organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[(1S,2R)-2-hy­droxy-1-methyl-2-phenyl­eth­yl]pyrrolidinium 2-amino-5-chloro­benzoate

aSchool of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and bInstitute of Pharmaceutical Research, Zhengzhou University, Zhengzhou 450001, People's Republic of China, School of Pharmacy, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: liwenhaozzu@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 July 2015; accepted 13 July 2015; online 17 July 2015)

In the cation of the title mol­ecular salt, C13H20NO+·C7H5ClNO2, the five-membered ring adopts a twisted conformation about one of the C—N bonds. The exocyclic N—C bond has an equatorial orientation. The dihedral angle between the five-membered ring (all atoms) and the benzene ring is 76.56 (19)°. In the anion, the dihedral angle between the carboxyl­ate group and the benzene ring is 18.57 (14)°, and an intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating [100] chains.

1. Related literature

For the crystal structures of related compounds, see: Pennemann et al. (2000[Pennemann, H., Wallbaum, S. & Martens, J. (2000). Tetrahedron Asymmetry, 11, 2133-2142.]); Sugiyama et al. (2002[Sugiyama, T., Meng, J.-B. & Matsuura, T. (2002). Acta Cryst. C58, o242-o246.]); Ishida et al. (2001[Ishida, H., Rahman, B. & Kashino, S. (2001). Acta Cryst. E57, o630-o632.]). For bond-length data of chloro­benzoate derivatives, see: Arora & Pant (1969[Arora, S. K. & Pant, L. M. (1969). Acta Cryst. B25, 1045-1049.]). For applications of the title compound and further synthetic details, see: Kanizsai et al. (2006[Kanizsai, I., Szakonyi, Z., Sillanpää, R., D'hooghe, M., Kimpe, D. N. & Fülöp, F. (2006). Tetrahedron Asymmetry, 17, 2857-2863.]); Rzaczynska et al. (2000[Rzączyńska, Z., Mrozek, R., Sikorska-Iwan, M. & Głowiak, T. (2000). J. Coord. Chem. 49, 189-199.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H20NO+·C7H5ClNO2

  • Mr = 376.87

  • Orthorhombic, P 21 21 21

  • a = 10.6756 (3) Å

  • b = 11.5541 (3) Å

  • c = 15.9228 (4) Å

  • V = 1964.03 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.90 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.16 mm

2.2. Data collection

  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.921, Tmax = 1.000

  • 4968 measured reflections

  • 3173 independent reflections

  • 2805 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.03

  • 3173 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1001 Friedel pairs

  • Absolute structure parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.84 2.652 (3) 172
N1—H1A⋯O2i 0.91 1.79 2.673 (3) 162
N2—H2A⋯O1ii 0.87 2.36 3.137 (3) 148
N2—H2B⋯O2 0.87 2.07 2.686 (3) 126
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Norephedrine and its derivatives have used widely because of these using for asymmetric synthesis as catalysts or starting materials (Kanizsai et al., 2006); Rzaczynska et al. (2000); The crystal structure of (1R,2R)-amino­alcohol·HCl (Pennemann et al., 2000), amino­pyridine (Sugiyama et al., 2002), Morpholinium 5-chloro-2-nitro­benzoate (Ishida et al., 2001) have been reported. To our knowledge, this is the first structural report of a pyrrolidinium system. We here report the crystal structure of the title compound.

In the title compound (Fig.1), the bond lengths and angles are normal (Arora & Pant, 1969). The asymmetric unit contains one cation–anion pair. The molecular packing features an N—H···O hydrogen bond between the amino group and the oxygen of the carbonyl group. In the crystal, the cation and anion are linked by an N—H···O, O—H···O inter­action (Table 1 and Fig.2).

Experimental top

An crystal structure salt in the 1:1.5 ration of the original partners of the 2-amino-5-chloro-benzoic acid (5.0 g, 0.0224 mol) and added a chiral additive (1R,2S)-1-phenyl-2-(1-pyrrolidinyl)propan-1-ol (6.4 g, 0.0312 mol). Under the condition of sodium hydride (1.4 g, 0.0583 mol) alkali, choosing anhydrous THF (30 ml) inert solvent under nitro­gen atmosphere was stirred for 2h and the process was inspected by TLC. At the end of the reaction processing, the pale yellow prismatic crystals were obtained from the solution by slow volatilization from the solvent of the ethyl acetate after at room temperature overnight. (yield 89%, M.pt: 402-404K). 1H NMR(400Hz, CDCl3): δ(ppm): 3.0~3.5 (m,5H,Ar), 2.0~2.2 (e, 8H, CH2), 1.1~1.3 (t,3H,CH3), 5.5 (s,1H,OH), 6.5(s,1H,CHOH),7.0 (s,1H,CHCH3),7.3 (s,1H,NH), 7.4~7.5(t,3H,Ar), 8.0 (q,2H,NH2). 13C NMR(100MHz, CDCl3): δ(ppm) 9.3, 23.1, 52.5, 68.2, 70.9, 77.5, 117.6, 120.5, 125.7, 127.3, 128.3, 131.8, 140.5, 148.4, 174.9.

Refinement top

The H atoms attached to N atoms were located in a difference Fourier-map analyses and were allowed to ride in the refinements. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H)= 1.5Ueq(O) for hydroxyl H atom and equal to 1.2Ueq(C,N) for other H atoms.

Related literature top

For the crystal structures of related compounds, see: Pennemann et al. (2000); Sugiyama et al. (2002); Ishida et al. (2001). For bond-length data of chlorobenzoate derivatives, see: Arora & Pant (1969). For applications of the title compound and further synthetic details, see: Kanizsai et al. (2006); Rzaczynska et al. (2000).

Structure description top

Norephedrine and its derivatives have used widely because of these using for asymmetric synthesis as catalysts or starting materials (Kanizsai et al., 2006); Rzaczynska et al. (2000); The crystal structure of (1R,2R)-amino­alcohol·HCl (Pennemann et al., 2000), amino­pyridine (Sugiyama et al., 2002), Morpholinium 5-chloro-2-nitro­benzoate (Ishida et al., 2001) have been reported. To our knowledge, this is the first structural report of a pyrrolidinium system. We here report the crystal structure of the title compound.

In the title compound (Fig.1), the bond lengths and angles are normal (Arora & Pant, 1969). The asymmetric unit contains one cation–anion pair. The molecular packing features an N—H···O hydrogen bond between the amino group and the oxygen of the carbonyl group. In the crystal, the cation and anion are linked by an N—H···O, O—H···O inter­action (Table 1 and Fig.2).

An crystal structure salt in the 1:1.5 ration of the original partners of the 2-amino-5-chloro-benzoic acid (5.0 g, 0.0224 mol) and added a chiral additive (1R,2S)-1-phenyl-2-(1-pyrrolidinyl)propan-1-ol (6.4 g, 0.0312 mol). Under the condition of sodium hydride (1.4 g, 0.0583 mol) alkali, choosing anhydrous THF (30 ml) inert solvent under nitro­gen atmosphere was stirred for 2h and the process was inspected by TLC. At the end of the reaction processing, the pale yellow prismatic crystals were obtained from the solution by slow volatilization from the solvent of the ethyl acetate after at room temperature overnight. (yield 89%, M.pt: 402-404K). 1H NMR(400Hz, CDCl3): δ(ppm): 3.0~3.5 (m,5H,Ar), 2.0~2.2 (e, 8H, CH2), 1.1~1.3 (t,3H,CH3), 5.5 (s,1H,OH), 6.5(s,1H,CHOH),7.0 (s,1H,CHCH3),7.3 (s,1H,NH), 7.4~7.5(t,3H,Ar), 8.0 (q,2H,NH2). 13C NMR(100MHz, CDCl3): δ(ppm) 9.3, 23.1, 52.5, 68.2, 70.9, 77.5, 117.6, 120.5, 125.7, 127.3, 128.3, 131.8, 140.5, 148.4, 174.9.

For the crystal structures of related compounds, see: Pennemann et al. (2000); Sugiyama et al. (2002); Ishida et al. (2001). For bond-length data of chlorobenzoate derivatives, see: Arora & Pant (1969). For applications of the title compound and further synthetic details, see: Kanizsai et al. (2006); Rzaczynska et al. (2000).

Refinement details top

The H atoms attached to N atoms were located in a difference Fourier-map analyses and were allowed to ride in the refinements. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H)= 1.5Ueq(O) for hydroxyl H atom and equal to 1.2Ueq(C,N) for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The components of the title salt, showing 50% displacement ellipsoids. Hydrogen bonds are illustrated as dashed lines.
[Figure 2] Fig. 2. An illustration of the unit cell packing of the title salt viewed down along the b axis. H atoms are omitted for clarity, save those involved in hydrogen bonding.
1-[(1S,2R)-2-Hydroxy-1-methyl-2-phenylethyl]pyrrolidinium 2-amino-5-chlorobenzoate top
Crystal data top
C13H20NO+·C7H5ClNO2Dx = 1.275 Mg m3
Mr = 376.87Melting point = 402–404 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
a = 10.6756 (3) ÅCell parameters from 1586 reflections
b = 11.5541 (3) Åθ = 4.7–71.7°
c = 15.9228 (4) ŵ = 1.90 mm1
V = 1964.03 (9) Å3T = 291 K
Z = 4, yellow
F(000) = 8000.20 × 0.18 × 0.16 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3173 independent reflections
Radiation source: Enhance (Cu) X-ray Source2805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.2312 pixels mm-1θmax = 72.3°, θmin = 4.7°
ω scansh = 813
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 138
Tmin = 0.921, Tmax = 1.000l = 1918
4968 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0389P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.16 e Å3
3173 reflectionsΔρmin = 0.18 e Å3
239 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0019 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (3)
Crystal data top
C13H20NO+·C7H5ClNO2V = 1964.03 (9) Å3
Mr = 376.87Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.6756 (3) ŵ = 1.90 mm1
b = 11.5541 (3) ÅT = 291 K
c = 15.9228 (4) Å0.20 × 0.18 × 0.16 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3173 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2805 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 1.000Rint = 0.022
4968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.18 e Å3
3173 reflectionsAbsolute structure: Flack (1983)
239 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77038 (18)0.68499 (17)0.70064 (14)0.0556 (5)
H10.73300.74650.69480.083*
N10.5009 (2)0.61324 (19)0.69466 (13)0.0457 (5)
H1A0.53130.66590.65740.055*
C10.9322 (3)0.5422 (3)0.78250 (18)0.0595 (7)
H1B0.95760.58790.73750.071*
C21.0177 (3)0.4718 (4)0.8223 (2)0.0707 (9)
H21.09990.46890.80320.085*
C30.9826 (4)0.4061 (3)0.8895 (2)0.0759 (10)
H31.04080.35870.91610.091*
C40.8608 (4)0.4099 (3)0.9180 (2)0.0692 (9)
H40.83730.36550.96410.083*
C50.7729 (3)0.4797 (3)0.87827 (17)0.0582 (7)
H50.69090.48240.89780.070*
C60.8084 (3)0.5455 (2)0.80910 (16)0.0471 (6)
C70.7116 (2)0.6191 (2)0.76352 (15)0.0446 (5)
H70.67220.67160.80400.054*
C80.6092 (2)0.5410 (2)0.72422 (15)0.0449 (5)
H80.57890.48770.76760.054*
C90.6609 (3)0.4695 (3)0.65138 (18)0.0575 (7)
H9A0.59950.41350.63430.086*
H9B0.73570.43030.66900.086*
H9C0.67990.51970.60510.086*
C100.4349 (3)0.6792 (3)0.76326 (19)0.0570 (7)
H10A0.47490.75350.77230.068*
H10B0.43690.63590.81540.068*
C110.3014 (3)0.6954 (4)0.7337 (3)0.0786 (10)
H11A0.24310.66750.77590.094*
H11B0.28440.77670.72360.094*
C120.2876 (3)0.6270 (4)0.6535 (3)0.0823 (11)
H12A0.28780.67800.60520.099*
H12B0.20990.58340.65380.099*
C130.3990 (3)0.5462 (3)0.6511 (2)0.0619 (8)
H13A0.38100.47460.68050.074*
H13B0.42240.52830.59360.074*
Cl10.32906 (11)0.26127 (9)0.50325 (8)0.0991 (4)
O20.0402 (2)0.72036 (18)0.41891 (13)0.0626 (6)
O30.1584 (2)0.61558 (18)0.33345 (12)0.0613 (5)
N20.0763 (2)0.6051 (2)0.54289 (16)0.0574 (6)
H2A0.09820.60710.59560.069*
H2B0.05220.67450.52860.069*
C140.2067 (3)0.3611 (2)0.51305 (19)0.0573 (7)
C150.1973 (3)0.4508 (2)0.45717 (17)0.0504 (6)
H150.25470.45650.41340.060*
C160.1037 (2)0.5333 (2)0.46472 (15)0.0425 (5)
C170.0182 (2)0.5255 (2)0.53195 (15)0.0430 (5)
C180.0277 (3)0.4295 (3)0.58599 (18)0.0540 (6)
H180.03070.42060.62880.065*
C190.1203 (3)0.3492 (3)0.5773 (2)0.0611 (7)
H190.12540.28690.61420.073*
C200.0996 (2)0.6300 (2)0.40106 (15)0.0458 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0505 (9)0.0523 (10)0.0639 (12)0.0011 (8)0.0042 (9)0.0167 (10)
N10.0496 (11)0.0451 (11)0.0423 (10)0.0102 (9)0.0022 (9)0.0083 (9)
C10.0569 (14)0.0726 (18)0.0491 (14)0.0000 (15)0.0041 (13)0.0039 (14)
C20.0573 (16)0.088 (2)0.0673 (19)0.0102 (18)0.0088 (15)0.0005 (19)
C30.077 (2)0.075 (2)0.076 (2)0.0115 (19)0.0265 (19)0.0090 (18)
C40.091 (2)0.0674 (18)0.0497 (15)0.0090 (18)0.0199 (17)0.0132 (15)
C50.0666 (17)0.0628 (16)0.0451 (13)0.0063 (15)0.0043 (13)0.0053 (13)
C60.0533 (13)0.0483 (12)0.0398 (11)0.0044 (12)0.0054 (10)0.0022 (10)
C70.0466 (12)0.0443 (12)0.0430 (11)0.0023 (11)0.0029 (10)0.0001 (11)
C80.0479 (12)0.0453 (12)0.0417 (11)0.0060 (11)0.0003 (10)0.0068 (11)
C90.0623 (16)0.0576 (15)0.0526 (14)0.0035 (14)0.0025 (13)0.0034 (13)
C100.0535 (15)0.0634 (16)0.0541 (15)0.0003 (14)0.0004 (13)0.0008 (13)
C110.0552 (17)0.098 (3)0.083 (2)0.0080 (18)0.0053 (17)0.003 (2)
C120.0629 (19)0.076 (2)0.108 (3)0.0098 (19)0.029 (2)0.003 (2)
C130.0595 (16)0.0545 (16)0.0716 (18)0.0127 (14)0.0177 (15)0.0005 (15)
Cl10.1099 (8)0.0790 (6)0.1084 (8)0.0480 (6)0.0236 (7)0.0237 (6)
O20.0816 (14)0.0535 (11)0.0528 (11)0.0145 (11)0.0142 (11)0.0138 (9)
O30.0859 (15)0.0529 (11)0.0452 (9)0.0028 (11)0.0154 (10)0.0043 (9)
N20.0577 (13)0.0626 (14)0.0520 (12)0.0023 (12)0.0097 (11)0.0053 (11)
C140.0618 (16)0.0483 (13)0.0617 (16)0.0100 (13)0.0003 (14)0.0026 (13)
C150.0571 (14)0.0473 (13)0.0468 (12)0.0003 (12)0.0056 (12)0.0012 (11)
C160.0482 (12)0.0411 (11)0.0383 (10)0.0063 (10)0.0027 (10)0.0040 (10)
C170.0448 (11)0.0446 (12)0.0397 (11)0.0069 (11)0.0053 (10)0.0005 (10)
C180.0546 (14)0.0562 (15)0.0511 (14)0.0126 (13)0.0054 (13)0.0078 (13)
C190.0754 (19)0.0474 (14)0.0607 (16)0.0029 (14)0.0009 (16)0.0147 (13)
C200.0508 (13)0.0468 (13)0.0398 (12)0.0027 (11)0.0003 (10)0.0012 (10)
Geometric parameters (Å, º) top
O1—H10.8200C10—H10B0.9700
O1—C71.406 (3)C10—C111.513 (4)
N1—H1A0.9100C11—H11A0.9700
N1—C81.502 (3)C11—H11B0.9700
N1—C101.506 (4)C11—C121.509 (5)
N1—C131.505 (3)C12—H12A0.9700
C1—H1B0.9300C12—H12B0.9700
C1—C21.377 (5)C12—C131.512 (5)
C1—C61.389 (4)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C2—C31.365 (5)Cl1—C141.750 (3)
C3—H30.9300O2—C201.254 (3)
C3—C41.377 (6)O3—C201.257 (3)
C4—H40.9300N2—H2A0.8710
C4—C51.389 (5)N2—H2B0.8724
C5—H50.9300N2—C171.376 (3)
C5—C61.391 (4)C14—C151.369 (4)
C6—C71.522 (4)C14—C191.384 (4)
C7—H70.9800C15—H150.9300
C7—C81.549 (3)C15—C161.386 (4)
C8—H80.9800C16—C171.410 (4)
C8—C91.527 (4)C16—C201.510 (4)
C9—H9A0.9600C17—C181.408 (4)
C9—H9B0.9600C18—H180.9300
C9—H9C0.9600C18—C191.363 (4)
C10—H10A0.9700C19—H190.9300
C7—O1—H1109.5H10A—C10—H10B108.7
C8—N1—H1A107.5C11—C10—H10A110.5
C8—N1—C10114.4 (2)C11—C10—H10B110.5
C8—N1—C13114.5 (2)C10—C11—H11A110.4
C10—N1—H1A107.5C10—C11—H11B110.4
C13—N1—H1A107.5H11A—C11—H11B108.6
C13—N1—C10104.9 (2)C12—C11—C10106.9 (3)
C2—C1—H1B119.8C12—C11—H11A110.4
C2—C1—C6120.4 (3)C12—C11—H11B110.4
C6—C1—H1B119.8C11—C12—H12A110.6
C1—C2—H2119.7C11—C12—H12B110.6
C3—C2—C1120.5 (3)C11—C12—C13105.6 (3)
C3—C2—H2119.7H12A—C12—H12B108.8
C2—C3—H3120.0C13—C12—H12A110.6
C2—C3—C4119.9 (3)C13—C12—H12B110.6
C4—C3—H3120.0N1—C13—C12103.8 (2)
C3—C4—H4119.8N1—C13—H13A111.0
C3—C4—C5120.4 (3)N1—C13—H13B111.0
C5—C4—H4119.8C12—C13—H13A111.0
C4—C5—H5120.2C12—C13—H13B111.0
C4—C5—C6119.6 (3)H13A—C13—H13B109.0
C6—C5—H5120.2H2A—N2—H2B107.7
C1—C6—C5119.0 (3)C17—N2—H2A109.7
C1—C6—C7121.1 (2)C17—N2—H2B111.5
C5—C6—C7119.9 (3)C15—C14—Cl1119.7 (2)
O1—C7—C6109.8 (2)C15—C14—C19120.5 (3)
O1—C7—H7108.9C19—C14—Cl1119.8 (2)
O1—C7—C8110.0 (2)C14—C15—H15119.5
C6—C7—H7108.9C14—C15—C16121.1 (3)
C6—C7—C8110.3 (2)C16—C15—H15119.5
C8—C7—H7108.9C15—C16—C17119.3 (2)
N1—C8—C7110.2 (2)C15—C16—C20118.1 (2)
N1—C8—H8108.3C17—C16—C20122.6 (2)
N1—C8—C9109.9 (2)N2—C17—C16121.9 (2)
C7—C8—H8108.3N2—C17—C18120.2 (2)
C9—C8—C7111.5 (2)C18—C17—C16117.9 (2)
C9—C8—H8108.3C17—C18—H18119.1
C8—C9—H9A109.5C19—C18—C17121.8 (3)
C8—C9—H9B109.5C19—C18—H18119.1
C8—C9—H9C109.5C14—C19—H19120.3
H9A—C9—H9B109.5C18—C19—C14119.3 (3)
H9A—C9—H9C109.5C18—C19—H19120.3
H9B—C9—H9C109.5O2—C20—O3123.9 (2)
N1—C10—H10A110.5O2—C20—C16118.6 (2)
N1—C10—H10B110.5O3—C20—C16117.6 (2)
N1—C10—C11106.1 (3)
O1—C7—C8—N170.2 (3)C10—C11—C12—C1315.7 (4)
O1—C7—C8—C952.3 (3)C11—C12—C13—N131.8 (4)
N1—C10—C11—C126.5 (4)C13—N1—C8—C7176.8 (2)
C1—C2—C3—C40.1 (6)C13—N1—C8—C953.5 (3)
C1—C6—C7—O15.3 (4)C13—N1—C10—C1126.4 (3)
C1—C6—C7—C8116.1 (3)Cl1—C14—C15—C16178.1 (2)
C2—C1—C6—C52.2 (5)Cl1—C14—C19—C18177.9 (2)
C2—C1—C6—C7177.4 (3)N2—C17—C18—C19179.7 (3)
C2—C3—C4—C50.5 (6)C14—C15—C16—C171.1 (4)
C3—C4—C5—C60.3 (5)C14—C15—C16—C20179.7 (3)
C4—C5—C6—C11.6 (4)C15—C14—C19—C181.9 (5)
C4—C5—C6—C7178.0 (3)C15—C16—C17—N2179.7 (2)
C5—C6—C7—O1175.1 (2)C15—C16—C17—C183.6 (4)
C5—C6—C7—C863.5 (3)C15—C16—C20—O2160.7 (3)
C6—C1—C2—C31.4 (6)C15—C16—C20—O318.1 (4)
C6—C7—C8—N1168.5 (2)C16—C17—C18—C193.5 (4)
C6—C7—C8—C969.0 (3)C17—C16—C20—O217.8 (4)
C8—N1—C10—C11152.7 (3)C17—C16—C20—O3163.4 (2)
C8—N1—C13—C12162.2 (3)C17—C18—C19—C140.8 (5)
C10—N1—C8—C762.0 (3)C19—C14—C15—C161.7 (5)
C10—N1—C8—C9174.6 (2)C20—C16—C17—N21.2 (4)
C10—N1—C13—C1235.9 (3)C20—C16—C17—C18177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.842.652 (3)172
N1—H1A···O2i0.911.792.673 (3)162
N2—H2A···O1ii0.872.363.137 (3)148
N2—H2B···O20.872.072.686 (3)126
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.842.652 (3)172
N1—H1A···O2i0.911.792.673 (3)162
N2—H2A···O1ii0.872.363.137 (3)148
N2—H2B···O20.872.072.686 (3)126
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful to the University Analysis and Testing Center, Zhengzhou Henan, People's Republic of China, for the single-crystal X-ray diffraction data. We thank the Science and Technology Bureau of Henan and the Education Bureau of Henan for funds through the Cooperation Research Project No. 132107000016 and the Major Research Project No. 14 A530007, respectively.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationArora, S. K. & Pant, L. M. (1969). Acta Cryst. B25, 1045–1049.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshida, H., Rahman, B. & Kashino, S. (2001). Acta Cryst. E57, o630–o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKanizsai, I., Szakonyi, Z., Sillanpää, R., D'hooghe, M., Kimpe, D. N. & Fülöp, F. (2006). Tetrahedron Asymmetry, 17, 2857–2863.  Web of Science CSD CrossRef CAS Google Scholar
First citationPennemann, H., Wallbaum, S. & Martens, J. (2000). Tetrahedron Asymmetry, 11, 2133–2142.  Web of Science CSD CrossRef CAS Google Scholar
First citationRzączyńska, Z., Mrozek, R., Sikorska-Iwan, M. & Głowiak, T. (2000). J. Coord. Chem. 49, 189–199.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugiyama, T., Meng, J.-B. & Matsuura, T. (2002). Acta Cryst. C58, o242–o246.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds