11.265 (3)C7—C81.452 (4)
C12—C111.409 (4)C7—H7A0.9700
C4—C21.390 (4)C7—H7B0.9700
C4—C61.408 (4)C14—C161.381 (4)
C4—C101.484 (4)C14—H140.9300
C2—C11.371 (4)C3—H30.9300
C2—H20.9300C8—C91.161 (5)
C6—C51.388 (4)C16—H160.9300
C10—C111.373 (4)C19—F11.283 (4)
C11—H110.9300C19—F21.299 (4)
C15—C171.372 (4)C9—H90.9300
C15—H150.9300
C6—O3—C7119.4 (2)C6—C5—H5119.7
C10—O2—H24109.5C15—C17—C18119.8 (3)
C14—C13—C15117.9 (3)C15—C17—H17120.1
C14—C13—C12119.7 (3)C18—C17—H17120.1
C15—C13—C12122.4 (2)C2—C1—C3120.8 (3)
O1—C12—C11121.7 (3)C2—C1—Cl1119.7 (3)
O1—C12—C13118.0 (2)C3—C1—Cl1119.5 (2)
C11—C12—C13120.2 (2)O3—C7—C8107.8 (2)
C2—C4—C6117.9 (2)O3—C7—H7A110.1
C2—C4—C10117.5 (2)C8—C7—H7A110.1
C6—C4—C10124.6 (2)O3—C7—H7B110.1
C1—C2—C4120.9 (3)C8—C7—H7B110.1
C1—C2—H2119.6H7A—C7—H7B108.5
C4—C2—H2119.6C16—C14—C13121.0 (3)
O3—C6—C5122.6 (2)C16—C14—H14119.5
O3—C6—C4117.4 (2)C13—C14—H14119.5
C5—C6—C4120.0 (3)C5—C3—C1119.8 (3)
O2—C10—C11120.1 (2)C5—C3—H3120.1
O2—C10—C4114.1 (2)C1—C3—H3120.1
C11—C10—C4125.9 (2)C9—C8—C7179.0 (4)
C10—C11—C12122.4 (2)C14—C16—C18119.9 (3)
C10—C11—H11118.8C14—C16—H16120.1
C12—C11—H11118.8C18—C16—H16120.1
C17—C15—C13121.4 (3)F1—C19—F2106.7 (4)
C17—C15—H15119.3F1—C19—F3105.4 (4)
C13—C15—H15119.3F2—C19—F3103.3 (3)
C17—C18—C16120.0 (3)F1—C19—C18113.8 (3)
C17—C18—C19120.2 (3)F2—C19—C18111.9 (3)
C16—C18—C19119.8 (3)F3—C19—C18114.9 (3)
C3—C5—C6120.6 (3)C8—C9—H9180.0
C3—C5—H5119.7
C14—C13—C12—O110.5 (4)C4—C6—C5—C30.2 (4)
C15—C13—C12—O1170.5 (3)C13—C15—C17—C180.4 (5)
C14—C13—C12—C11167.0 (3)C16—C18—C17—C150.2 (4)
C15—C13—C12—C1112.0 (4)C19—C18—C17—C15178.4 (3)
C6—C4—C2—C10.9 (4)C4—C2—C1—C30.3 (4)
C10—C4—C2—C1178.5 (2)C4—C2—C1—Cl1179.5 (2)
C7—O3—C6—C51.2 (4)C6—O3—C7—C8178.7 (3)
C7—O3—C6—C4179.3 (2)C15—C13—C14—C160.6 (4)
C2—C4—C6—O3179.7 (2)C12—C13—C14—C16178.4 (3)
C10—C4—C6—O31.0 (4)C6—C5—C3—C10.4 (5)
C2—C4—C6—C50.8 (4)C2—C1—C3—C50.4 (5)
C10—C4—C6—C5178.5 (3)Cl1—C1—C3—C5179.9 (2)
C2—C4—C10—O22.7 (4)O3—C7—C8—C9158 (26)
C6—C4—C10—O2178.0 (2)C13—C14—C16—C180.1 (5)
C2—C4—C10—C11177.9 (3)C17—C18—C16—C140.3 (5)
C6—C4—C10—C111.3 (4)C19—C18—C16—C14178.2 (3)
O2—C10—C11—C121.0 (4)C17—C18—C19—F1130.3 (4)
C4—C10—C11—C12178.2 (2)C16—C18—C19—F151.1 (5)
O1—C12—C11—C102.2 (4)C17—C18—C19—F2108.6 (4)
C13—C12—C11—C10175.2 (2)C16—C18—C19—F269.9 (4)
C14—C13—C15—C170.7 (4)C17—C18—C19—F38.7 (5)
C12—C13—C15—C17178.3 (3)C16—C18—C19—F3172.7 (3)
O3—C6—C5—C3179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H24···O10.821.792.529 (3)149
C11—H11···O30.932.092.747 (3)126
C7—H7B···O1i0.972.623.476 (4)147
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H24···O10.821.792.529 (3)149
C11—H11···O30.932.092.747 (3)126
C7—H7B···O1i0.972.623.476 (4)147
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

AD wishes to express her gratitude to the University Grant commission (UGC), New Delhi, for financial assistance in the form of a JRF for the accomplishment of this work.

References

First citationAndrae, I., Bringhen, A., Böhm, F., Gonzenbach, H., Hill, T., Mulroy, L. & Truscott, T. A. (1997). J. Photochem. Photobiol. B, 37, 147–150.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrouse, G. D., McGowan, M. J. & Boisvenue, R. J. (1989). J. Med. Chem. 32, 2148–2151.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDiana, G. D., Carabateas, P. M., Johnson, R. E., Williams, G. L., Pancic, F. & Collins, J. C. (1978). J. Med. Chem. 21, 889–894.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNishiyama, T., Shiotsu, S. & Tsujita, H. (2002). Polym. Degrad. Stab. 76, 435–439.  Web of Science CrossRef CAS Google Scholar
First citationSheikh, J. I., Ingle, V. N. & Juneja, H. D. (2009). E-J. Chem. 6, 705–712.  CrossRef CAS Google Scholar
First citationSheikh, J., Juneja, H., Ingle, V., Ali, P. & Hadda, T. B. (2013). J. Saudi Chem. Soc. 17, 269–276.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTchertanov, L. & Mouscadet, J. F. (2007). J. Med. Chem. 50, 1133–1145.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds