organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of pencycuron

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 June 2015; accepted 29 June 2015; online 4 July 2015)

In the title compound [systematic name: 1-(4-chloro­benz­yl)-1-cyclo­pentyl-3-phenyl­urea], C19H21ClN2O, which is a urea fungicide, the cyclo­pentyl ring adopts an envelope conformation, with one of the methyl­ene C atoms adjacent to the C atom bonding to the N atom as the flap. The dihedral angles between the mean planes of the central cyclo­pentyl ring (all atoms) and the chloro­benzyl and phenyl rings are 77.96 (6) and 57.77 (7)°, respectively. In the crystal, N—H⋯O hydrogen bonds link adjacent mol­ecules, forming C(4) chains propagating along the b-axis direction. The chains are linked by weak ππ inter­actions between the chloro­benzene rings [centroid–centroid separation = 3.9942 (9) Å], resulting in two-dimensional networks extending parellel to the (110) plane.

1. Related literature

For information on the fungicidal properties of the title compound, see: Pal et al. (2005[Pal, P., Chakrabarti, K., Chakraborty, A. & Chowdhury, A. (2005). Pest. Manag. Sci. 61, 1220-1223.]). For a related crystal structure, see: Bjerglund et al. (2012[Bjerglund, K., Lindhardt, A. T. & Skrydstrup, T. (2012). J. Org. Chem. 77, 3793-3799.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H21ClN2O

  • Mr = 328.83

  • Orthorhombic, P b c a

  • a = 12.1585 (5) Å

  • b = 8.6721 (4) Å

  • c = 32.6152 (12) Å

  • V = 3438.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.50 × 0.11 × 0.09 mm

2.2. Data collection

  • Bruker APEX-II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.980

  • 27037 measured reflections

  • 3374 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.04

  • 3374 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.828 (19) 2.081 (19) 2.8838 (17) 163.1 (17)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pencycuron, [systematic name: 1-(4-chlorobenzyl)-1-cyclopentyl-3-phenylurea], is a urea fungicide and it has been used for the control of diseases in various crops, including rice (Pal et al., 2005). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angles between the mean planes of the central cyclopentyl ring [r.m.s. deviation = 0.1693] and the chlorobenzyl and phenyl rings are 77.96 (6) and 57.778 (7)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Bjerglund et al., 2012).

In the crystal (Fig. 2), N—H···O hydrogen bonds link adjacent molecules, forming a one-dimensional chains along the b axis direction (Table. 1). The chains are linked by weak ππ interactions [Cg1···Cg1ii, 3.9942 (9) Å], resulting in a two-dimensional networks parellel to the (110) plane (Cg1 is the centroid of the C1–C6 ring)[for symmetry codes: (ii), -x, -y, -z].

Related literature top

For information on the fungicidal properties of the title compound, see: Pal et al. (2005). For a related crystal structure, see: Bjerglund et al. (2012).

Experimental top

The title compound was purchased from the Dr Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave colourless needles.

Refinement top

The N-bound H atom was located in a difference Fourier map and freely refined (N—H = 0.828 (19) Å). The C-bound H atoms were positioned geometrically and refined using a riding model with d(C—H) = 1.00 Å, Uiso = 1.2Ueq(C) for Csp3—H, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for CH2 groups, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H.

Structure description top

Pencycuron, [systematic name: 1-(4-chlorobenzyl)-1-cyclopentyl-3-phenylurea], is a urea fungicide and it has been used for the control of diseases in various crops, including rice (Pal et al., 2005). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angles between the mean planes of the central cyclopentyl ring [r.m.s. deviation = 0.1693] and the chlorobenzyl and phenyl rings are 77.96 (6) and 57.778 (7)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Bjerglund et al., 2012).

In the crystal (Fig. 2), N—H···O hydrogen bonds link adjacent molecules, forming a one-dimensional chains along the b axis direction (Table. 1). The chains are linked by weak ππ interactions [Cg1···Cg1ii, 3.9942 (9) Å], resulting in a two-dimensional networks parellel to the (110) plane (Cg1 is the centroid of the C1–C6 ring)[for symmetry codes: (ii), -x, -y, -z].

For information on the fungicidal properties of the title compound, see: Pal et al. (2005). For a related crystal structure, see: Bjerglund et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The intermolecular N—H···O hydrogen bonds and weak ππ interactions are shown as dashed lines.
1-(4-Chlorobenzyl)-1-cyclopentyl-3-phenylurea top
Crystal data top
C19H21ClN2ODx = 1.270 Mg m3
Mr = 328.83Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6227 reflections
a = 12.1585 (5) Åθ = 2.5–27.3°
b = 8.6721 (4) ŵ = 0.23 mm1
c = 32.6152 (12) ÅT = 173 K
V = 3438.9 (2) Å3Needle, colourless
Z = 80.50 × 0.11 × 0.09 mm
F(000) = 1392
Data collection top
Bruker APEX-II CCD
diffractometer
2698 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.0°, θmin = 2.1°
Tmin = 0.894, Tmax = 0.980h = 1414
27037 measured reflectionsk = 610
3374 independent reflectionsl = 4040
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0384P)2 + 1.2518P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3374 reflectionsΔρmax = 0.17 e Å3
212 parametersΔρmin = 0.24 e Å3
Crystal data top
C19H21ClN2OV = 3438.9 (2) Å3
Mr = 328.83Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1585 (5) ŵ = 0.23 mm1
b = 8.6721 (4) ÅT = 173 K
c = 32.6152 (12) Å0.50 × 0.11 × 0.09 mm
Data collection top
Bruker APEX-II CCD
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2698 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.980Rint = 0.039
27037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
3374 reflectionsΔρmin = 0.24 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23590 (4)0.16966 (8)0.05434 (2)0.06131 (19)
O10.15878 (8)0.14846 (11)0.15909 (3)0.0287 (2)
N10.08966 (10)0.07872 (15)0.13656 (4)0.0278 (3)
N20.23017 (10)0.07453 (16)0.18515 (4)0.0288 (3)
H2N0.2489 (14)0.162 (2)0.1777 (5)0.039 (5)*
C10.17668 (14)0.1232 (2)0.00710 (5)0.0384 (4)
C20.22919 (13)0.0213 (2)0.01841 (5)0.0397 (4)
H20.29750.02330.01060.048*
C30.18127 (12)0.0160 (2)0.05576 (5)0.0355 (4)
H30.21730.08630.07360.043*
C40.08150 (12)0.04807 (17)0.06739 (4)0.0277 (3)
C50.03091 (13)0.15110 (19)0.04097 (5)0.0327 (4)
H50.03730.19620.04860.039*
C60.07769 (14)0.1895 (2)0.00376 (5)0.0390 (4)
H60.04230.26040.01410.047*
C70.02356 (12)0.00774 (19)0.10708 (4)0.0298 (3)
H7A0.04280.05350.10050.036*
H7B0.00120.10450.12030.036*
C80.06470 (12)0.24352 (18)0.14250 (5)0.0315 (4)
H80.11900.28540.16270.038*
C90.07296 (15)0.3403 (2)0.10377 (5)0.0436 (4)
H9A0.03810.28730.08020.052*
H9B0.15060.36290.09690.052*
C100.01105 (17)0.4869 (2)0.11481 (6)0.0532 (5)
H10A0.01490.54060.08980.064*
H10B0.05840.55790.13070.064*
C110.08580 (17)0.4315 (2)0.14061 (7)0.0565 (5)
H11A0.15200.41820.12330.068*
H11B0.10270.50700.16250.068*
C120.05145 (14)0.2774 (2)0.15928 (6)0.0421 (4)
H12A0.10330.19490.15110.050*
H12B0.05020.28410.18960.050*
C130.15966 (11)0.00577 (17)0.16037 (4)0.0249 (3)
C140.29239 (11)0.00718 (17)0.21711 (4)0.0255 (3)
C150.39770 (12)0.06323 (18)0.22439 (5)0.0300 (3)
H150.42830.13870.20660.036*
C160.45819 (13)0.0096 (2)0.25737 (5)0.0357 (4)
H160.52950.05000.26250.043*
C170.41528 (14)0.1025 (2)0.28280 (5)0.0381 (4)
H170.45690.13960.30540.046*
C180.31135 (14)0.16039 (19)0.27514 (5)0.0354 (4)
H180.28220.23900.29230.043*
C190.24920 (12)0.10478 (18)0.24270 (4)0.0293 (3)
H190.17720.14340.23810.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0543 (3)0.0950 (5)0.0346 (2)0.0261 (3)0.0028 (2)0.0022 (3)
O10.0304 (5)0.0214 (5)0.0343 (6)0.0008 (5)0.0029 (4)0.0001 (5)
N10.0293 (6)0.0238 (7)0.0303 (6)0.0018 (6)0.0084 (5)0.0012 (6)
N20.0295 (7)0.0207 (6)0.0361 (7)0.0033 (6)0.0097 (5)0.0054 (6)
C10.0388 (9)0.0465 (10)0.0298 (8)0.0157 (8)0.0022 (7)0.0049 (8)
C20.0300 (8)0.0476 (11)0.0414 (9)0.0029 (8)0.0011 (7)0.0082 (9)
C30.0303 (8)0.0365 (9)0.0396 (9)0.0018 (7)0.0046 (7)0.0005 (8)
C40.0274 (7)0.0269 (8)0.0290 (7)0.0030 (7)0.0073 (6)0.0041 (7)
C50.0300 (8)0.0331 (9)0.0350 (8)0.0003 (7)0.0070 (6)0.0014 (7)
C60.0408 (9)0.0412 (10)0.0352 (8)0.0044 (8)0.0113 (7)0.0056 (8)
C70.0254 (7)0.0316 (9)0.0324 (8)0.0024 (7)0.0056 (6)0.0017 (7)
C80.0354 (8)0.0245 (8)0.0345 (8)0.0026 (7)0.0091 (7)0.0022 (7)
C90.0495 (10)0.0358 (10)0.0454 (10)0.0022 (8)0.0033 (8)0.0120 (9)
C100.0705 (13)0.0338 (10)0.0552 (11)0.0087 (10)0.0153 (10)0.0118 (9)
C110.0532 (11)0.0433 (12)0.0730 (14)0.0190 (10)0.0099 (10)0.0020 (11)
C120.0459 (10)0.0343 (9)0.0459 (10)0.0084 (8)0.0025 (8)0.0006 (8)
C130.0231 (7)0.0246 (8)0.0269 (7)0.0011 (6)0.0017 (6)0.0016 (7)
C140.0265 (7)0.0211 (7)0.0290 (7)0.0047 (6)0.0049 (6)0.0033 (6)
C150.0278 (8)0.0253 (8)0.0369 (8)0.0015 (6)0.0026 (6)0.0027 (7)
C160.0271 (7)0.0346 (9)0.0454 (9)0.0065 (7)0.0104 (7)0.0104 (8)
C170.0430 (9)0.0375 (10)0.0339 (8)0.0145 (8)0.0141 (7)0.0038 (8)
C180.0440 (9)0.0297 (9)0.0326 (8)0.0073 (8)0.0023 (7)0.0018 (7)
C190.0286 (7)0.0249 (8)0.0342 (8)0.0023 (7)0.0038 (6)0.0013 (7)
Geometric parameters (Å, º) top
Cl1—C11.7478 (17)C8—H81.0000
O1—C131.2382 (17)C9—C101.521 (3)
N1—C131.3654 (18)C9—H9A0.9900
N1—C71.4604 (18)C9—H9B0.9900
N1—C81.474 (2)C10—C111.525 (3)
N2—C131.3686 (19)C10—H10A0.9900
N2—C141.4141 (18)C10—H10B0.9900
N2—H2N0.828 (19)C11—C121.527 (3)
C1—C21.371 (2)C11—H11A0.9900
C1—C61.380 (2)C11—H11B0.9900
C2—C31.389 (2)C12—H12A0.9900
C2—H20.9500C12—H12B0.9900
C3—C41.387 (2)C14—C191.384 (2)
C3—H30.9500C14—C151.390 (2)
C4—C51.385 (2)C15—C161.384 (2)
C4—C71.515 (2)C15—H150.9500
C5—C61.381 (2)C16—C171.380 (2)
C5—H50.9500C16—H160.9500
C6—H60.9500C17—C181.382 (2)
C7—H7A0.9900C17—H170.9500
C7—H7B0.9900C18—C191.387 (2)
C8—C91.520 (2)C18—H180.9500
C8—C121.543 (2)C19—H190.9500
C13—N1—C7116.23 (12)H9A—C9—H9B109.0
C13—N1—C8125.02 (12)C9—C10—C11104.42 (15)
C7—N1—C8118.11 (12)C9—C10—H10A110.9
C13—N2—C14124.07 (13)C11—C10—H10A110.9
C13—N2—H2N117.8 (12)C9—C10—H10B110.9
C14—N2—H2N116.5 (12)C11—C10—H10B110.9
C2—C1—C6121.24 (15)H10A—C10—H10B108.9
C2—C1—Cl1119.44 (13)C10—C11—C12106.55 (15)
C6—C1—Cl1119.32 (14)C10—C11—H11A110.4
C1—C2—C3119.13 (15)C12—C11—H11A110.4
C1—C2—H2120.4C10—C11—H11B110.4
C3—C2—H2120.4C12—C11—H11B110.4
C4—C3—C2120.91 (15)H11A—C11—H11B108.6
C4—C3—H3119.5C11—C12—C8105.99 (14)
C2—C3—H3119.5C11—C12—H12A110.5
C5—C4—C3118.45 (14)C8—C12—H12A110.5
C5—C4—C7118.30 (13)C11—C12—H12B110.5
C3—C4—C7123.23 (14)C8—C12—H12B110.5
C6—C5—C4121.28 (15)H12A—C12—H12B108.7
C6—C5—H5119.4O1—C13—N1120.78 (13)
C4—C5—H5119.4O1—C13—N2122.27 (13)
C1—C6—C5118.98 (16)N1—C13—N2116.96 (13)
C1—C6—H6120.5C19—C14—C15119.46 (13)
C5—C6—H6120.5C19—C14—N2122.10 (13)
N1—C7—C4115.17 (12)C15—C14—N2118.31 (14)
N1—C7—H7A108.5C16—C15—C14120.32 (15)
C4—C7—H7A108.5C16—C15—H15119.8
N1—C7—H7B108.5C14—C15—H15119.8
C4—C7—H7B108.5C17—C16—C15120.21 (15)
H7A—C7—H7B107.5C17—C16—H16119.9
N1—C8—C9114.36 (13)C15—C16—H16119.9
N1—C8—C12114.81 (13)C16—C17—C18119.51 (15)
C9—C8—C12104.49 (13)C16—C17—H17120.2
N1—C8—H8107.6C18—C17—H17120.2
C9—C8—H8107.6C17—C18—C19120.64 (16)
C12—C8—H8107.6C17—C18—H18119.7
C8—C9—C10103.43 (14)C19—C18—H18119.7
C8—C9—H9A111.1C14—C19—C18119.83 (14)
C10—C9—H9A111.1C14—C19—H19120.1
C8—C9—H9B111.1C18—C19—H19120.1
C10—C9—H9B111.1
C6—C1—C2—C30.2 (3)C9—C10—C11—C1224.7 (2)
Cl1—C1—C2—C3179.54 (13)C10—C11—C12—C81.9 (2)
C1—C2—C3—C40.2 (3)N1—C8—C12—C11147.64 (15)
C2—C3—C4—C50.4 (2)C9—C8—C12—C1121.56 (18)
C2—C3—C4—C7177.90 (15)C7—N1—C13—O16.1 (2)
C3—C4—C5—C60.3 (2)C8—N1—C13—O1164.53 (14)
C7—C4—C5—C6178.12 (14)C7—N1—C13—N2173.51 (12)
C2—C1—C6—C50.4 (3)C8—N1—C13—N215.8 (2)
Cl1—C1—C6—C5179.41 (12)C14—N2—C13—O113.1 (2)
C4—C5—C6—C10.1 (2)C14—N2—C13—N1167.32 (13)
C13—N1—C7—C481.80 (16)C13—N2—C14—C1940.2 (2)
C8—N1—C7—C4106.87 (15)C13—N2—C14—C15144.02 (15)
C5—C4—C7—N1169.45 (13)C19—C14—C15—C161.1 (2)
C3—C4—C7—N112.2 (2)N2—C14—C15—C16174.79 (14)
C13—N1—C8—C9131.17 (15)C14—C15—C16—C171.4 (2)
C7—N1—C8—C958.34 (18)C15—C16—C17—C180.2 (2)
C13—N1—C8—C12108.04 (16)C16—C17—C18—C191.3 (2)
C7—N1—C8—C1262.45 (18)C15—C14—C19—C180.3 (2)
N1—C8—C9—C10163.14 (14)N2—C14—C19—C18176.06 (14)
C12—C8—C9—C1036.79 (18)C17—C18—C19—C141.5 (2)
C8—C9—C10—C1138.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.828 (19)2.081 (19)2.8838 (17)163.1 (17)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.828 (19)2.081 (19)2.8838 (17)163.1 (17)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

References

First citationBjerglund, K., Lindhardt, A. T. & Skrydstrup, T. (2012). J. Org. Chem. 77, 3793–3799.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPal, P., Chakrabarti, K., Chakraborty, A. & Chowdhury, A. (2005). Pest. Manag. Sci. 61, 1220–1223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds