research communications
Anomalous halogen bonds in the crystal structures of 1,2,3-tribromo-5-nitrobenzene and 1,3-dibromo-2-iodo-5-nitrobenzene
aCentro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22510 Tijuana, B.C., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The title trihalogenated nitrobenzene derivatives, C6H2Br3NO2 and C6H2Br2INO2, crystallize in triclinic and monoclinic cells, respectively, with two molecules per in each case. The of the tribromo compound features a polarized Brδ+⋯Brδ- intermolecular halogen bond. After substitution of the Br atom in the para position with respect to the nitro group, the network of X⋯X halogen contacts is reorganized. Two intermolecular polarized halogen bonds are then observed, which present the uncommon polarization Brδ+⋯Iδ-: the more electronegative site (Br) behaves as a donor and the less electronegative site (I) as an acceptor for the charge transfer.
Keywords: crystal structure; polyhalogenated benzene; halogen bond; bromine; iodine.
1. Chemical context
Within the large class of non-covalent interactions studied in chemical crystallography, halogen bonds are of special interest in crystal engineering. The stabilizing interaction between a halogen atom and a X⋯B, shares many aspects with classical hydrogen bonds, but is more directional. On the other hand, halogen contacts X⋯X are more difficult to conceptualize (Wang et al., 2014), for instance because the charge transfer in the Br⋯Br contact is not as obvious as in hydrogen bonds. Evidence supporting the importance of this topic is the recent organization of an international meeting dedicated to halogen bonding (Erdelyi, 2014).
In this context, we are engaged in the synthesis and structural characterization of a series of halogen-substituted nitrobenzenes. The present communication describes two closely related compounds in the series, which differ only by the halogen atom substituting at the ring position para to the nitro group. Despite the small chemical modification, the resulting crystal structures are very different, as a consequence of a different network of halogen bonds.
2. Structural commentary
Both compounds crystallize with two molecules in the ), is a P crystal isomorphous to the chloro analogue (Bhar et al., 1995), although the unit-cell parameters are significantly larger for (I) compared to the chloro compound: the cell volume is increased by more than 7%. In the present work, we retained the Niggli reduced triclinic cell (a < b < c), while Bhar et al. used a non-reduced cell. Moreover, the content was defined in order to emphasize the strongest Br⋯Br bond in (I). The bromo-iodo derivative (II, Fig. 2) crystallizes in the monoclinic system and, in that case, the standard setting was used for P21/c.
but in different space groups. The tribromo derivative, (I, Fig. 1The C—halogen bond lengths are as expected. In (I), C—Br distances are in the range 1.821 (12)–1.886 (11) Å, slightly shorter than C—Br bond lengths observed in hexabromobenzene, 1.881 Å (T = 100 K; Reddy et al., 2006) or 1.871 Å (synchrotron study, T = 100 K; Brezgunova et al., 2012). In (II), C—Br bond lengths are longer, 1.875 (13) to 1.895 (14) Å, while the C—I bond lengths, 2.088 (12) and 2.074 (14) Å, may be compared to bonds in hexaiodobenzene, 2.109 Å (T = 100 K; Ghosh et al., 2007) or 1,2,3-triiodobenzene, 2.090 Å (T = 223 K, Novak & Li, 2007). Indeed, differences in bond lengths between perhalogenated and trihalogenated derivatives are within experimental errors, and the substitution of the 5-position by the nitro electron-withdrawing group in (I) and (II) has probably little influence on these bonds.
The important feature in these halogenated molecules is rather the possibility of steric repulsion between vicinal halogen atoms, which is related to the reduction of endocyclic angles. Regarding this point, it is worth reading the Acta E article about 1,2,3-triiodobenzene (Novak & Li, 2007). As in polyiodo derivatives, intramolecular steric crowding between the halogen atoms in (I) and (II) is offset by benzene ring distortion. As a consequence, the C1—C2—C3 and equivalent C11—C12—C13 angles are systematically less than 120°: 116.2 (11) and 118.8 (13)° in (I); 118.1 (12) and 117.3 (13)° in (II). Again, the nitro group has little influence on intramolecular halogen⋯halogen contacts. For instance, in 1,3-dibromo-2-iodobenzene, the C1—C2—C3 angle is 118.0° (Schmidbaur et al., 2004), very close to that observed in (II), which presents the same halogen substitution.
The 5-nitro substituent is almost conjugated with the benzene nucleus in (I): the dihedral angle between the NO2 plane and the benzene ring is 6(2) and 1(2)° for each independent molecule. For (II), twisting of the NO2 groups is more significant, with dihedral angles of 10 (1) and 7(1)°. This near planar conformation is identical to that observed for 1,2,3-trichloro-5-nitrobenzene (Bhar et al., 1995), but contrasts with the twisted conformation observed in perhalogenated nitrobenzene derivatives: pentachloronitrobenzene (twist angle of NO2: 62°; Tanaka et al., 1974) and 1-bromo-2,3,5,6-tetrafluoro-4-nitrobenzene (twist angle of NO2: 41.7 (3)°; Stein et al., 2011). It thus seems clear that twisting of the nitro group with respect to the benzene ring in nitrobenzene derivatives is a direct consequence of intramolecular crowding with ortho substituents. For 1,2,3-halogenated-5-nitrobenzenes such as (I) and (II), a planar conformation should be expected as a rule.
3. Supramolecular features
The crystal structures are directed by intermolecular weak halogen bonds, also known as type-II interactions in the Desiraju classification scheme (Reddy et al., 2006). Such a bond is present in the of (I), between Br2 and Br11 (Fig. 3). The type-II arrangement is characterized by angles θ1 = C2—Br2⋯Br11 and θ2 = C11—Br11⋯Br2, which should be close to 180 and 90°, respectively. For (I), observed angles are θ1 = 165.2 (5)° and θ2 = 82.3 (5)°. The crystal packing thus polarizes the involved halogen atoms, forming the halogen bond Br2δ+⋯Br11δ-. This dimolecular polar unit is connected via inversion centers to neighboring units in the cell, forming C—H⋯Br hydrogen bonds, and O⋯Br contacts. This packing motif induces secondary halogen⋯halogen contacts, which are clearly unpolarized. These type-I interactions are characterized by angles θ1 ≃ θ2 (Table 1, entries 2 and 3) and display larger Br⋯Br separations compared to the polarized halogen bond (entry 1), in which electrostatic forces bring the atoms into close contact.
The substitution of one Br atom by I, to form crystal (II), changes dramatically the packing structure, affording a more complex network of halogen contacts (Fig. 4 and Table 2). Within the the type-II polarized contact is Br1⋯I12 (Table 2, entry 1). However, θ angles for this bond deviate from ideal values, and, surprisingly, the bond is polarized in the wrong way, Brδ+⋯Iδ-. The opposite polarization was expected for this bond, due to the lower and higher polarizability of iodine compared to bromine. The other significant contact observed in the is a Br⋯Br unpolarized contact. The network of halogen bonds is expanded in the [100] direction by Br11, which gives a bifurcated contact with I2 and Br3 (Table 2, entries 2 and 4). One contact is polarized, with the polarization, once again, oriented in the unexpected way, I2δ-⋯Br11δ+. These anomalous halogen bonds are not present in other mixed halogen derivatives. Indeed, in 1,3-dibromo-2-iodobenzene (Schmidbaur et al., 2004), the iodine atom is not engaged in halogen bonding.
|
4. Database survey
The current release of the CSD (Version 5.36 with all updates; Groom & Allen, 2014), contains many structures of halogen-substituted nitrobenzene, with Cl (e.g. Bhar et al., 1995; Tanaka et al., 1974), Br (e.g. Olaru et al., 2014), and I (Thalladi et al., 1996). This series is completed with nitrophenol derivatives, for example 2,3-difluoro-4-iodo-6-nitrophenol (Francke et al., 2010). Structures of pentachlorophenol (Brezgunova et al., 2012) and pentabromophenol (Betz et al., 2008; Brezgunova et al., 2012) are also available.
Regarding poly- and per-halogenated benzene structures, an impressive series of 23 compounds has been described, including Cl, Br, I and Me as substituents, generating a variety of molecular symmetries (Reddy et al., 2006). The structure of D6h-perhalogenated benzene has been reported with F (Shorafa et al., 2009), Cl (Brown & Strydom, 1974; Reddy et al., 2006), Br (Baharie & Pawley, 1979; Reddy et al., 2006; Brezgunova et al., 2012) and I (Ghosh et al., 2007). The former is a Z′ = 2 crystal, while others are Z′=1 crystals.
5. Synthesis and crystallization
Compounds (I) and (II) were synthesized from 2,6-dibromo-4-nitroaniline (Bryant et al., 1998), as depicted in Fig. 5.
Synthesis of (I). A solution of 2,6-dibromo-4-nitroaniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K, and concentrated H2SO4 (7 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO2 (0.708 g, 10.26 mmol) was added in one batch. The reaction was stirred at this temperature for 2 h to afford the diazonium salt. An aqueous solution (17.67 ml) of CuBr (4.95 g, 34.54 mmol) and 47% HBr (17.67 ml) was warmed to 343 K, and the diazotization solution previously prepared was added in one batch with stirring. The mixture was kept at 343 K for 1 h, and then left to cool overnight. The reaction was neutralized with NaOH and extracted with CH2Cl2 (3 × 30 ml). The resulting solution was concentrated under vacuum and the crude material was purified by flash (petroleum ether/CH2Cl2 8/2, Rf = 0.49) to give (I). Crystals were obtained by slow evaporation of a methanol/ethyl ether solution (yield: 0.952 g, 2.65 mmol, 78%). m.p. 380–382 K. IR (KBr, cm−1): 3090 (Ar—H); 1583 (C=C); 1526, 1342 (N=O); 738 (C—Br). 1H-NMR (600 MHz, CDCl3): δ 8.43 (s, H-4, H-6). 13C-NMR (150 MHz, CDCl3): δ 146.8, 135.7, 127.0, 126.9, 126.8. EIMS m/z: [M+] 357 (34), [M++2] 359 (7), [M++4] 361 (100), [M++6] 363 (36) [M+-NO2] 311 (12).
Synthesis of (II). A solution of 2,6-dibromo-4-nitroaniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K in an ice-salt bath, and concentrated H2SO4 (3 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO2 (0.242 g, 3.516 mmol) was added in one batch. The reaction was stirred at this temperature for 30 min to afford the diazonium salt. An aqueous solution (10 ml) of KI (5.635 g, 33.95 mmol) was prepared, and the diazotization solution previously prepared was added in one batch. The mixture was then further stirred for 1 h. The reaction was neutralized with NaOH, extracted with CH2Cl2 (3 × 30 ml), and concentrated under vacuum. The crude material was purified by flash (petroleum ether/CH2Cl2 4/1, Rf = 0.31) to give (II). Crystals were obtained by slow evaporation of an acetone/methanol/CH2Cl2 solution (yield: 1.21 g, 2.98 mmol, 88%). m.p. 415–417 K. IR (KBr, cm−1): 3010 (Ar—H); 1620, 1516 (C=C); 1336 (N=O). 1H-NMR (600 MHz, CDCl3): δ 8.38 (s, H-4, H-6). 13C-NMR (150 MHz, CDCl3): δ 146.1, 142.4, 127.4, 124.1. EIMS m/z: [M+] 405 (42), [M++2] 407 (100), [M++4] 409 (48).
6. Refinement
Crystal data, data collection and structure and (II) are summarized in Table 3. The absorption correction for (I) was challenging, and eventually carried out by applying DIFABS on the complete isotropic model (Walker & Stuart, 1983). In the case of (II), measured ψ-scans were used. H atoms were refined as riding to their carrier C atoms, with C—H bond lengths fixed at 0.93 Å and with Uiso(H) = 1.2Ueq(carrier atom).
details for (I)
|
Supporting information
https://doi.org/10.1107/S2056989015013377/hb7459sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013377/hb7459Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989015013377/hb7459IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015013377/hb7459Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015013377/hb7459IIsup5.cml
For both compounds, data collection: XSCANS (Bruker, 1997); cell
XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C6H2Br3NO2 | F(000) = 664 |
Mr = 359.82 | Dx = 2.688 Mg m−3 |
Triclinic, P1 | Melting point: 380 K |
a = 7.641 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.040 (5) Å | Cell parameters from 48 reflections |
c = 14.917 (6) Å | θ = 4.8–12.4° |
α = 83.91 (3)° | µ = 13.57 mm−1 |
β = 79.86 (4)° | T = 298 K |
γ = 81.49 (4)° | Irregular, colourless |
V = 889.2 (8) Å3 | 0.42 × 0.40 × 0.30 mm |
Z = 4 |
Bruker P4 diffractometer | 1503 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.120 |
Graphite monochromator | θmax = 25.1°, θmin = 2.6° |
ω scans | h = −8→9 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) k = −9→9 |
Tmin = 0.0002, Tmax = 0.001 | l = 0→17 |
6070 measured reflections | 3 standard reflections every 97 reflections |
3141 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.196 | w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.47 | (Δ/σ)max < 0.001 |
3141 reflections | Δρmax = 0.79 e Å−3 |
218 parameters | Δρmin = −1.00 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.0063 (12) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.1438 (2) | 0.3194 (2) | 0.05082 (13) | 0.0863 (6) | |
Br2 | 0.2958 (2) | 0.0254 (2) | 0.20089 (11) | 0.0855 (6) | |
Br3 | 0.4312 (2) | −0.3604 (2) | 0.13778 (10) | 0.0791 (5) | |
C1 | 0.2177 (18) | 0.1018 (19) | 0.0215 (9) | 0.070 (4) | |
C2 | 0.2831 (17) | −0.0235 (17) | 0.0860 (9) | 0.063 (3) | |
C3 | 0.3360 (14) | −0.1910 (16) | 0.0555 (8) | 0.056 (3) | |
C4 | 0.3227 (18) | −0.2259 (19) | −0.0296 (9) | 0.069 (4) | |
H4 | 0.3573 | −0.3355 | −0.0465 | 0.083* | |
C5 | 0.2615 (17) | −0.1072 (16) | −0.0895 (10) | 0.064 (3) | |
C6 | 0.2067 (16) | 0.0562 (16) | −0.0661 (9) | 0.059 (3) | |
H6 | 0.1619 | 0.1373 | −0.1085 | 0.071* | |
N1 | 0.2502 (16) | −0.1453 (18) | −0.1809 (8) | 0.075 (3) | |
O1 | 0.2967 (16) | −0.2925 (16) | −0.2012 (7) | 0.094 (3) | |
O2 | 0.1923 (18) | −0.0342 (15) | −0.2318 (8) | 0.105 (4) | |
Br11 | 0.3943 (2) | 0.2012 (2) | 0.39885 (13) | 0.0891 (6) | |
Br12 | 0.1013 (2) | 0.1170 (2) | 0.58586 (10) | 0.0795 (6) | |
Br13 | −0.3231 (2) | 0.2845 (2) | 0.59130 (11) | 0.0865 (6) | |
C11 | 0.151 (2) | 0.2912 (18) | 0.4092 (12) | 0.077 (4) | |
C12 | 0.0303 (18) | 0.2505 (18) | 0.4860 (10) | 0.064 (3) | |
C13 | −0.150 (2) | 0.323 (2) | 0.4913 (9) | 0.073 (4) | |
C14 | −0.2002 (19) | 0.4188 (19) | 0.4208 (9) | 0.070 (4) | |
H14 | −0.3207 | 0.4619 | 0.4232 | 0.084* | |
C15 | −0.079 (2) | 0.4583 (18) | 0.3427 (8) | 0.068 (4) | |
C16 | 0.0943 (19) | 0.3923 (18) | 0.3375 (9) | 0.068 (4) | |
H16 | 0.1756 | 0.4155 | 0.2850 | 0.082* | |
N11 | −0.1327 (18) | 0.5801 (16) | 0.2644 (10) | 0.076 (3) | |
O11 | −0.2882 (14) | 0.6432 (13) | 0.2757 (7) | 0.083 (3) | |
O12 | −0.0224 (17) | 0.5952 (18) | 0.1956 (8) | 0.110 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0776 (11) | 0.0671 (10) | 0.1094 (12) | −0.0047 (8) | −0.0022 (9) | −0.0140 (8) |
Br2 | 0.0876 (11) | 0.0974 (13) | 0.0716 (9) | −0.0124 (9) | −0.0075 (8) | −0.0164 (8) |
Br3 | 0.0765 (10) | 0.0789 (11) | 0.0793 (10) | −0.0043 (8) | −0.0186 (8) | 0.0070 (8) |
C1 | 0.062 (8) | 0.078 (10) | 0.072 (9) | −0.013 (7) | −0.022 (7) | 0.001 (7) |
C2 | 0.058 (8) | 0.068 (9) | 0.062 (8) | −0.006 (7) | 0.004 (6) | −0.026 (7) |
C3 | 0.034 (6) | 0.064 (8) | 0.060 (7) | −0.001 (6) | 0.001 (6) | 0.012 (6) |
C4 | 0.063 (8) | 0.072 (9) | 0.071 (9) | 0.022 (7) | −0.018 (7) | −0.030 (7) |
C5 | 0.056 (8) | 0.051 (8) | 0.087 (10) | −0.015 (6) | −0.021 (7) | 0.009 (7) |
C6 | 0.062 (8) | 0.052 (8) | 0.073 (8) | −0.019 (6) | −0.033 (7) | 0.003 (6) |
N1 | 0.079 (8) | 0.081 (9) | 0.080 (8) | −0.016 (7) | −0.036 (7) | −0.026 (7) |
O1 | 0.119 (9) | 0.095 (9) | 0.071 (6) | −0.005 (7) | −0.017 (6) | −0.032 (6) |
O2 | 0.151 (11) | 0.087 (9) | 0.089 (7) | −0.010 (8) | −0.061 (8) | 0.004 (6) |
Br11 | 0.0644 (10) | 0.0993 (13) | 0.1026 (12) | 0.0018 (9) | −0.0185 (9) | −0.0137 (10) |
Br12 | 0.0955 (12) | 0.0701 (10) | 0.0769 (9) | −0.0090 (8) | −0.0294 (9) | −0.0017 (7) |
Br13 | 0.0785 (11) | 0.0945 (13) | 0.0808 (10) | −0.0202 (9) | 0.0012 (8) | 0.0067 (9) |
C11 | 0.084 (10) | 0.050 (8) | 0.102 (11) | −0.013 (7) | −0.021 (9) | −0.015 (8) |
C12 | 0.060 (8) | 0.062 (8) | 0.073 (9) | −0.018 (7) | −0.012 (8) | −0.008 (7) |
C13 | 0.081 (10) | 0.082 (10) | 0.060 (8) | −0.020 (8) | −0.024 (7) | 0.009 (7) |
C14 | 0.056 (8) | 0.080 (10) | 0.065 (8) | −0.010 (7) | 0.011 (7) | −0.007 (7) |
C15 | 0.088 (10) | 0.077 (10) | 0.040 (6) | 0.019 (8) | −0.034 (7) | −0.004 (6) |
C16 | 0.070 (9) | 0.072 (9) | 0.062 (8) | −0.028 (8) | 0.006 (7) | −0.003 (7) |
N11 | 0.067 (8) | 0.065 (8) | 0.093 (10) | −0.005 (6) | −0.017 (7) | 0.011 (7) |
O11 | 0.074 (7) | 0.079 (7) | 0.099 (7) | 0.003 (6) | −0.032 (6) | −0.014 (6) |
O12 | 0.097 (8) | 0.144 (12) | 0.077 (7) | −0.012 (8) | −0.011 (7) | 0.028 (7) |
Br1—C1 | 1.831 (15) | Br11—C11 | 1.877 (15) |
Br2—C2 | 1.821 (12) | Br12—C12 | 1.854 (14) |
Br3—C3 | 1.886 (11) | Br13—C13 | 1.842 (15) |
C1—C6 | 1.415 (18) | C11—C16 | 1.368 (19) |
C1—C2 | 1.416 (18) | C11—C12 | 1.38 (2) |
C2—C3 | 1.445 (18) | C12—C13 | 1.410 (19) |
C3—C4 | 1.353 (17) | C13—C14 | 1.313 (18) |
C4—C5 | 1.328 (17) | C14—C15 | 1.39 (2) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C5—C6 | 1.381 (19) | C15—C16 | 1.347 (19) |
C5—N1 | 1.448 (18) | C15—N11 | 1.515 (16) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
N1—O2 | 1.194 (15) | N11—O11 | 1.211 (15) |
N1—O1 | 1.238 (16) | N11—O12 | 1.216 (16) |
C6—C1—C2 | 119.0 (13) | C16—C11—C12 | 120.4 (14) |
C6—C1—Br1 | 119.9 (9) | C16—C11—Br11 | 118.6 (13) |
C2—C1—Br1 | 121.0 (10) | C12—C11—Br11 | 120.9 (11) |
C1—C2—C3 | 116.2 (11) | C11—C12—C13 | 118.8 (13) |
C1—C2—Br2 | 121.3 (10) | C11—C12—Br12 | 122.1 (10) |
C3—C2—Br2 | 122.5 (9) | C13—C12—Br12 | 118.9 (10) |
C4—C3—C2 | 121.8 (11) | C14—C13—C12 | 118.8 (14) |
C4—C3—Br3 | 120.6 (10) | C14—C13—Br13 | 118.0 (11) |
C2—C3—Br3 | 117.6 (9) | C12—C13—Br13 | 123.1 (10) |
C5—C4—C3 | 121.5 (13) | C13—C14—C15 | 122.5 (13) |
C5—C4—H4 | 119.3 | C13—C14—H14 | 118.8 |
C3—C4—H4 | 119.3 | C15—C14—H14 | 118.8 |
C4—C5—C6 | 120.7 (13) | C16—C15—C14 | 119.2 (11) |
C4—C5—N1 | 121.1 (13) | C16—C15—N11 | 117.9 (13) |
C6—C5—N1 | 118.2 (11) | C14—C15—N11 | 122.8 (12) |
C5—C6—C1 | 120.8 (11) | C15—C16—C11 | 120.0 (14) |
C5—C6—H6 | 119.6 | C15—C16—H16 | 120.0 |
C1—C6—H6 | 119.6 | C11—C16—H16 | 120.0 |
O2—N1—O1 | 123.6 (12) | O11—N11—O12 | 127.0 (13) |
O2—N1—C5 | 118.3 (13) | O11—N11—C15 | 114.7 (13) |
O1—N1—C5 | 118.1 (12) | O12—N11—C15 | 118.1 (12) |
C6—C1—C2—C3 | 0.6 (19) | C16—C11—C12—C13 | −4 (2) |
Br1—C1—C2—C3 | 179.5 (9) | Br11—C11—C12—C13 | 179.1 (11) |
C6—C1—C2—Br2 | −178.5 (10) | C16—C11—C12—Br12 | −178.9 (11) |
Br1—C1—C2—Br2 | 0.3 (16) | Br11—C11—C12—Br12 | 4.0 (17) |
C1—C2—C3—C4 | −0.3 (19) | C11—C12—C13—C14 | 4 (2) |
Br2—C2—C3—C4 | 178.8 (11) | Br12—C12—C13—C14 | 179.4 (12) |
C1—C2—C3—Br3 | 178.0 (9) | C11—C12—C13—Br13 | −178.0 (11) |
Br2—C2—C3—Br3 | −2.8 (14) | Br12—C12—C13—Br13 | −2.7 (18) |
C2—C3—C4—C5 | 1 (2) | C12—C13—C14—C15 | −3 (2) |
Br3—C3—C4—C5 | −177.8 (11) | Br13—C13—C14—C15 | 178.7 (12) |
C3—C4—C5—C6 | −1 (2) | C13—C14—C15—C16 | 2 (2) |
C3—C4—C5—N1 | 179.1 (13) | C13—C14—C15—N11 | −174.8 (15) |
C4—C5—C6—C1 | 1 (2) | C14—C15—C16—C11 | −2 (2) |
N1—C5—C6—C1 | −178.8 (12) | N11—C15—C16—C11 | 175.4 (13) |
C2—C1—C6—C5 | −1 (2) | C12—C11—C16—C15 | 3 (2) |
Br1—C1—C6—C5 | −180.0 (10) | Br11—C11—C16—C15 | 179.8 (11) |
C4—C5—N1—O2 | 179.2 (14) | C16—C15—N11—O11 | −175.5 (13) |
C6—C5—N1—O2 | −1 (2) | C14—C15—N11—O11 | 1 (2) |
C4—C5—N1—O1 | 1 (2) | C16—C15—N11—O12 | 10 (2) |
C6—C5—N1—O1 | −178.8 (13) | C14—C15—N11—O12 | −173.5 (15) |
C6H2Br2INO2 | Dx = 2.864 Mg m−3 |
Mr = 406.81 | Melting point: 415 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.548 (3) Å | Cell parameters from 43 reflections |
b = 20.037 (3) Å | θ = 5.7–12.5° |
c = 9.123 (2) Å | µ = 11.82 mm−1 |
β = 130.37 (2)° | T = 298 K |
V = 1886.8 (8) Å3 | Prism, brown |
Z = 8 | 0.50 × 0.22 × 0.12 mm |
F(000) = 1472 |
Bruker P4 diffractometer | 1968 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.058 |
Graphite monochromator | θmax = 30.0°, θmin = 2.2° |
2θ/ω scans | h = −14→19 |
Absorption correction: ψ scan (XSCANS; Bruker, 1997) | k = 0→28 |
Tmin = 0.429, Tmax = 0.988 | l = −12→0 |
5716 measured reflections | 3 standard reflections every 97 reflections |
5407 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max < 0.001 |
5407 reflections | Δρmax = 0.84 e Å−3 |
218 parameters | Δρmin = −0.84 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.00093 (11) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.30362 (13) | 0.43988 (8) | 0.2401 (2) | 0.0615 (4) | |
I2 | 0.54556 (10) | 0.36925 (4) | 0.26460 (13) | 0.0583 (3) | |
Br3 | 0.73278 (12) | 0.49074 (7) | 0.26614 (18) | 0.0561 (4) | |
C1 | 0.4175 (11) | 0.4967 (7) | 0.2453 (16) | 0.035 (3) | |
C2 | 0.5191 (11) | 0.4723 (6) | 0.2535 (13) | 0.033 (3) | |
C3 | 0.5960 (11) | 0.5182 (6) | 0.2557 (17) | 0.038 (3) | |
C4 | 0.5754 (12) | 0.5862 (6) | 0.2478 (17) | 0.040 (3) | |
H4A | 0.6264 | 0.6171 | 0.2474 | 0.048* | |
C5 | 0.4763 (13) | 0.6050 (7) | 0.2405 (15) | 0.046 (4) | |
C6 | 0.3965 (12) | 0.5642 (7) | 0.2397 (18) | 0.048 (4) | |
H6A | 0.3307 | 0.5809 | 0.2355 | 0.057* | |
N1 | 0.4555 (13) | 0.6807 (6) | 0.2380 (17) | 0.065 (3) | |
O1 | 0.5145 (11) | 0.7161 (5) | 0.2088 (17) | 0.085 (4) | |
O2 | 0.3795 (15) | 0.6989 (5) | 0.2557 (18) | 0.105 (4) | |
Br11 | −0.18918 (13) | 0.30721 (8) | 0.2488 (2) | 0.0620 (4) | |
I12 | 0.04866 (10) | 0.37922 (4) | 0.26639 (13) | 0.0593 (3) | |
Br13 | 0.24427 (12) | 0.25893 (8) | 0.2825 (2) | 0.0588 (4) | |
C11 | −0.0736 (11) | 0.2509 (7) | 0.2562 (17) | 0.039 (3) | |
C12 | 0.0237 (12) | 0.2769 (7) | 0.2619 (14) | 0.035 (3) | |
C13 | 0.1046 (11) | 0.2312 (6) | 0.2672 (18) | 0.039 (3) | |
C14 | 0.0869 (13) | 0.1639 (6) | 0.2665 (18) | 0.045 (4) | |
H14A | 0.1429 | 0.1344 | 0.2736 | 0.054* | |
C15 | −0.0137 (13) | 0.1391 (8) | 0.2553 (16) | 0.045 (4) | |
C16 | −0.0922 (13) | 0.1829 (6) | 0.2507 (18) | 0.043 (4) | |
H16A | −0.1596 | 0.1668 | 0.2437 | 0.052* | |
N11 | −0.0302 (15) | 0.0681 (6) | 0.2483 (17) | 0.066 (4) | |
O11 | 0.0350 (12) | 0.0323 (6) | 0.2418 (18) | 0.099 (4) | |
O12 | −0.1106 (14) | 0.0493 (6) | 0.2609 (17) | 0.099 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0558 (8) | 0.0680 (9) | 0.0684 (9) | −0.0167 (7) | 0.0437 (7) | −0.0035 (7) |
I2 | 0.0737 (6) | 0.0268 (4) | 0.0723 (7) | 0.0048 (5) | 0.0464 (5) | 0.0017 (4) |
Br3 | 0.0484 (7) | 0.0636 (9) | 0.0654 (9) | 0.0047 (7) | 0.0409 (7) | 0.0002 (7) |
C1 | 0.041 (7) | 0.035 (7) | 0.033 (6) | −0.012 (6) | 0.027 (5) | −0.007 (5) |
C2 | 0.043 (7) | 0.017 (6) | 0.035 (8) | 0.002 (5) | 0.024 (6) | 0.000 (4) |
C3 | 0.042 (6) | 0.033 (7) | 0.041 (7) | 0.003 (5) | 0.028 (6) | −0.004 (5) |
C4 | 0.037 (7) | 0.036 (8) | 0.048 (8) | −0.005 (6) | 0.027 (6) | −0.003 (6) |
C5 | 0.046 (7) | 0.023 (7) | 0.040 (8) | 0.005 (6) | 0.015 (6) | −0.002 (5) |
C6 | 0.036 (7) | 0.064 (10) | 0.045 (8) | −0.003 (7) | 0.027 (6) | −0.016 (7) |
N1 | 0.066 (8) | 0.031 (7) | 0.075 (9) | 0.010 (7) | 0.036 (7) | −0.001 (6) |
O1 | 0.091 (8) | 0.030 (6) | 0.108 (9) | −0.003 (6) | 0.053 (7) | 0.003 (6) |
O2 | 0.163 (12) | 0.050 (7) | 0.137 (11) | 0.050 (8) | 0.112 (10) | 0.016 (6) |
Br11 | 0.0522 (8) | 0.0681 (9) | 0.0685 (9) | 0.0108 (7) | 0.0404 (7) | −0.0033 (7) |
I12 | 0.0755 (6) | 0.0283 (4) | 0.0735 (7) | −0.0069 (5) | 0.0479 (5) | −0.0038 (4) |
Br13 | 0.0488 (7) | 0.0631 (9) | 0.0703 (9) | −0.0088 (7) | 0.0412 (7) | −0.0014 (7) |
C11 | 0.043 (7) | 0.035 (7) | 0.041 (7) | −0.002 (6) | 0.028 (6) | 0.002 (6) |
C12 | 0.041 (7) | 0.033 (8) | 0.039 (8) | 0.007 (6) | 0.030 (6) | 0.004 (4) |
C13 | 0.033 (6) | 0.037 (8) | 0.042 (7) | −0.005 (5) | 0.022 (6) | −0.005 (6) |
C14 | 0.051 (8) | 0.029 (7) | 0.044 (8) | 0.008 (6) | 0.025 (6) | 0.000 (6) |
C15 | 0.063 (9) | 0.028 (7) | 0.056 (9) | −0.015 (6) | 0.045 (8) | −0.006 (5) |
C16 | 0.046 (7) | 0.031 (7) | 0.042 (7) | −0.021 (6) | 0.024 (6) | −0.015 (5) |
N11 | 0.096 (10) | 0.034 (7) | 0.073 (9) | −0.018 (7) | 0.057 (8) | −0.006 (6) |
O11 | 0.101 (9) | 0.029 (6) | 0.147 (11) | −0.010 (6) | 0.072 (8) | −0.005 (7) |
O12 | 0.144 (11) | 0.061 (7) | 0.130 (10) | −0.042 (8) | 0.106 (9) | −0.012 (6) |
Br1—C1 | 1.894 (12) | Br11—C11 | 1.895 (14) |
I2—C2 | 2.088 (12) | I12—C12 | 2.074 (14) |
Br3—C3 | 1.875 (13) | Br13—C13 | 1.888 (13) |
C1—C6 | 1.375 (18) | C11—C12 | 1.387 (17) |
C1—C2 | 1.416 (17) | C11—C16 | 1.381 (18) |
C2—C3 | 1.380 (17) | C12—C13 | 1.405 (17) |
C3—C4 | 1.384 (16) | C13—C14 | 1.370 (16) |
C4—C5 | 1.353 (18) | C14—C15 | 1.390 (19) |
C4—H4A | 0.9300 | C14—H14A | 0.9300 |
C5—C6 | 1.35 (2) | C15—C16 | 1.359 (19) |
C5—N1 | 1.539 (18) | C15—N11 | 1.435 (19) |
C6—H6A | 0.9300 | C16—H16A | 0.9300 |
N1—O2 | 1.199 (17) | N11—O11 | 1.168 (19) |
N1—O1 | 1.221 (19) | N11—O12 | 1.226 (18) |
C6—C1—C2 | 120.8 (13) | C12—C11—C16 | 121.2 (14) |
C6—C1—Br1 | 116.4 (11) | C12—C11—Br11 | 121.4 (11) |
C2—C1—Br1 | 122.8 (10) | C16—C11—Br11 | 117.3 (11) |
C3—C2—C1 | 118.1 (12) | C11—C12—C13 | 117.3 (13) |
C3—C2—I2 | 123.6 (10) | C11—C12—I12 | 120.7 (11) |
C1—C2—I2 | 118.4 (10) | C13—C12—I12 | 122.0 (10) |
C2—C3—C4 | 122.0 (13) | C14—C13—C12 | 120.8 (13) |
C2—C3—Br3 | 121.2 (10) | C14—C13—Br13 | 117.0 (11) |
C4—C3—Br3 | 116.8 (11) | C12—C13—Br13 | 122.2 (10) |
C5—C4—C3 | 115.9 (13) | C13—C14—C15 | 120.8 (14) |
C5—C4—H4A | 122.0 | C13—C14—H14A | 119.6 |
C3—C4—H4A | 122.0 | C15—C14—H14A | 119.6 |
C4—C5—C6 | 126.6 (14) | C16—C15—C14 | 118.8 (14) |
C4—C5—N1 | 116.2 (15) | C16—C15—N11 | 122.8 (14) |
C6—C5—N1 | 117.2 (15) | C14—C15—N11 | 118.3 (15) |
C5—C6—C1 | 116.7 (13) | C15—C16—C11 | 121.0 (14) |
C5—C6—H6A | 121.7 | C15—C16—H16A | 119.5 |
C1—C6—H6A | 121.7 | C11—C16—H16A | 119.5 |
O2—N1—O1 | 126.4 (14) | O11—N11—O12 | 124.2 (16) |
O2—N1—C5 | 117.6 (14) | O11—N11—C15 | 120.6 (18) |
O1—N1—C5 | 115.9 (17) | O12—N11—C15 | 115.0 (15) |
C6—C1—C2—C3 | 0.0 (16) | C16—C11—C12—C13 | −1.7 (16) |
Br1—C1—C2—C3 | 179.7 (9) | Br11—C11—C12—C13 | 180.0 (9) |
C6—C1—C2—I2 | 179.4 (9) | C16—C11—C12—I12 | 179.2 (9) |
Br1—C1—C2—I2 | −1.0 (12) | Br11—C11—C12—I12 | 0.8 (13) |
C1—C2—C3—C4 | −0.8 (17) | C11—C12—C13—C14 | 0.1 (17) |
I2—C2—C3—C4 | 179.9 (9) | I12—C12—C13—C14 | 179.2 (9) |
C1—C2—C3—Br3 | −179.9 (9) | C11—C12—C13—Br13 | −178.2 (9) |
I2—C2—C3—Br3 | 0.7 (14) | I12—C12—C13—Br13 | 0.9 (14) |
C2—C3—C4—C5 | 0.9 (18) | C12—C13—C14—C15 | 1.7 (19) |
Br3—C3—C4—C5 | −179.9 (9) | Br13—C13—C14—C15 | −179.9 (10) |
C3—C4—C5—C6 | −0.2 (18) | C13—C14—C15—C16 | −1.9 (18) |
C3—C4—C5—N1 | 178.2 (11) | C13—C14—C15—N11 | 177.8 (12) |
C4—C5—C6—C1 | −0.5 (19) | C14—C15—C16—C11 | 0.3 (18) |
N1—C5—C6—C1 | −178.9 (10) | N11—C15—C16—C11 | −179.5 (12) |
C2—C1—C6—C5 | 0.6 (17) | C12—C11—C16—C15 | 1.6 (19) |
Br1—C1—C6—C5 | −179.1 (9) | Br11—C11—C16—C15 | 180.0 (10) |
C4—C5—N1—O2 | −171.0 (13) | C16—C15—N11—O11 | 175.7 (14) |
C6—C5—N1—O2 | 7.6 (18) | C14—C15—N11—O11 | −4 (2) |
C4—C5—N1—O1 | 12.4 (17) | C16—C15—N11—O12 | −8.3 (19) |
C6—C5—N1—O1 | −169.1 (12) | C14—C15—N11—O12 | 171.9 (13) |
X1···X2 | d | θ1 | θ2 | bond type |
Br2···Br11 | 3.642 (3) | 165.2 (5) | 82.3 (5) | II-polarized |
Br1···Br1i | 3.731 (4) | 133.3 (4) | 133.3 (4) | I-unpolarized |
Br2···Br13ii | 3.781 (3) | 126.8 (4) | 129.6 (4) | I-unpolarized |
Notes: d = separation X1···X2; θ1 = angle C—X1···X2; θ2 = angle X1···X2—C. For halogen bond types, see: Reddy et al. (2006). Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, 1 - z. |
X1···X2 | d | θ1 | θ2 | bond type |
Br1···I12 | 3.813 (2) | 161.2 (4) | 117.2 (4) | II-polarized |
I2···Br11i | 3.893 (2) | 116.6 (4) | 161.8 (4) | II-polarized |
Br1···Br13 | 3.787 (2) | 142.8 (4) | 122.9 (4) | I-unpolarized |
Br11···Br3ii | 3.858 (2) | 143.9 (4) | 124.4 (4) | I-unpolarized |
Notes: d = separation X1···X2; θ1 = angle C—X1···X2; θ2 = angle X1···X2—C. For halogen bond types, see: Reddy et al. (2006). Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z. |
Acknowledgements
We acknowledge the contribution of Angélica Navarrete to the synthesis of the reported compounds.
References
Baharie, E. & Pawley, G. S. (1979). Acta Cryst. A35, 233–235. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o1921. CSD CrossRef IUCr Journals Google Scholar
Bhar, A., Aune, J. P., Benali-Cherif, N., Benmenni, L. & Giorgi, M. (1995). Acta Cryst. C51, 256–260. CSD CrossRef CAS IUCr Journals Google Scholar
Brezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). Cryst. Growth Des. 12, 5373–5386. Web of Science CSD CrossRef CAS Google Scholar
Brown, G. M. & Strydom, O. A. W. (1974). Acta Cryst. B30, 801–804. CSD CrossRef IUCr Journals Web of Science Google Scholar
Bruker (1997). XSCANS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Bryant, R., James, S. C., Norman, N. C. & Orpen, A. G. (1998). Acta Cryst. C54, 1113–1115. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Erdelyi, M. (2014). Nat. Chem. 6, 762–764. CrossRef CAS PubMed Google Scholar
Francke, R., Schnakenburg, G. & Waldvogel, S. R. (2010). Eur. J. Org. Chem. pp. 2357–2362. CrossRef Google Scholar
Ghosh, S., Reddy, C. M. & Desiraju, G. R. (2007). Acta Cryst. E63, o910–o911. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Novak, I. & Li, D. (2007). Acta Cryst. E63, o438–o439. Web of Science CSD CrossRef IUCr Journals Google Scholar
Olaru, M., Beckmann, J. & Raţ, C. I. (2014). Organometallics, 33, 3012–3020. CSD CrossRef CAS Google Scholar
Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schmidbaur, H., Minge, O. & Nogai, S. (2004). Z. Naturforsch. Teil B, 59, 264–268. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shorafa, H., Mollenhauer, D., Paulus, B. & Seppelt, K. (2009). Angew. Chem. Int. Ed. 48, 5845–5847. Web of Science CSD CrossRef CAS Google Scholar
Stein, M., Schwarzer, A., Hulliger, J. & Weber, E. (2011). Acta Cryst. E67, o1655. CSD CrossRef IUCr Journals Google Scholar
Tanaka, I., Iwasaki, F. & Aihara, A. (1974). Acta Cryst. B30, 1546–1549. CSD CrossRef IUCr Journals Web of Science Google Scholar
Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402. CSD CrossRef Web of Science Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
Wang, C., Danovich, D., Mo, Y. & Shaik, S. (2014). J. Chem. Theory Comput. 10, 3726–3737. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.