organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 7,8-benzocoumarin-4-acetic acid

aDepartment of Physics, Sri Krishna Rajendra Silver Jubilee Institute of Technology, Bangalore 560 001, Karnataka, India, bDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, cDepartment of Physics, Govt. College for Women, Mandya 571 401, India, and dDepartment of Chemistry, P.C. Jabin Science College, Hubli 580 031, Karnataka, India
*Correspondence e-mail: rkgowdaphy@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 July 2015; accepted 25 July 2015; online 31 July 2015)

The fused-ring system in the title compound [systematic name: 2-(2-oxo-2H-benzo[h]chromen-4-yl)acetic acid], C15H10O4, is almost planar (r.m.s. deviation = 0.031 Å) and the Car—C—C=O (ar = aromatic) torsion angle for the side chain is −134.4 (3)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating [100] C(8) chains, where the acceptor atom is the exocyclic O atom of the fused-ring system. The packing is consolidated by a very weak C—H⋯O hydrogen bond to the same acceptor atom. Together, these inter­actions lead to undulating (001) layers in the crystal.

1. Related literature

For a related structure and background to coumarins, see: Basanagouda et al. (2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]). For the synthesis, see: Laskowski & Clinton (1950[Laskowski, S. C. & Clinton, R. O. (1950). J. Am. Chem. Soc. 72, 3987-3991.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H10O4

  • Mr = 254.23

  • Orthorhombic, P b c a

  • a = 13.4231 (4) Å

  • b = 8.9892 (3) Å

  • c = 18.8407 (6) Å

  • V = 2273.37 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.979

  • 27493 measured reflections

  • 2001 independent reflections

  • 1356 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.15

  • 2001 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.84 2.626 (3) 160
C14—H14A⋯O4ii 0.97 2.57 3.503 (4) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Related literature top

For a related structure and background to coumarins, see: Basanagouda et al. (2009). For the synthesis, see: Laskowski & Clinton (1950).

Experimental top

A mixture of citric acid 2 (1 mol) and conc. sulfuric acid (32 ml) was stirred for half an hour, then the temperature was slowly raised during an interval of 10–15 min and as soon as the evolution of gas slackened, the flask was removed from the bath, allowed to stand for 15 min till the reaction mixture became clear and free from carbon monoxide bubbles; this was then cooled to 10°C. To this solution, 1-naphthol (1 mol) was added at 10°C, drop wise. After the addition, the reaction mixture was stirred at room temperature for 48 h. The reaction mixture was then poured onto crushed ice, the separated solid was filtered and dissolved in saturated sodium bicarbonate solution which on acidification gave the title compound (Laskowski et al. 1950). Colourless blocks were recrystallised from acetic acid solution at room temperature.

Refinement top

All the H atoms in (I) were positioned geometrically and refined using a riding model with bond lengths 0.97 \%A (for methylene), 0.96 \%A (for methyl and 0.86 \%A (for amine). The U\ĩso\~(H) = 1.5U\~eq\~(C) for methyl and U\ĩso\~(H) = 1.2U\~eq\~(C) for all other carbon bound H atoms.

Structure description top

For a related structure and background to coumarins, see: Basanagouda et al. (2009). For the synthesis, see: Laskowski & Clinton (1950).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of molecule (I) with 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I)·The dotted lines indicate hydrogen bonds. All H atoms which are not in interactions have been omitted for clarity.
2-(2-Oxo-2H-benzo[h]chromen-4-yl)acetic acid top
Crystal data top
C15H10O4Dx = 1.486 Mg m3
Mr = 254.23Melting point: 463 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 13.4231 (4) ÅCell parameters from 6795 reflections
b = 8.9892 (3) Åθ = 2.6–27.0°
c = 18.8407 (6) ŵ = 0.11 mm1
V = 2273.37 (12) Å3T = 293 K
Z = 8Block, colourless
F(000) = 10560.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2001 independent reflections
Radiation source: fine-focus sealed tube1356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1514
Tmin = 0.961, Tmax = 0.979k = 1010
27493 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0513P)2 + 1.4242P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.19 e Å3
2001 reflectionsΔρmin = 0.21 e Å3
173 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0072 (15)
Crystal data top
C15H10O4V = 2273.37 (12) Å3
Mr = 254.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.4231 (4) ŵ = 0.11 mm1
b = 8.9892 (3) ÅT = 293 K
c = 18.8407 (6) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2001 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1356 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.979Rint = 0.051
27493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.15Δρmax = 0.19 e Å3
2001 reflectionsΔρmin = 0.21 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61455 (18)0.5555 (3)0.36390 (13)0.0399 (6)
C20.53352 (18)0.5222 (3)0.32542 (13)0.0437 (7)
H20.52060.57620.28430.052*
C30.46688 (18)0.4072 (3)0.34547 (14)0.0425 (7)
C40.56434 (16)0.3698 (3)0.44910 (12)0.0352 (6)
C50.63240 (16)0.4753 (3)0.42875 (13)0.0373 (6)
C60.71549 (19)0.5000 (3)0.47401 (15)0.0491 (7)
H60.76350.56970.46130.059*
C70.7255 (2)0.4236 (4)0.53509 (15)0.0538 (8)
H70.78090.44120.56360.065*
C80.65443 (18)0.3177 (3)0.55708 (13)0.0434 (7)
C90.6629 (2)0.2399 (4)0.62160 (15)0.0567 (8)
H90.71680.25820.65140.068*
C100.5932 (3)0.1385 (4)0.64072 (16)0.0649 (9)
H100.59960.08820.68360.078*
C110.5123 (2)0.1087 (3)0.59706 (16)0.0579 (8)
H110.46540.03810.61070.069*
C120.5010 (2)0.1822 (3)0.53436 (14)0.0466 (7)
H120.44650.16180.50550.056*
C130.57165 (17)0.2887 (3)0.51328 (12)0.0377 (6)
C140.6857 (2)0.6737 (3)0.33961 (16)0.0508 (7)
H14A0.65210.73730.30560.061*
H14B0.70410.73470.38000.061*
C150.7782 (2)0.6133 (3)0.30629 (14)0.0461 (7)
O10.75750 (14)0.5102 (2)0.25935 (11)0.0661 (6)
H10.80940.47900.24190.099*
O20.86066 (15)0.6547 (3)0.31854 (12)0.0770 (7)
O30.48342 (11)0.33699 (19)0.40811 (9)0.0407 (5)
O40.39440 (14)0.3648 (2)0.31208 (10)0.0597 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (13)0.0406 (15)0.0415 (15)0.0035 (11)0.0080 (11)0.0058 (12)
C20.0450 (14)0.0481 (16)0.0378 (14)0.0073 (13)0.0017 (12)0.0011 (12)
C30.0388 (14)0.0516 (16)0.0373 (15)0.0069 (13)0.0039 (12)0.0045 (13)
C40.0280 (12)0.0415 (14)0.0363 (14)0.0034 (11)0.0024 (10)0.0093 (11)
C50.0331 (12)0.0410 (14)0.0378 (14)0.0009 (11)0.0020 (10)0.0089 (12)
C60.0383 (14)0.0575 (18)0.0514 (17)0.0072 (13)0.0008 (12)0.0126 (15)
C70.0418 (16)0.070 (2)0.0491 (17)0.0035 (14)0.0135 (12)0.0190 (16)
C80.0407 (14)0.0504 (16)0.0392 (15)0.0126 (13)0.0036 (12)0.0106 (13)
C90.0597 (18)0.070 (2)0.0404 (17)0.0230 (17)0.0100 (13)0.0061 (15)
C100.081 (2)0.070 (2)0.0435 (17)0.0267 (19)0.0038 (17)0.0085 (16)
C110.068 (2)0.0504 (18)0.0547 (19)0.0103 (15)0.0165 (16)0.0071 (15)
C120.0495 (15)0.0457 (16)0.0445 (16)0.0037 (13)0.0046 (13)0.0031 (14)
C130.0370 (13)0.0408 (14)0.0353 (14)0.0081 (11)0.0010 (11)0.0061 (12)
C140.0524 (16)0.0466 (16)0.0535 (17)0.0014 (13)0.0087 (13)0.0011 (14)
C150.0453 (16)0.0492 (17)0.0438 (16)0.0035 (14)0.0011 (12)0.0035 (14)
O10.0475 (11)0.0796 (15)0.0714 (14)0.0079 (10)0.0161 (10)0.0237 (13)
O20.0480 (12)0.0937 (18)0.0894 (17)0.0085 (12)0.0036 (11)0.0217 (14)
O30.0328 (9)0.0511 (11)0.0381 (10)0.0020 (8)0.0040 (7)0.0016 (8)
O40.0484 (11)0.0761 (15)0.0545 (12)0.0047 (10)0.0200 (9)0.0020 (11)
Geometric parameters (Å, º) top
C1—C21.341 (3)C8—C131.408 (3)
C1—C51.439 (3)C9—C101.355 (4)
C1—C141.500 (4)C9—H90.9300
C2—C31.419 (4)C10—C111.389 (4)
C2—H20.9300C10—H100.9300
C3—O41.220 (3)C11—C121.362 (4)
C3—O31.357 (3)C11—H110.9300
C4—O31.365 (3)C12—C131.404 (4)
C4—C51.372 (3)C12—H120.9300
C4—C131.416 (3)C14—C151.494 (4)
C5—C61.421 (3)C14—H14A0.9700
C6—C71.347 (4)C14—H14B0.9700
C6—H60.9300C15—O21.190 (3)
C7—C81.410 (4)C15—O11.311 (3)
C7—H70.9300O1—H10.8200
C8—C91.407 (4)
C2—C1—C5118.8 (2)C10—C9—H9119.7
C2—C1—C14120.6 (2)C8—C9—H9119.7
C5—C1—C14120.5 (2)C9—C10—C11120.8 (3)
C1—C2—C3122.0 (2)C9—C10—H10119.6
C1—C2—H2119.0C11—C10—H10119.6
C3—C2—H2119.0C12—C11—C10120.5 (3)
O4—C3—O3115.7 (2)C12—C11—H11119.8
O4—C3—C2126.4 (3)C10—C11—H11119.8
O3—C3—C2117.9 (2)C11—C12—C13120.1 (3)
O3—C4—C5121.4 (2)C11—C12—H12120.0
O3—C4—C13115.3 (2)C13—C12—H12120.0
C5—C4—C13123.3 (2)C12—C13—C8119.6 (2)
C4—C5—C6117.6 (2)C12—C13—C4123.1 (2)
C4—C5—C1118.2 (2)C8—C13—C4117.4 (2)
C6—C5—C1124.2 (2)C15—C14—C1113.6 (2)
C7—C6—C5120.7 (3)C15—C14—H14A108.8
C7—C6—H6119.6C1—C14—H14A108.8
C5—C6—H6119.6C15—C14—H14B108.8
C6—C7—C8121.9 (2)C1—C14—H14B108.8
C6—C7—H7119.1H14A—C14—H14B107.7
C8—C7—H7119.1O2—C15—O1123.3 (3)
C9—C8—C13118.6 (3)O2—C15—C14125.3 (3)
C9—C8—C7122.3 (3)O1—C15—C14111.3 (2)
C13—C8—C7119.1 (2)C15—O1—H1109.5
C10—C9—C8120.5 (3)C3—O3—C4121.5 (2)
C5—C1—C2—C32.2 (4)C9—C10—C11—C120.6 (4)
C14—C1—C2—C3177.5 (2)C10—C11—C12—C130.2 (4)
C1—C2—C3—O4176.3 (3)C11—C12—C13—C80.6 (4)
C1—C2—C3—O34.5 (4)C11—C12—C13—C4179.6 (2)
O3—C4—C5—C6178.7 (2)C9—C8—C13—C120.9 (4)
C13—C4—C5—C61.8 (3)C7—C8—C13—C12179.3 (2)
O3—C4—C5—C12.3 (3)C9—C8—C13—C4179.2 (2)
C13—C4—C5—C1177.1 (2)C7—C8—C13—C40.5 (3)
C2—C1—C5—C41.3 (3)O3—C4—C13—C120.4 (3)
C14—C1—C5—C4179.1 (2)C5—C4—C13—C12179.1 (2)
C2—C1—C5—C6179.9 (2)O3—C4—C13—C8179.4 (2)
C14—C1—C5—C60.2 (4)C5—C4—C13—C81.1 (3)
C4—C5—C6—C71.0 (4)C2—C1—C14—C15101.9 (3)
C1—C5—C6—C7177.9 (2)C5—C1—C14—C1577.8 (3)
C5—C6—C7—C80.6 (4)C1—C14—C15—O2134.4 (3)
C6—C7—C8—C9178.4 (3)C1—C14—C15—O147.6 (3)
C6—C7—C8—C131.3 (4)O4—C3—O3—C4177.3 (2)
C13—C8—C9—C100.5 (4)C2—C3—O3—C43.4 (3)
C7—C8—C9—C10179.7 (3)C5—C4—O3—C30.1 (3)
C8—C9—C10—C110.3 (4)C13—C4—O3—C3179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.842.626 (3)160
C14—H14A···O4ii0.972.573.503 (4)161
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.842.626 (3)160
C14—H14A···O4ii0.972.573.503 (4)161
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

MB thanks the UGC–SWRO, Bangalore, for providing a Minor Research Project (reference No. 1415-MRP/14-15/KAKA067/UGC-SWRO) (Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLaskowski, S. C. & Clinton, R. O. (1950). J. Am. Chem. Soc. 72, 3987–3991.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds