organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of sepaconitine, a C19-diterpenoid alkaloid from the roots of Aconitum sinomontanum Nakai

aXi'an Botanical Garden, Institute of Botany of Shaanxi Province, Xi'an 710061, People's Republic of China
*Correspondence e-mail: sxw@ms.xab.ac.cn

Edited by P. C. Healy, Griffith University, Australia (Received 20 June 2015; accepted 30 June 2015; online 8 July 2015)

The title compound [systematic name: [(1α,14α,16β)-20-ethyl-8,9,10-trihy­droxy-1,14,16-tri­meth­oxy­aconitan-4-yl 2-amino­benzoate], C30H42N2O8, a natural C19-diterpenoid alkaloid, possesses an aconitane carbon skeleton with four six-membered rings and two five-membered rings. The fused ring system contains two chair, one boat, one twist-boat and two envelope conformations. Intra­molecular N—H⋯O hydrogen bonds are observed between the amino and carbonyl groups. The mol­ecules are linked together via O—H⋯O hydrogen bonds, forming a three-dimensional framework.

1. Related literature

For the synthesis of the title compound, see: Wei et al. (1996[Wei, X.-Y., Wei, B.-Y. & Zhang, J. (1996). Acta Botanica Sin. 38, 995-997.]). The absolute configuration of the title compound has been assigned to be the same as that reported for typical natural C19-diterpenoid alkaloids, see: Wang et al. (2007[Wang, Y.-P., Sun, W.-X., Zhang, J., Liu, H.-S. & Wen, H.-H. (2007). Acta Cryst. E63, o1645-o1647.]); He et al. (2008[He, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033-o1034.]). The six-ring rigid-frame structure of the title compound is identical to that of lappaconitine and mesaconitine (Wang et al., 2007[Wang, Y.-P., Sun, W.-X., Zhang, J., Liu, H.-S. & Wen, H.-H. (2007). Acta Cryst. E63, o1645-o1647.]; He et al., 2008[He, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033-o1034.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H42N2O8

  • Mr = 558.66

  • Orthorhombic, P 21 21 21

  • a = 9.6917 (5) Å

  • b = 16.0510 (7) Å

  • c = 18.3549 (7) Å

  • V = 2855.3 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 173 K

  • 0.32 × 0.32 × 0.28 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.791, Tmax = 0.813

  • 8125 measured reflections

  • 4528 independent reflections

  • 3831 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.05

  • 4528 reflections

  • 388 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6 0.84 2.34 2.909 (3) 126
O4—H4⋯O5 0.84 2.27 2.684 (3) 111
O4—H4⋯O3i 0.84 1.94 2.713 (3) 153
O3—H3⋯O4 0.84 1.99 2.524 (3) 121
N1—H1B⋯O1 0.88 2.00 2.666 (4) 131
N1—H1A⋯O8ii 0.88 2.19 2.999 (3) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was isolated from the roots of Aconitum sinomontanum Nakai, collected in Taibai mountain of the Qinling area, Shaanxi province, People's Republic of China. the crystal structure determination of sepaconitine was carried out and the result reported here.

The molecular structure is shown in Fig. 1. The molecule has a rigid structure consisting of six main rings (AF), which is identical with that of lappaconitine and mesaconitine (Wang et al., 2007; He et al., 2008). The six-membered rings A (C1/C2/C3/C4/C5/C11) and N-containing heterocyclic ring E (C4/C5/C11/C17/N2/C18) adopt chair conformations; The six-membered ring D (C8/C9/C14/C13/C16/C15) displays a boat conformation, but B (C7/C8/C9/C10/C11/C17) adopts a twist-boat conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) adopt C14- and C 17-envelope conformations, respectively. Two cis-fused ring junctions involve rings A/E and also B/C. Two trans-fused ring junctions are observed between rings A/B and between E/F. Ring E is slightly flattened at C5 due to the presence of an ethyl-substituted N atom in the ring. The benzoate moiety attached to C4 is almost planar. The OCH3 group attached to C16 is disordered into two positions with site occupancies Factor of 0.5.

The crystal structure has an intra-molecular N—H···O hydrogen bond between the amino group and carbonyl O atom (Table 1). Inter-molecular N—H···O hydrogen bonds are observed in the crystal. The molecules are linked together via O—H```O hydrogen bonds in the c direction (Table 1, Fig. 2).

Experimental top

The title compound was isolated from the roots of Aconitum sinomontanum, using a method described previously (Wei et al., 1996). Colourless crystals were grown from methanol at room temperature by slow evaporation.

Refinement top

The hydrogen atoms were placed in calculated positions and refined as riding with Uiso(H) = 1.2 Ueq (C) or 1.5Ueq(C, O). The positions of methyl and hy­droxy hydrogens were rotationally optimized. The absolute configuration of the title compound, sepaconitine, has been assigned to be the same as that reported for typical natural C19-diterpenoid alkaloids (Wang et al., 2007; He et al., 2008).

Related literature top

For the preparation, see: Wei et al. (1996). The absolute configuration of the title compound has been assigned to be the same as that reported for typical natural C19-diterpenoid alkaloids, see: Wang et al. (2007); He et al. (2008). The six-ring rigid-frame structure of the title compound is identicsal to that of lappaconitine and mesaconitine (Wang et al., 2007; He et al., 2008).

Structure description top

The title compound was isolated from the roots of Aconitum sinomontanum Nakai, collected in Taibai mountain of the Qinling area, Shaanxi province, People's Republic of China. the crystal structure determination of sepaconitine was carried out and the result reported here.

The molecular structure is shown in Fig. 1. The molecule has a rigid structure consisting of six main rings (AF), which is identical with that of lappaconitine and mesaconitine (Wang et al., 2007; He et al., 2008). The six-membered rings A (C1/C2/C3/C4/C5/C11) and N-containing heterocyclic ring E (C4/C5/C11/C17/N2/C18) adopt chair conformations; The six-membered ring D (C8/C9/C14/C13/C16/C15) displays a boat conformation, but B (C7/C8/C9/C10/C11/C17) adopts a twist-boat conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) adopt C14- and C 17-envelope conformations, respectively. Two cis-fused ring junctions involve rings A/E and also B/C. Two trans-fused ring junctions are observed between rings A/B and between E/F. Ring E is slightly flattened at C5 due to the presence of an ethyl-substituted N atom in the ring. The benzoate moiety attached to C4 is almost planar. The OCH3 group attached to C16 is disordered into two positions with site occupancies Factor of 0.5.

The crystal structure has an intra-molecular N—H···O hydrogen bond between the amino group and carbonyl O atom (Table 1). Inter-molecular N—H···O hydrogen bonds are observed in the crystal. The molecules are linked together via O—H```O hydrogen bonds in the c direction (Table 1, Fig. 2).

The title compound was isolated from the roots of Aconitum sinomontanum, using a method described previously (Wei et al., 1996). Colourless crystals were grown from methanol at room temperature by slow evaporation.

For the preparation, see: Wei et al. (1996). The absolute configuration of the title compound has been assigned to be the same as that reported for typical natural C19-diterpenoid alkaloids, see: Wang et al. (2007); He et al. (2008). The six-ring rigid-frame structure of the title compound is identicsal to that of lappaconitine and mesaconitine (Wang et al., 2007; He et al., 2008).

Refinement details top

The hydrogen atoms were placed in calculated positions and refined as riding with Uiso(H) = 1.2 Ueq (C) or 1.5Ueq(C, O). The positions of methyl and hy­droxy hydrogens were rotationally optimized. The absolute configuration of the title compound, sepaconitine, has been assigned to be the same as that reported for typical natural C19-diterpenoid alkaloids (Wang et al., 2007; He et al., 2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII drawing of sepaconitine (I) with the atomic numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. The packing of molecules in the crystal structure of sepaconitine (I), viewed along the c direction (Hydrogen bonds are shown as dashed lines).
(1α,14α,16β)-20-Ethyl-8,9,10-trihydroxy-1,14,16-trimethoxyaconitan-4-yl 2-aminobenzoate top
Crystal data top
C30H42N2O8Dx = 1.300 Mg m3
Mr = 558.66Melting point = 250–252 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2628 reflections
a = 9.6917 (5) Åθ = 3.7–64.2°
b = 16.0510 (7) ŵ = 0.77 mm1
c = 18.3549 (7) ÅT = 173 K
V = 2855.3 (2) Å3Block, colorless
Z = 40.32 × 0.32 × 0.28 mm
F(000) = 1200
Data collection top
Bruker SMART CCD area-detector
diffractometer
4528 independent reflections
Radiation source: fine-focus sealed tube3831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 65.0°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 711
Tmin = 0.791, Tmax = 0.813k = 1818
8125 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0411P]
where P = (Fo2 + 2Fc2)/3
4528 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.46 e Å3
60 restraintsΔρmin = 0.19 e Å3
Crystal data top
C30H42N2O8V = 2855.3 (2) Å3
Mr = 558.66Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.6917 (5) ŵ = 0.77 mm1
b = 16.0510 (7) ÅT = 173 K
c = 18.3549 (7) Å0.32 × 0.32 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3831 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.813Rint = 0.029
8125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04660 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.46 e Å3
4528 reflectionsΔρmin = 0.19 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5519 (3)0.04441 (18)0.93627 (14)0.0459 (6)
H10.52240.07130.98290.055*
C20.5401 (3)0.04952 (19)0.94729 (17)0.0574 (7)
H2A0.44940.06260.96930.069*
H2B0.54510.07770.89940.069*
C30.6545 (3)0.08242 (19)0.99638 (17)0.0587 (7)
H3A0.64400.05981.04620.070*
H3B0.65030.14400.99900.070*
C40.7912 (3)0.05507 (17)0.96421 (14)0.0472 (6)
C50.8106 (3)0.03991 (16)0.96718 (13)0.0417 (6)
H50.80540.06151.01820.050*
C60.9497 (3)0.06134 (17)0.93102 (14)0.0457 (6)
H6A1.01010.01170.92870.055*
H6B0.99790.10590.95830.055*
C70.9109 (3)0.09122 (16)0.85379 (13)0.0443 (6)
H70.97400.06590.81680.053*
C80.9157 (3)0.18622 (16)0.84910 (14)0.0445 (6)
C90.8267 (3)0.22508 (16)0.91195 (13)0.0416 (6)
C100.6911 (3)0.17703 (16)0.92456 (12)0.0405 (6)
C110.6968 (3)0.07934 (16)0.91761 (13)0.0399 (5)
C120.5904 (3)0.22027 (18)0.87023 (15)0.0496 (6)
H12A0.55680.17960.83380.060*
H12B0.50980.24310.89670.060*
C130.6700 (3)0.29100 (18)0.83222 (15)0.0527 (7)
H130.60840.33990.82300.063*
C140.7783 (3)0.31184 (17)0.88965 (15)0.0512 (7)
H140.73190.33890.93220.061*
C150.8737 (3)0.2179 (2)0.77238 (14)0.0565 (7)
H15A0.94590.25740.75600.068*
H15B0.87670.16960.73890.068*
C160.7352 (4)0.2605 (2)0.76183 (15)0.0604 (8)
H160.67020.22250.73560.073*
C170.7620 (3)0.05823 (16)0.84348 (12)0.0415 (6)
H170.71460.09000.80390.050*
C180.8127 (3)0.08526 (17)0.88536 (14)0.0515 (7)
H18A0.91300.08930.87580.062*
H18B0.77340.14190.88060.062*
C190.9371 (3)0.08098 (19)1.07202 (15)0.0556 (7)
C200.3182 (3)0.0800 (3)0.9099 (2)0.0738 (10)
H20A0.28390.02760.93050.111*
H20B0.25670.09820.87060.111*
H20C0.32090.12270.94800.111*
C210.8619 (4)0.4468 (2)0.8583 (2)0.0807 (10)
H21A0.80800.45340.81350.121*
H21B0.94770.47880.85430.121*
H21C0.80810.46720.89990.121*
C220.7499 (12)0.3113 (7)0.6432 (4)0.114 (3)0.578 (12)
H22A0.81620.26970.62600.170*0.578 (12)
H22B0.75750.36170.61340.170*0.578 (12)
H22C0.65610.28880.63930.170*0.578 (12)
C22'0.6743 (13)0.3573 (9)0.6707 (7)0.104 (4)0.422 (12)
H22D0.63860.31240.63980.155*0.422 (12)
H22E0.73640.39270.64210.155*0.422 (12)
H22F0.59720.39090.68900.155*0.422 (12)
C230.7964 (4)0.0559 (2)0.75690 (15)0.0625 (8)
H23A0.89640.06830.75830.075*
H23B0.78220.00860.72300.075*
C240.7206 (6)0.1305 (2)0.7287 (2)0.0994 (14)
H24A0.75160.18030.75480.149*
H24B0.73940.13710.67650.149*
H24C0.62130.12290.73620.149*
C1'1.0692 (3)0.11619 (17)1.09396 (15)0.0525 (7)
C2'1.1153 (4)0.10849 (19)1.16724 (16)0.0600 (8)
C3'1.2446 (4)0.1426 (2)1.1845 (2)0.0732 (10)
H3'1.27690.13891.23330.088*
C4'1.3246 (4)0.1804 (2)1.1341 (2)0.0786 (11)
H4'1.41160.20251.14800.094*
C5'1.2809 (4)0.1874 (2)1.0619 (2)0.0739 (9)
H5'1.33790.21341.02650.089*
C6'1.1544 (4)0.15597 (19)1.04293 (17)0.0624 (8)
H6'1.12360.16130.99400.075*
N11.0397 (4)0.0685 (2)1.21841 (14)0.0858 (10)
H1A1.07160.06361.26310.103*
H1B0.95880.04731.20700.103*
N20.7503 (2)0.03157 (13)0.82988 (10)0.0461 (5)
O10.8590 (3)0.04165 (18)1.11148 (11)0.0792 (7)
O20.9070 (2)0.09711 (12)1.00172 (10)0.0533 (5)
O30.64582 (19)0.19706 (12)0.99729 (9)0.0492 (4)
H30.71460.20821.02340.074*
O40.8988 (2)0.22811 (12)0.97916 (9)0.0493 (5)
H40.97900.24630.97210.074*
O51.05780 (19)0.20907 (13)0.86056 (11)0.0567 (5)
H5A1.06720.26050.85400.085*
O60.8938 (2)0.36055 (12)0.86885 (12)0.0613 (5)
O70.7770 (13)0.3303 (12)0.7134 (9)0.092 (3)0.578 (12)
O7'0.7307 (16)0.3306 (16)0.7166 (13)0.084 (3)0.422 (12)
O80.45273 (18)0.06771 (13)0.88177 (10)0.0525 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0340 (14)0.0631 (16)0.0404 (12)0.0009 (13)0.0003 (11)0.0027 (11)
C20.0407 (16)0.0666 (18)0.0650 (17)0.0101 (15)0.0019 (13)0.0052 (14)
C30.0552 (19)0.0600 (16)0.0609 (17)0.0055 (15)0.0027 (15)0.0118 (13)
C40.0425 (15)0.0532 (15)0.0457 (14)0.0050 (13)0.0030 (11)0.0054 (11)
C50.0368 (14)0.0518 (14)0.0365 (12)0.0057 (12)0.0025 (10)0.0001 (10)
C60.0378 (14)0.0488 (14)0.0506 (14)0.0084 (12)0.0013 (12)0.0003 (11)
C70.0367 (14)0.0537 (14)0.0424 (13)0.0037 (12)0.0040 (11)0.0013 (11)
C80.0348 (14)0.0524 (14)0.0462 (13)0.0005 (12)0.0019 (11)0.0017 (11)
C90.0351 (13)0.0507 (13)0.0390 (12)0.0015 (12)0.0043 (10)0.0035 (10)
C100.0356 (14)0.0515 (14)0.0344 (12)0.0059 (11)0.0004 (10)0.0047 (10)
C110.0297 (13)0.0502 (13)0.0399 (12)0.0002 (11)0.0002 (10)0.0014 (10)
C120.0364 (14)0.0590 (16)0.0535 (15)0.0064 (13)0.0080 (12)0.0011 (12)
C130.0502 (17)0.0558 (15)0.0522 (15)0.0080 (14)0.0063 (13)0.0050 (11)
C140.0480 (16)0.0524 (15)0.0532 (15)0.0039 (13)0.0008 (13)0.0009 (12)
C150.0641 (19)0.0610 (16)0.0442 (14)0.0007 (15)0.0094 (13)0.0038 (12)
C160.069 (2)0.0665 (18)0.0457 (14)0.0031 (16)0.0044 (14)0.0074 (13)
C170.0373 (14)0.0496 (14)0.0376 (12)0.0042 (12)0.0020 (10)0.0008 (10)
C180.0553 (17)0.0493 (14)0.0499 (14)0.0053 (13)0.0003 (13)0.0020 (11)
C190.0615 (19)0.0633 (17)0.0420 (14)0.0028 (16)0.0019 (14)0.0099 (12)
C200.0339 (16)0.106 (3)0.082 (2)0.0081 (18)0.0051 (15)0.0039 (19)
C210.101 (3)0.0491 (16)0.092 (2)0.0004 (19)0.003 (2)0.0063 (16)
C220.135 (6)0.138 (6)0.067 (4)0.031 (5)0.013 (4)0.034 (4)
C22'0.097 (6)0.126 (6)0.088 (6)0.041 (5)0.003 (5)0.037 (5)
C230.072 (2)0.0711 (19)0.0441 (14)0.0178 (17)0.0071 (14)0.0102 (13)
C240.149 (4)0.077 (2)0.072 (2)0.017 (3)0.021 (3)0.0308 (19)
C1'0.0545 (17)0.0534 (15)0.0496 (14)0.0008 (14)0.0054 (13)0.0126 (12)
C2'0.067 (2)0.0612 (17)0.0519 (16)0.0053 (16)0.0100 (15)0.0187 (13)
C3'0.080 (3)0.069 (2)0.071 (2)0.004 (2)0.031 (2)0.0131 (17)
C4'0.069 (2)0.0639 (19)0.103 (3)0.0035 (19)0.032 (2)0.0146 (19)
C5'0.061 (2)0.069 (2)0.091 (2)0.0112 (18)0.0127 (18)0.0022 (17)
C6'0.064 (2)0.0612 (17)0.0618 (18)0.0054 (17)0.0093 (16)0.0075 (14)
N10.089 (2)0.125 (3)0.0431 (13)0.005 (2)0.0066 (14)0.0039 (15)
N20.0471 (13)0.0501 (12)0.0412 (11)0.0055 (11)0.0047 (10)0.0058 (8)
O10.0785 (16)0.1133 (18)0.0457 (11)0.0293 (15)0.0017 (11)0.0006 (11)
O20.0560 (12)0.0576 (11)0.0462 (10)0.0098 (9)0.0034 (9)0.0067 (8)
O30.0427 (11)0.0645 (11)0.0404 (9)0.0048 (9)0.0031 (8)0.0097 (8)
O40.0418 (11)0.0626 (11)0.0436 (9)0.0016 (9)0.0073 (8)0.0034 (8)
O50.0392 (11)0.0613 (11)0.0695 (12)0.0060 (9)0.0066 (9)0.0040 (10)
O60.0618 (13)0.0485 (10)0.0737 (13)0.0011 (10)0.0018 (10)0.0024 (9)
O70.104 (6)0.104 (3)0.069 (3)0.011 (6)0.007 (5)0.047 (3)
O7'0.087 (7)0.096 (4)0.067 (4)0.013 (6)0.001 (6)0.036 (3)
O80.0320 (10)0.0767 (12)0.0488 (10)0.0033 (9)0.0025 (8)0.0018 (9)
Geometric parameters (Å, º) top
C1—O81.437 (3)C17—H171.0000
C1—C21.525 (4)C18—N21.465 (3)
C1—C111.551 (3)C18—H18A0.9900
C1—H11.0000C18—H18B0.9900
C2—C31.523 (4)C19—O11.223 (4)
C2—H2A0.9900C19—O21.348 (3)
C2—H2B0.9900C19—C1'1.456 (4)
C3—C41.515 (4)C20—O81.416 (3)
C3—H3A0.9900C20—H20A0.9800
C3—H3B0.9900C20—H20B0.9800
C4—O21.479 (3)C20—H20C0.9800
C4—C51.537 (4)C21—O61.431 (4)
C4—C181.540 (4)C21—H21A0.9800
C5—C61.542 (4)C21—H21B0.9800
C5—C111.563 (3)C21—H21C0.9800
C5—H51.0000C22—O71.350 (19)
C6—C71.543 (3)C22—H22A0.9800
C6—H6A0.9900C22—H22B0.9800
C6—H6B0.9900C22—H22C0.9800
C7—C81.528 (4)C22'—O7'1.09 (2)
C7—C171.549 (4)C22'—H22D0.9800
C7—H71.0000C22'—H22E0.9800
C8—O51.440 (3)C22'—H22F0.9800
C8—C151.552 (4)C23—N21.465 (3)
C8—C91.570 (4)C23—C241.497 (5)
C9—O41.419 (3)C23—H23A0.9900
C9—C141.525 (4)C23—H23B0.9900
C9—C101.542 (4)C24—H24A0.9800
C10—O31.442 (3)C24—H24B0.9800
C10—C121.558 (3)C24—H24C0.9800
C10—C111.574 (4)C1'—C6'1.402 (4)
C11—C171.538 (3)C1'—C2'1.423 (4)
C12—C131.540 (4)C2'—N11.353 (4)
C12—H12A0.9900C2'—C3'1.404 (5)
C12—H12B0.9900C3'—C4'1.352 (5)
C13—C161.520 (4)C3'—H3'0.9500
C13—C141.525 (4)C4'—C5'1.397 (5)
C13—H131.0000C4'—H4'0.9500
C14—O61.418 (4)C5'—C6'1.371 (5)
C14—H141.0000C5'—H5'0.9500
C15—C161.518 (5)C6'—H6'0.9500
C15—H15A0.9900N1—H1A0.8800
C15—H15B0.9900N1—H1B0.8800
C16—O7'1.40 (2)O3—H30.8400
C16—O71.487 (17)O4—H40.8400
C16—H161.0000O5—H5A0.8400
C17—N21.467 (3)
O8—C1—C2107.4 (2)C8—C15—H15B107.4
O8—C1—C11111.0 (2)H15A—C15—H15B106.9
C2—C1—C11117.0 (2)O7'—C16—C15117.7 (7)
O8—C1—H1107.0O7—C16—C15100.0 (5)
C2—C1—H1107.0O7'—C16—C13103.4 (9)
C11—C1—H1107.0O7—C16—C13112.2 (7)
C3—C2—C1111.5 (2)C15—C16—C13113.8 (2)
C3—C2—H2A109.3O7'—C16—H16100.7
C1—C2—H2A109.3O7—C16—H16110.1
C3—C2—H2B109.3C15—C16—H16110.1
C1—C2—H2B109.3C13—C16—H16110.1
H2A—C2—H2B108.0N2—C17—C11109.6 (2)
C4—C3—C2107.8 (2)N2—C17—C7115.4 (2)
C4—C3—H3A110.1C11—C17—C7101.48 (18)
C2—C3—H3A110.1N2—C17—H17110.0
C4—C3—H3B110.1C11—C17—H17110.0
C2—C3—H3B110.1C7—C17—H17110.0
H3A—C3—H3B108.5N2—C18—C4114.3 (2)
O2—C4—C3110.5 (2)N2—C18—H18A108.7
O2—C4—C5110.1 (2)C4—C18—H18A108.7
C3—C4—C5112.4 (2)N2—C18—H18B108.7
O2—C4—C18101.0 (2)C4—C18—H18B108.7
C3—C4—C18113.2 (2)H18A—C18—H18B107.6
C5—C4—C18109.2 (2)O1—C19—O2122.1 (3)
C4—C5—C6108.2 (2)O1—C19—C1'125.5 (3)
C4—C5—C11107.1 (2)O2—C19—C1'112.4 (3)
C6—C5—C11106.03 (19)O8—C20—H20A109.5
C4—C5—H5111.7O8—C20—H20B109.5
C6—C5—H5111.7H20A—C20—H20B109.5
C11—C5—H5111.7O8—C20—H20C109.5
C5—C6—C7104.6 (2)H20A—C20—H20C109.5
C5—C6—H6A110.8H20B—C20—H20C109.5
C7—C6—H6A110.8O6—C21—H21A109.5
C5—C6—H6B110.8O6—C21—H21B109.5
C7—C6—H6B110.8H21A—C21—H21B109.5
H6A—C6—H6B108.9O6—C21—H21C109.5
C8—C7—C6110.8 (2)H21A—C21—H21C109.5
C8—C7—C17111.3 (2)H21B—C21—H21C109.5
C6—C7—C17103.5 (2)O7'—C22'—H22D109.5
C8—C7—H7110.4O7'—C22'—H22E109.5
C6—C7—H7110.4H22D—C22'—H22E109.5
C17—C7—H7110.4O7'—C22'—H22F109.5
O5—C8—C7106.0 (2)H22D—C22'—H22F109.5
O5—C8—C15107.5 (2)H22E—C22'—H22F109.5
C7—C8—C15111.7 (2)N2—C23—C24112.3 (3)
O5—C8—C9108.5 (2)N2—C23—H23A109.1
C7—C8—C9109.8 (2)C24—C23—H23A109.1
C15—C8—C9113.1 (2)N2—C23—H23B109.1
O4—C9—C14110.7 (2)C24—C23—H23B109.1
O4—C9—C10107.86 (19)H23A—C23—H23B107.9
C14—C9—C10103.6 (2)C23—C24—H24A109.5
O4—C9—C8112.5 (2)C23—C24—H24B109.5
C14—C9—C8109.5 (2)H24A—C24—H24B109.5
C10—C9—C8112.3 (2)C23—C24—H24C109.5
O3—C10—C9106.68 (19)H24A—C24—H24C109.5
O3—C10—C12107.6 (2)H24B—C24—H24C109.5
C9—C10—C12102.42 (19)C6'—C1'—C2'119.1 (3)
O3—C10—C11107.93 (19)C6'—C1'—C19120.6 (3)
C9—C10—C11117.1 (2)C2'—C1'—C19120.3 (3)
C12—C10—C11114.4 (2)N1—C2'—C3'120.7 (3)
C17—C11—C1119.2 (2)N1—C2'—C1'121.8 (3)
C17—C11—C597.83 (19)C3'—C2'—C1'117.4 (3)
C1—C11—C5111.34 (19)C4'—C3'—C2'122.2 (3)
C17—C11—C10107.79 (19)C4'—C3'—H3'118.9
C1—C11—C10108.1 (2)C2'—C3'—H3'118.9
C5—C11—C10112.4 (2)C3'—C4'—C5'120.8 (3)
C13—C12—C10107.7 (2)C3'—C4'—H4'119.6
C13—C12—H12A110.2C5'—C4'—H4'119.6
C10—C12—H12A110.2C6'—C5'—C4'118.8 (3)
C13—C12—H12B110.2C6'—C5'—H5'120.6
C10—C12—H12B110.2C4'—C5'—H5'120.6
H12A—C12—H12B108.5C5'—C6'—C1'121.7 (3)
C16—C13—C14111.9 (3)C5'—C6'—H6'119.2
C16—C13—C12110.8 (2)C1'—C6'—H6'119.2
C14—C13—C12101.2 (2)C2'—N1—H1A120.0
C16—C13—H13110.9C2'—N1—H1B120.0
C14—C13—H13110.9H1A—N1—H1B120.0
C12—C13—H13110.9C18—N2—C23110.7 (2)
O6—C14—C13118.6 (2)C18—N2—C17115.3 (2)
O6—C14—C9109.4 (2)C23—N2—C17113.2 (2)
C13—C14—C9101.4 (2)C19—O2—C4121.5 (2)
O6—C14—H14109.0C10—O3—H3109.5
C13—C14—H14109.0C9—O4—H4109.5
C9—C14—H14109.0C8—O5—H5A109.5
C16—C15—C8119.7 (2)C14—O6—C21113.5 (3)
C16—C15—H15A107.4C22—O7—C16110.3 (13)
C8—C15—H15A107.4C22'—O7'—C16142 (2)
C16—C15—H15B107.4C20—O8—C1113.5 (2)
O8—C1—C2—C3172.1 (2)O4—C9—C14—O670.7 (3)
C11—C1—C2—C346.5 (3)C10—C9—C14—O6173.9 (2)
C1—C2—C3—C454.4 (3)C8—C9—C14—O653.9 (3)
C2—C3—C4—O2170.1 (2)O4—C9—C14—C13163.2 (2)
C2—C3—C4—C566.6 (3)C10—C9—C14—C1347.9 (2)
C2—C3—C4—C1857.7 (3)C8—C9—C14—C1372.2 (3)
O2—C4—C5—C658.3 (2)O5—C8—C15—C16136.5 (3)
C3—C4—C5—C6178.2 (2)C7—C8—C15—C16107.7 (3)
C18—C4—C5—C651.7 (3)C9—C8—C15—C1616.8 (4)
O2—C4—C5—C11172.24 (18)C8—C15—C16—O7'139.0 (12)
C3—C4—C5—C1164.2 (3)C8—C15—C16—O7137.6 (8)
C18—C4—C5—C1162.2 (3)C8—C15—C16—C1317.7 (4)
C4—C5—C6—C7100.5 (2)C14—C13—C16—O7'100.8 (8)
C11—C5—C6—C714.2 (3)C12—C13—C16—O7'147.2 (8)
C5—C6—C7—C8101.8 (2)C14—C13—C16—O784.6 (6)
C5—C6—C7—C1717.6 (2)C12—C13—C16—O7163.3 (6)
C6—C7—C8—O564.6 (3)C14—C13—C16—C1528.1 (3)
C17—C7—C8—O5179.14 (19)C12—C13—C16—C1583.9 (3)
C6—C7—C8—C15178.7 (2)C1—C11—C17—N248.0 (3)
C17—C7—C8—C1564.1 (3)C5—C11—C17—N271.9 (2)
C6—C7—C8—C952.4 (3)C10—C11—C17—N2171.5 (2)
C17—C7—C8—C962.2 (3)C1—C11—C17—C7170.4 (2)
O5—C8—C9—O433.9 (3)C5—C11—C17—C750.5 (2)
C7—C8—C9—O481.5 (3)C10—C11—C17—C766.1 (2)
C15—C8—C9—O4153.0 (2)C8—C7—C17—N2166.20 (19)
O5—C8—C9—C1489.7 (2)C6—C7—C17—N274.8 (2)
C7—C8—C9—C14155.0 (2)C8—C7—C17—C1175.4 (2)
C15—C8—C9—C1429.4 (3)C6—C7—C17—C1143.5 (2)
O5—C8—C9—C10155.8 (2)O2—C4—C18—N2157.5 (2)
C7—C8—C9—C1040.4 (3)C3—C4—C18—N284.4 (3)
C15—C8—C9—C1085.1 (3)C5—C4—C18—N241.5 (3)
O4—C9—C10—O334.5 (3)O1—C19—C1'—C6'176.2 (3)
C14—C9—C10—O382.8 (2)O2—C19—C1'—C6'4.5 (4)
C8—C9—C10—O3159.04 (19)O1—C19—C1'—C2'2.0 (5)
O4—C9—C10—C12147.5 (2)O2—C19—C1'—C2'177.3 (3)
C14—C9—C10—C1230.1 (2)C6'—C1'—C2'—N1177.9 (3)
C8—C9—C10—C1288.0 (2)C19—C1'—C2'—N10.3 (5)
O4—C9—C10—C1186.4 (2)C6'—C1'—C2'—C3'0.7 (4)
C14—C9—C10—C11156.2 (2)C19—C1'—C2'—C3'178.9 (3)
C8—C9—C10—C1138.1 (3)N1—C2'—C3'—C4'177.7 (3)
O8—C1—C11—C1755.8 (3)C1'—C2'—C3'—C4'0.9 (5)
C2—C1—C11—C1768.0 (3)C2'—C3'—C4'—C5'0.2 (5)
O8—C1—C11—C5168.5 (2)C3'—C4'—C5'—C6'0.8 (5)
C2—C1—C11—C544.7 (3)C4'—C5'—C6'—C1'0.9 (5)
O8—C1—C11—C1067.6 (3)C2'—C1'—C6'—C5'0.2 (5)
C2—C1—C11—C10168.6 (2)C19—C1'—C6'—C5'178.0 (3)
C4—C5—C11—C1775.3 (2)C4—C18—N2—C23169.7 (2)
C6—C5—C11—C1740.1 (2)C4—C18—N2—C1739.6 (3)
C4—C5—C11—C150.3 (3)C24—C23—N2—C1879.2 (3)
C6—C5—C11—C1165.7 (2)C24—C23—N2—C17149.5 (3)
C4—C5—C11—C10171.7 (2)C11—C17—N2—C1857.3 (3)
C6—C5—C11—C1072.9 (2)C7—C17—N2—C1856.4 (3)
O3—C10—C11—C17173.14 (18)C11—C17—N2—C23173.8 (2)
C9—C10—C11—C1752.8 (3)C7—C17—N2—C2372.5 (3)
C12—C10—C11—C1767.1 (3)O1—C19—O2—C411.8 (4)
O3—C10—C11—C156.8 (2)C1'—C19—O2—C4168.9 (2)
C9—C10—C11—C1177.13 (19)C3—C4—O2—C1967.1 (3)
C12—C10—C11—C163.0 (2)C5—C4—O2—C1957.5 (3)
O3—C10—C11—C566.5 (2)C18—C4—O2—C19172.8 (2)
C9—C10—C11—C553.9 (3)C13—C14—O6—C2174.1 (3)
C12—C10—C11—C5173.8 (2)C9—C14—O6—C21170.5 (2)
O3—C10—C12—C13110.3 (2)O7'—C16—O7—C2278 (5)
C9—C10—C12—C131.9 (2)C15—C16—O7—C2298.3 (9)
C11—C10—C12—C13129.7 (2)C13—C16—O7—C22140.7 (8)
C10—C12—C13—C1692.0 (3)O7—C16—O7'—C22'135 (8)
C10—C12—C13—C1426.7 (3)C15—C16—O7'—C22'130 (3)
C16—C13—C14—O646.8 (3)C13—C16—O7'—C22'103 (3)
C12—C13—C14—O6164.9 (2)C2—C1—O8—C2083.5 (3)
C16—C13—C14—C972.9 (3)C11—C1—O8—C20147.4 (3)
C12—C13—C14—C945.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.842.342.909 (3)126
O4—H4···O50.842.272.684 (3)111
O4—H4···O3i0.841.942.713 (3)153
O3—H3···O40.841.992.524 (3)121
N1—H1B···O10.882.002.666 (4)131
N1—H1A···O8ii0.882.192.999 (3)152
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.842.342.909 (3)125.5
O4—H4···O50.842.272.684 (3)111.1
O4—H4···O3i0.841.942.713 (3)152.9
O3—H3···O40.841.992.524 (3)121.0
N1—H1B···O10.882.002.666 (4)131.0
N1—H1A···O8ii0.882.192.999 (3)152.4
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+3/2, y, z+1/2.
 

Acknowledgements

This project was supported by the Science and Technology Research and Development Projects of Shaanxi Province (grant No. 2013KJXX-74), the National Natural Science Foundation of China (grant No. 31200257) and the Science and Technology Program of Shaanxi Academy of Sciences (grant No. 2012k-04).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033–o1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-P., Sun, W.-X., Zhang, J., Liu, H.-S. & Wen, H.-H. (2007). Acta Cryst. E63, o1645–o1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, X.-Y., Wei, B.-Y. & Zhang, J. (1996). Acta Botanica Sin. 38, 995–997.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds