research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new monoclinic polymorph of 1,1′-bis­­(di­phenyl­thio­phosphor­yl)ferrocene

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 30 June 2015; accepted 1 July 2015; online 4 July 2015)

The title compound, [Fe(C17H14PS)2], is a second monoclinic polymorph (P21/c, with Z′ = 1) of the previously reported monoclinic (C2/c, with Z′ = 1/2) form [Fang et al. (1995[Fang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403-2409.]). Polyhedron, 14, 2403–2409]. In the new form, the S atoms lie to the same side of the mol­ecule with the pseudo S—P⋯P—S torsion angle being −53.09 (3)°. By contrast to this almost syn disposition, in the C2/c polymorph, the Fe atom lies on a centre of inversion so that the S atoms are strictly anti, with a pseudo-S—P⋯P—S torsion angle of 180°. The significant difference in mol­ecular conformation between the two forms does not result in major perturbations in the P=S bond lengths nor in the distorted tetra­hedral geometries about the P atoms. The crystal packing of the new monoclinic polymorph features weak Cp—C—H⋯π(phen­yl) inter­actions consolidating linear supra­molecular chains along the a axis. These pack with no directional inter­actions between them.

1. Chemical context

Phosphanegold(I) di­thio­carbamates, R3PAu(S2CNR2), attract on-going inter­est owing to impressive biological activities against both cancer (Jamaludin et al., 2013[Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127-141.]) and microbes (Sim et al., 2014[Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225-236.]). It was in the course of these studies that crystals of the title compound, dppfS2, an oxidation product of 1,1′-bis­(di­phenyl­phosphane)ferrocene (dppf), were isolated as orange needles, being a side-product of a reaction, see Synthesis and crystallization for details. Crystallography shows the title compound to be a new monoclinic polymorph of a previously described C2/c form (Fang et al., 1995[Fang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403-2409.]). Herein, details of the new polymorph are described along with a comparison with the original polymorph. A discussion of the key structural characteristics of related dppfY2, Y = 0, O, S and Se, structures ensues.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of dppfS2 is shown in Fig. 1[link] and comprises two Ph2P=S units linked via the P atoms through a C5H4FeC5H4 link. The S atoms lie to the same side of the mol­ecule and might be described as having a syn conformation. When viewed down the P⋯P axis, the S atoms are gauche with the pseudo S—P⋯P—S torsion angle being −53.09 (3)°. This represents the major difference between dppfS2 and its C2/c–dppfS2 polymorph (Fang et al., 1995[Fang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403-2409.]). In the latter the Fe atom lies on a crystallographic centre of inversion, implying the S atoms are anti and that the pseudo S—P⋯P—S torsion angle is 180°.

[Figure 1]
Figure 1
The mol­ecular structure of the new P21/c polymorph of dppfS2, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

The conformational differences in the polymorphs are highlighted in the overlay diagram shown in Fig. 2[link]. The Fe atom is equally disposed from the centroids of the very nearly eclipsed Cp rings: Fe⋯Cg(C1–C5) and Cg(C6–C10) are 1.6487 (8) and 1.6451 (8) Å, respectively, and the Cg(C1–C5)⋯Fe⋯Cg(C6–C10) angle is 178.92 (5)°. The comparable parameters for the C2/c–dppfS2 polymorph are 1.650 (3) Å and 180°, and the Cp rings are strictly staggered when viewed down the Cg(C1–C5)⋯Fe⋯Cg(C1–C5)i axis. In dppfS2, the P=S bond lengths are experimentally distinct, i.e. P1=S1 of 1.9449 (6) Å is shorter than P2=S2 of 1.9530 (6) Å, with the former being equivalent to P1=S1 of 1.9384 (18) Å in C2/c–dppfS2. Finally, the P1 and P2 atoms have distorted tetra­hedral environments with the range of angles subtended at P1 of 103.94 (7)–113.78 (6)° being comparable to those subtended at P2, i.e. 105.55 (7)–114.92 (5)°; the equivalent range of angles in C2/c–dppfS2 is 104.8 (2)–114.28 (15)°. In each case, the angles involving the S atom are wider than those involving C atoms only, and the narrowest angle always involves the two ipso-C atoms.

[Figure 2]
Figure 2
Overlay diagram of the P21/c (red image) and C2/c (green) polymorphs overlapped so that one Cp ring of each mol­ecule is coincident.

3. Supra­molecular features

Globally, the crystal packing features columns of mol­ecules aligned along the a axis. Based on the distance criteria employed in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), the most notable inter­molecular contact operating in the crystal structure is a Cp-C2—H2⋯π(C31–C36) inter­action, Table 1[link], that connects translationally related mol­ecules into a supra­molecular chain along the a axis, Fig. 3[link]. Chains pack with no specific directional inter­actions between them, Fig. 4[link]. In the C2/c–dppfS2 polymorph, the most prominent directional inter­action is a weak C—H⋯S contact. The crystal packing efficiencies calculated by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) are 69.3 and 67.2%, respectively, indicating the more symmetric structure packs less efficiently.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.95 2.92 3.6111 (18) 130
Symmetry code: (i) x-1, y, z.
[Figure 3]
Figure 3
Supra­molecular chain along the a axis sustained by C—H⋯π inter­actions shown as purple dashed lines.
[Figure 4]
Figure 4
Unit-cell contents shown in projection down the a axis. The C—H⋯π contacts are shown purple dashed lines. One of the supra­molecular chains shown in Fig. 3[link] has been highlighted in space-filling mode.

4. Database survey

Subsequent to the report of the C2/c form by Fang et al. (1995[Fang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403-2409.]), a second report appeared (Pilloni et al., 1997[Pilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819-826.]). In the latter analysis, the authors suggested that Cc was the correct space group. The assignment of C2/c was later confirmed as being correct (Clemente & Marzotto, 2004[Clemente, D. A. & Marzotto, A. (2004). Acta Cryst. B60, 287-292.]).

The structures of several oxidation products of dppf, Ph2P(=Y)C5H4FeC5H4P(=Y)Ph2, Y = 0, O, S and Se, have been described in the crystallographic literature. The parent compound, i.e. with Y = lone pair, has the Fe atom situated on a centre of inversion (Casellato et al., 1988[Casellato, U., Ajo, D., Valle, G., Corain, B., Longato, B. & Graziani, R. (1988). J. Crystallogr. Spectrosc. Res. 18, 583-590.]). When Y = O, an unsolvated form has been reported with the Fe atom again located on a centre of inversion (Pilloni et al., 1993[Pilloni, G., Corain, B., Degano, M., Longato, B. & Zanotti, G. (1993). J. Chem. Soc. Dalton Trans. pp. 1777-1778.]). A monohydrate (Bar et al., 2008[Bar, A. K., Chakrabarty, R. & Mukherjee, P. S. (2008). Organometallics, 27, 3806-3810.]; Bolte et al., 1997[Bolte, M., Naumann, F. & Hashmi, A. S. K. (1997). Acta Cryst. C53, 1785-1786.]) as well as a dihydrate (Munyejabo et al., 1994[Munyejabo, V., Postel, M., Roustan, J. L. & Bensimon, C. (1994). Acta Cryst. C50, 224-226.]; Fang et al., 1995[Fang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403-2409.]) have also been described. In the former, the O atoms are approximately syn while the latter is centrosymmetric, i.e. resembling the situation with the Y = S polymorphs. Finally, when Y = Se, centrosymmetric structures are found in the unsolvated form (Arsenyan et al., 2012[Arsenyan, P., Petrenko, A., Oberte, K. & Belyakov, S. (2012). Chem. Heterocycl. Compd, 48, pp 1263-1266.]) as well as in the CH2Cl2 monosolvate (Pilloni et al., 1997[Pilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819-826.]). Clearly, there is significant conformational flexibility in the Ph2P(=Y)C5H4FeC5H4P(=Y)Ph2, Y = 0, O, S and Se, compounds suggesting a low energy barrier for the inter­change from one conformation to another. The structural data for Ph2P(=Y)C5H4FeC5H4P(=Y)Ph2 are summarized in Table 2[link].

Table 2
Summary of structural data (Å) for Ph2P(=Y)C5H4FeC5H4P(=Y)Ph2

Y Symmetry Y—P⋯P—Y Solvent CSD refcodea Reference
O [\overline{1}] 180 KADXAO Casellato et al. (1988[Casellato, U., Ajo, D., Valle, G., Corain, B., Longato, B. & Graziani, R. (1988). J. Crystallogr. Spectrosc. Res. 18, 583-590.])
O [\overline{1}] 180 WARMUX Pilloni et al. (1993[Pilloni, G., Corain, B., Degano, M., Longato, B. & Zanotti, G. (1993). J. Chem. Soc. Dalton Trans. pp. 1777-1778.])
O 155.57 (18) H2O RUVJEX01 Bar et al. (2008[Bar, A. K., Chakrabarty, R. & Mukherjee, P. S. (2008). Organometallics, 27, 3806-3810.])
O [\overline{1}] 180 2H2O HATTUR Munyejabo et al. (1994[Munyejabo, V., Postel, M., Roustan, J. L. & Bensimon, C. (1994). Acta Cryst. C50, 224-226.])
S [\overline{1}] 180 ZEQSOD Fang et al. (1995[Fang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403-2409.])
S −53.09 (3) This work
Se [\overline{1}] 180 KIHWAB Arsenyan et al. (2012[Arsenyan, P., Petrenko, A., Oberte, K. & Belyakov, S. (2012). Chem. Heterocycl. Compd, 48, pp 1263-1266.])
Se [\overline{1}] 180 CH2Cl2 RIPTIT Pilloni et al. (1997[Pilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819-826.])
Note: (a) Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), Version 5.35.

The dppfS2 mol­ecule can function as a ligand in metal complexes, often forming zero-dimensional mononuclear species (e.g. Gimeno et al., 1995[Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1995). J. Chem. Soc. Dalton Trans. pp. 3563-3564.], 2000[Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10-15.]; Pilloni et al., 1997[Pilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819-826.]) but sometimes binuclear species (Pilloni et al., 1998[Pilloni, G., Longato, B. & Bandoli, G. (1998). Inorg. Chim. Acta, 277, 163-170.]). Two examples exist whereby dppfS2 bridges metal toms to form one-dimensional coordination polymers (Gimeno et al., 1998[Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1998). J. Chem. Soc. Dalton Trans. pp. 1277-1280.], 2000[Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10-15.]).

5. Synthesis and crystallization

Two solutions were prepared. Firstly, a solution sodium salt of piperazine di­thio­carbamate (0.7 mmol) was prepared by dissolving piperazine (0.0582 g) in aceto­nitrile (50 ml). NaOH (112 µl of 50% w/w) and CS2 (84.6 µl) were added. Chloro­form (150 ml) was then added and the reaction mixture was stirred for 2 h. A second solution containing [1,1′-bis­(di­phenyl­phosphane)ferrocene]bis­[chlorido­gold(I)] (1.4 mmol) was prepared by dissolving potassium tetra­chlorido­aurate(III) (1.06 g) in a solvent mixture of acetone and water (1:2, 45 ml). Drop-wise addition of sodium sulfite (0.71 g) in water (10 ml) followed. Upon discolouration, bis­(di­phenyl­phos­phane)ferrocene (dppf, 0.78 g) in chloro­form (25 ml) was added. After stirring for 15 mins, the resulting gold precursor was extracted with chloro­form (150 ml). Aceto­nitrile (50 ml) was added to this to form solvent mixture of chloro­form and aceto­nitrile (3:1). The solution containing the di­thio­carbamate was added to that containing the gold precursor. The resulting mixture was stirred for 3 h. and then filtered. After three weeks, orange needles appeared, along with the precipitate, and these were subjected to the crystallographic study. Yield: 0.0890 g, 10.3% (based on dppf). M.p.: 519.5–519.9 K. IR: ν(P=S) 628 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Uequiv(C).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C17H14PS)2]
Mr 618.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.7451 (3), 21.2453 (6), 15.4537 (5)
β (°) 95.631 (3)
V3) 2857.32 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.25 × 0.25 × 0.25
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.751, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31395, 6509, 5701
Rint 0.036
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.05
No. of reflections 6509
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.24
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1,1'-Bis(diphenylthiophosphoryl)ferrocene top
Crystal data top
[Fe(C17H14PS)2]F(000) = 1280
Mr = 618.47Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7451 (3) ÅCell parameters from 11974 reflections
b = 21.2453 (6) Åθ = 3.9–29.3°
c = 15.4537 (5) ŵ = 0.81 mm1
β = 95.631 (3)°T = 100 K
V = 2857.32 (16) Å3Prism, orange
Z = 40.25 × 0.25 × 0.25 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
6509 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5701 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scanh = 1011
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 2327
Tmin = 0.751, Tmax = 1.000l = 1920
31395 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0304P)2 + 1.6529P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6509 reflectionsΔρmax = 0.40 e Å3
352 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.34255 (2)0.23085 (2)0.17509 (2)0.01395 (7)
S10.24914 (5)0.41754 (2)0.09257 (3)0.02424 (10)
S20.69563 (5)0.15111 (2)0.05280 (3)0.02111 (10)
P10.10320 (5)0.35615 (2)0.12875 (3)0.01579 (9)
P20.65005 (5)0.13323 (2)0.17155 (3)0.01496 (9)
C10.16059 (18)0.27653 (7)0.11083 (10)0.0166 (3)
C20.11134 (18)0.21919 (7)0.14866 (11)0.0182 (3)
H20.03880.21560.19030.022*
C30.19051 (18)0.16874 (8)0.11258 (11)0.0210 (3)
H30.18020.12540.12620.025*
C40.28756 (19)0.19377 (8)0.05290 (10)0.0203 (3)
H40.35300.17020.01960.024*
C50.27019 (18)0.26013 (8)0.05146 (10)0.0179 (3)
H50.32210.28870.01720.021*
C60.54850 (18)0.19445 (7)0.22183 (10)0.0156 (3)
C70.56320 (18)0.26062 (7)0.20595 (10)0.0165 (3)
H70.62800.27950.16740.020*
C80.46383 (19)0.29294 (8)0.25808 (11)0.0200 (3)
H80.45090.33730.26040.024*
C90.38708 (19)0.24804 (8)0.30613 (10)0.0202 (3)
H90.31400.25710.34600.024*
C100.43834 (18)0.18708 (8)0.28431 (10)0.0185 (3)
H100.40560.14830.30700.022*
C110.07025 (18)0.36206 (7)0.24275 (10)0.0172 (3)
C120.1599 (2)0.40242 (8)0.29758 (11)0.0219 (3)
H120.24010.42600.27590.026*
C130.1318 (2)0.40811 (9)0.38407 (12)0.0266 (4)
H130.19340.43550.42150.032*
C140.0144 (2)0.37407 (9)0.41629 (11)0.0264 (4)
H140.00510.37860.47540.032*
C150.0743 (2)0.33340 (8)0.36210 (11)0.0237 (4)
H150.15350.30950.38430.028*
C160.04748 (19)0.32759 (8)0.27542 (11)0.0204 (3)
H160.10930.30010.23820.025*
C210.08745 (18)0.36448 (7)0.07138 (10)0.0176 (3)
C220.1447 (2)0.42511 (8)0.05516 (11)0.0220 (3)
H220.08290.46070.07170.026*
C230.2922 (2)0.43325 (8)0.01480 (11)0.0254 (4)
H230.33200.47450.00490.030*
C240.3816 (2)0.38158 (9)0.01103 (11)0.0234 (4)
H240.48260.38740.03850.028*
C250.32411 (19)0.32144 (8)0.00299 (11)0.0227 (3)
H250.38500.28600.01580.027*
C260.17703 (19)0.31268 (8)0.04459 (10)0.0196 (3)
H260.13800.27130.05470.023*
C310.82272 (18)0.11941 (7)0.24346 (10)0.0177 (3)
C320.9158 (2)0.06866 (8)0.22515 (13)0.0268 (4)
H320.88630.04210.17690.032*
C331.0508 (2)0.05695 (9)0.27696 (13)0.0328 (4)
H331.11260.02180.26500.039*
C341.0959 (2)0.09614 (10)0.34592 (13)0.0314 (4)
H341.18890.08800.38120.038*
C351.0063 (2)0.14718 (9)0.36387 (11)0.0267 (4)
H351.03900.17460.41060.032*
C360.86822 (19)0.15844 (8)0.31345 (11)0.0201 (3)
H360.80510.19280.32690.024*
C410.53591 (18)0.06263 (7)0.18021 (11)0.0176 (3)
C420.53090 (19)0.03306 (8)0.26044 (11)0.0205 (3)
H420.58900.04930.31070.025*
C430.4402 (2)0.02033 (8)0.26646 (12)0.0254 (4)
H430.43560.04040.32110.031*
C440.3569 (2)0.04412 (8)0.19325 (13)0.0279 (4)
H440.29450.08030.19790.033*
C450.3636 (2)0.01573 (8)0.11305 (13)0.0285 (4)
H450.30700.03270.06280.034*
C460.4534 (2)0.03775 (8)0.10640 (11)0.0230 (4)
H460.45840.05730.05150.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01307 (12)0.01394 (11)0.01483 (12)0.00055 (8)0.00125 (9)0.00082 (8)
S10.0231 (2)0.0228 (2)0.0270 (2)0.00807 (17)0.00339 (18)0.00380 (17)
S20.0243 (2)0.0204 (2)0.0197 (2)0.00123 (16)0.00761 (17)0.00035 (15)
P10.0150 (2)0.01549 (19)0.0169 (2)0.00153 (15)0.00182 (15)0.00147 (15)
P20.0147 (2)0.01333 (18)0.0172 (2)0.00070 (15)0.00332 (16)0.00081 (15)
C10.0142 (7)0.0186 (7)0.0168 (8)0.0006 (6)0.0000 (6)0.0003 (6)
C20.0128 (7)0.0204 (8)0.0213 (8)0.0018 (6)0.0010 (6)0.0006 (6)
C30.0172 (8)0.0185 (8)0.0262 (9)0.0025 (6)0.0038 (7)0.0035 (6)
C40.0187 (8)0.0240 (8)0.0175 (8)0.0008 (7)0.0019 (6)0.0068 (6)
C50.0153 (8)0.0237 (8)0.0144 (7)0.0005 (6)0.0004 (6)0.0001 (6)
C60.0145 (7)0.0158 (7)0.0161 (7)0.0008 (6)0.0002 (6)0.0009 (6)
C70.0134 (7)0.0159 (7)0.0195 (8)0.0021 (6)0.0014 (6)0.0006 (6)
C80.0193 (8)0.0171 (8)0.0226 (8)0.0010 (6)0.0031 (7)0.0045 (6)
C90.0204 (8)0.0254 (8)0.0144 (7)0.0039 (7)0.0002 (6)0.0033 (6)
C100.0189 (8)0.0198 (8)0.0167 (8)0.0011 (6)0.0010 (6)0.0017 (6)
C110.0171 (8)0.0169 (7)0.0175 (8)0.0045 (6)0.0009 (6)0.0013 (6)
C120.0216 (8)0.0196 (8)0.0241 (9)0.0020 (6)0.0004 (7)0.0009 (7)
C130.0279 (9)0.0282 (9)0.0225 (9)0.0042 (7)0.0042 (7)0.0047 (7)
C140.0282 (9)0.0328 (10)0.0181 (8)0.0119 (8)0.0015 (7)0.0017 (7)
C150.0214 (8)0.0275 (9)0.0229 (9)0.0069 (7)0.0063 (7)0.0063 (7)
C160.0188 (8)0.0211 (8)0.0215 (8)0.0028 (6)0.0021 (7)0.0008 (6)
C210.0170 (8)0.0201 (8)0.0157 (7)0.0000 (6)0.0024 (6)0.0026 (6)
C220.0245 (9)0.0190 (8)0.0223 (8)0.0011 (7)0.0016 (7)0.0013 (6)
C230.0271 (9)0.0235 (8)0.0257 (9)0.0075 (7)0.0030 (7)0.0059 (7)
C240.0182 (8)0.0338 (9)0.0182 (8)0.0023 (7)0.0012 (7)0.0066 (7)
C250.0188 (8)0.0270 (9)0.0220 (8)0.0049 (7)0.0016 (7)0.0033 (7)
C260.0186 (8)0.0196 (8)0.0208 (8)0.0000 (6)0.0036 (7)0.0040 (6)
C310.0148 (7)0.0173 (7)0.0215 (8)0.0014 (6)0.0039 (6)0.0040 (6)
C320.0230 (9)0.0218 (8)0.0360 (10)0.0026 (7)0.0050 (8)0.0002 (7)
C330.0226 (9)0.0322 (10)0.0444 (12)0.0097 (8)0.0064 (8)0.0096 (9)
C340.0148 (8)0.0469 (12)0.0324 (10)0.0004 (8)0.0018 (7)0.0179 (9)
C350.0211 (9)0.0397 (10)0.0194 (8)0.0078 (8)0.0023 (7)0.0066 (7)
C360.0167 (8)0.0247 (8)0.0195 (8)0.0018 (6)0.0049 (6)0.0031 (6)
C410.0163 (8)0.0131 (7)0.0239 (8)0.0005 (6)0.0041 (6)0.0022 (6)
C420.0169 (8)0.0178 (8)0.0269 (9)0.0005 (6)0.0028 (7)0.0016 (7)
C430.0202 (9)0.0201 (8)0.0367 (10)0.0017 (7)0.0063 (8)0.0074 (7)
C440.0203 (9)0.0150 (8)0.0489 (11)0.0025 (7)0.0062 (8)0.0010 (8)
C450.0250 (9)0.0218 (9)0.0384 (10)0.0036 (7)0.0008 (8)0.0094 (8)
C460.0244 (9)0.0199 (8)0.0250 (9)0.0006 (7)0.0045 (7)0.0049 (7)
Geometric parameters (Å, º) top
Fe—C62.0269 (15)C13—C141.387 (3)
Fe—C102.0341 (16)C13—H130.9500
Fe—C12.0372 (16)C14—C151.387 (3)
Fe—C22.0383 (16)C14—H140.9500
Fe—C72.0421 (15)C15—C161.388 (2)
Fe—C32.0470 (16)C15—H150.9500
Fe—C52.0495 (16)C16—H160.9500
Fe—C92.0569 (16)C21—C261.390 (2)
Fe—C42.0589 (16)C21—C221.396 (2)
Fe—C82.0597 (16)C22—C231.387 (2)
S1—P11.9449 (6)C22—H220.9500
S2—P21.9530 (6)C23—C241.383 (3)
P1—C11.7936 (16)C23—H230.9500
P1—C111.8171 (16)C24—C251.382 (2)
P1—C211.8184 (16)C24—H240.9500
P2—C61.7943 (16)C25—C261.393 (2)
P2—C311.8089 (16)C25—H250.9500
P2—C411.8139 (16)C26—H260.9500
C1—C51.433 (2)C31—C361.390 (2)
C1—C21.436 (2)C31—C321.397 (2)
C2—C31.419 (2)C32—C331.382 (3)
C2—H20.9500C32—H320.9500
C3—C41.417 (2)C33—C341.379 (3)
C3—H30.9500C33—H330.9500
C4—C51.418 (2)C34—C351.382 (3)
C4—H40.9500C34—H340.9500
C5—H50.9500C35—C361.392 (2)
C6—C71.435 (2)C35—H350.9500
C6—C101.438 (2)C36—H360.9500
C7—C81.419 (2)C41—C461.393 (2)
C7—H70.9500C41—C421.394 (2)
C8—C91.418 (2)C42—C431.392 (2)
C8—H80.9500C42—H420.9500
C9—C101.422 (2)C43—C441.380 (3)
C9—H90.9500C43—H430.9500
C10—H100.9500C44—C451.385 (3)
C11—C121.392 (2)C44—H440.9500
C11—C161.398 (2)C45—C461.391 (2)
C12—C131.388 (3)C45—H450.9500
C12—H120.9500C46—H460.9500
C6—Fe—C1041.47 (6)C6—C7—Fe68.78 (9)
C6—Fe—C1168.45 (6)C8—C7—H7126.1
C10—Fe—C1149.39 (7)C6—C7—H7126.1
C6—Fe—C2148.69 (6)Fe—C7—H7126.3
C10—Fe—C2115.49 (7)C9—C8—C7108.65 (14)
C1—Fe—C241.25 (6)C9—C8—Fe69.75 (9)
C6—Fe—C741.30 (6)C7—C8—Fe69.10 (9)
C10—Fe—C769.21 (6)C9—C8—H8125.7
C1—Fe—C7129.88 (6)C7—C8—H8125.7
C2—Fe—C7168.66 (6)Fe—C8—H8127.1
C6—Fe—C3115.82 (6)C8—C9—C10108.19 (14)
C10—Fe—C3107.00 (7)C8—C9—Fe69.96 (9)
C1—Fe—C368.71 (6)C10—C9—Fe68.80 (9)
C2—Fe—C340.66 (6)C8—C9—H9125.9
C7—Fe—C3149.88 (7)C10—C9—H9125.9
C6—Fe—C5129.07 (6)Fe—C9—H9126.9
C10—Fe—C5167.58 (6)C9—C10—C6107.92 (14)
C1—Fe—C541.06 (6)C9—C10—Fe70.53 (9)
C2—Fe—C568.94 (7)C6—C10—Fe69.00 (9)
C7—Fe—C5108.78 (6)C9—C10—H10126.0
C3—Fe—C568.22 (7)C6—C10—H10126.0
C6—Fe—C968.97 (6)Fe—C10—H10126.0
C10—Fe—C940.67 (6)C12—C11—C16119.58 (15)
C1—Fe—C9117.30 (7)C12—C11—P1119.96 (13)
C2—Fe—C9107.89 (7)C16—C11—P1120.43 (12)
C7—Fe—C968.40 (7)C13—C12—C11119.85 (16)
C3—Fe—C9129.09 (7)C13—C12—H12120.1
C5—Fe—C9151.07 (7)C11—C12—H12120.1
C6—Fe—C4107.48 (6)C14—C13—C12120.49 (17)
C10—Fe—C4128.77 (7)C14—C13—H13119.8
C1—Fe—C468.55 (6)C12—C13—H13119.8
C2—Fe—C468.40 (7)C15—C14—C13119.86 (16)
C7—Fe—C4117.58 (7)C15—C14—H14120.1
C3—Fe—C440.37 (7)C13—C14—H14120.1
C5—Fe—C440.38 (6)C14—C15—C16120.05 (17)
C9—Fe—C4167.28 (7)C14—C15—H15120.0
C6—Fe—C868.73 (6)C16—C15—H15120.0
C10—Fe—C868.36 (7)C15—C16—C11120.15 (16)
C1—Fe—C8109.16 (6)C15—C16—H16119.9
C2—Fe—C8129.99 (7)C11—C16—H16119.9
C7—Fe—C840.47 (6)C26—C21—C22119.68 (15)
C3—Fe—C8167.84 (7)C26—C21—P1122.07 (12)
C5—Fe—C8118.62 (7)C22—C21—P1118.24 (12)
C9—Fe—C840.28 (7)C23—C22—C21119.82 (16)
C4—Fe—C8151.13 (7)C23—C22—H22120.1
C1—P1—C11106.75 (7)C21—C22—H22120.1
C1—P1—C21105.88 (7)C24—C23—C22120.32 (16)
C11—P1—C21103.94 (7)C24—C23—H23119.8
C1—P1—S1112.74 (6)C22—C23—H23119.8
C11—P1—S1113.78 (6)C25—C24—C23120.12 (16)
C21—P1—S1113.00 (5)C25—C24—H24119.9
C6—P2—C31105.69 (7)C23—C24—H24119.9
C6—P2—C41105.55 (7)C24—C25—C26120.06 (16)
C31—P2—C41104.63 (7)C24—C25—H25120.0
C6—P2—S2114.92 (5)C26—C25—H25120.0
C31—P2—S2111.95 (6)C21—C26—C25119.97 (15)
C41—P2—S2113.24 (6)C21—C26—H26120.0
C5—C1—C2107.49 (14)C25—C26—H26120.0
C5—C1—P1122.88 (12)C36—C31—C32119.35 (15)
C2—C1—P1129.63 (12)C36—C31—P2122.64 (12)
C5—C1—Fe69.93 (9)C32—C31—P2117.97 (13)
C2—C1—Fe69.42 (9)C33—C32—C31120.22 (18)
P1—C1—Fe126.24 (8)C33—C32—H32119.9
C3—C2—C1107.67 (14)C31—C32—H32119.9
C3—C2—Fe70.00 (9)C34—C33—C32120.14 (18)
C1—C2—Fe69.33 (9)C34—C33—H33119.9
C3—C2—H2126.2C32—C33—H33119.9
C1—C2—H2126.2C33—C34—C35120.27 (17)
Fe—C2—H2126.1C33—C34—H34119.9
C4—C3—C2108.58 (14)C35—C34—H34119.9
C4—C3—Fe70.27 (9)C34—C35—C36120.01 (17)
C2—C3—Fe69.34 (9)C34—C35—H35120.0
C4—C3—H3125.7C36—C35—H35120.0
C2—C3—H3125.7C31—C36—C35119.97 (16)
Fe—C3—H3126.3C31—C36—H36120.0
C3—C4—C5108.26 (14)C35—C36—H36120.0
C3—C4—Fe69.36 (9)C46—C41—C42119.88 (15)
C5—C4—Fe69.45 (9)C46—C41—P2119.87 (13)
C3—C4—H4125.9C42—C41—P2120.25 (12)
C5—C4—H4125.9C43—C42—C41119.62 (16)
Fe—C4—H4126.9C43—C42—H42120.2
C4—C5—C1108.00 (14)C41—C42—H42120.2
C4—C5—Fe70.17 (9)C44—C43—C42120.12 (17)
C1—C5—Fe69.01 (9)C44—C43—H43119.9
C4—C5—H5126.0C42—C43—H43119.9
C1—C5—H5126.0C43—C44—C45120.61 (16)
Fe—C5—H5126.4C43—C44—H44119.7
C7—C6—C10107.38 (14)C45—C44—H44119.7
C7—C6—P2125.42 (12)C44—C45—C46119.71 (17)
C10—C6—P2127.20 (12)C44—C45—H45120.1
C7—C6—Fe69.92 (9)C46—C45—H45120.1
C10—C6—Fe69.53 (9)C45—C46—C41120.03 (17)
P2—C6—Fe125.62 (8)C45—C46—H46120.0
C8—C7—C6107.86 (14)C41—C46—H46120.0
C8—C7—Fe70.43 (9)
C11—P1—C1—C5145.23 (13)C1—P1—C11—C12117.38 (13)
C21—P1—C1—C5104.46 (14)C21—P1—C11—C12130.95 (13)
S1—P1—C1—C519.57 (15)S1—P1—C11—C127.64 (15)
C11—P1—C1—C235.24 (17)C1—P1—C11—C1664.36 (14)
C21—P1—C1—C275.08 (16)C21—P1—C11—C1647.30 (14)
S1—P1—C1—C2160.89 (13)S1—P1—C11—C16170.61 (11)
C11—P1—C1—Fe57.11 (12)C16—C11—C12—C130.0 (2)
C21—P1—C1—Fe167.42 (9)P1—C11—C12—C13178.28 (13)
S1—P1—C1—Fe68.54 (11)C11—C12—C13—C140.3 (3)
C5—C1—C2—C30.08 (17)C12—C13—C14—C150.9 (3)
P1—C1—C2—C3179.67 (12)C13—C14—C15—C161.1 (3)
Fe—C1—C2—C359.75 (11)C14—C15—C16—C110.8 (2)
C5—C1—C2—Fe59.82 (11)C12—C11—C16—C150.3 (2)
P1—C1—C2—Fe120.58 (14)P1—C11—C16—C15178.54 (12)
C1—C2—C3—C40.18 (18)C1—P1—C21—C2616.91 (16)
Fe—C2—C3—C459.51 (11)C11—P1—C21—C2695.38 (14)
C1—C2—C3—Fe59.33 (11)S1—P1—C21—C26140.79 (12)
C2—C3—C4—C50.21 (18)C1—P1—C21—C22163.87 (13)
Fe—C3—C4—C558.72 (11)C11—P1—C21—C2283.84 (14)
C2—C3—C4—Fe58.93 (11)S1—P1—C21—C2239.99 (15)
C3—C4—C5—C10.16 (18)C26—C21—C22—C231.9 (3)
Fe—C4—C5—C158.83 (11)P1—C21—C22—C23177.31 (13)
C3—C4—C5—Fe58.66 (11)C21—C22—C23—C241.3 (3)
C2—C1—C5—C40.05 (17)C22—C23—C24—C250.2 (3)
P1—C1—C5—C4179.57 (11)C23—C24—C25—C261.2 (3)
Fe—C1—C5—C459.55 (11)C22—C21—C26—C251.0 (2)
C2—C1—C5—Fe59.50 (11)P1—C21—C26—C25178.21 (13)
P1—C1—C5—Fe120.88 (12)C24—C25—C26—C210.6 (3)
C31—P2—C6—C791.76 (14)C6—P2—C31—C369.64 (15)
C41—P2—C6—C7157.72 (13)C41—P2—C31—C36120.81 (14)
S2—P2—C6—C732.20 (15)S2—P2—C31—C36116.17 (13)
C31—P2—C6—C1088.52 (15)C6—P2—C31—C32172.81 (13)
C41—P2—C6—C1021.99 (16)C41—P2—C31—C3261.64 (15)
S2—P2—C6—C10147.51 (12)S2—P2—C31—C3261.38 (14)
C31—P2—C6—Fe178.74 (9)C36—C31—C32—C330.9 (3)
C41—P2—C6—Fe68.22 (11)P2—C31—C32—C33178.53 (14)
S2—P2—C6—Fe57.30 (11)C31—C32—C33—C341.4 (3)
C10—C6—C7—C80.13 (17)C32—C33—C34—C350.2 (3)
P2—C6—C7—C8179.89 (11)C33—C34—C35—C361.4 (3)
Fe—C6—C7—C859.83 (11)C32—C31—C36—C350.8 (2)
C10—C6—C7—Fe59.70 (11)P2—C31—C36—C35176.76 (13)
P2—C6—C7—Fe120.06 (12)C34—C35—C36—C311.9 (2)
C6—C7—C8—C90.11 (18)C6—P2—C41—C46107.95 (14)
Fe—C7—C8—C958.68 (11)C31—P2—C41—C46140.78 (13)
C6—C7—C8—Fe58.79 (10)S2—P2—C41—C4618.60 (15)
C7—C8—C9—C100.06 (18)C6—P2—C41—C4272.25 (14)
Fe—C8—C9—C1058.34 (11)C31—P2—C41—C4239.01 (15)
C7—C8—C9—Fe58.28 (11)S2—P2—C41—C42161.20 (11)
C8—C9—C10—C60.02 (18)C46—C41—C42—C431.6 (2)
Fe—C9—C10—C659.08 (11)P2—C41—C42—C43178.63 (13)
C8—C9—C10—Fe59.05 (11)C41—C42—C43—C440.6 (3)
C7—C6—C10—C90.09 (17)C42—C43—C44—C450.6 (3)
P2—C6—C10—C9179.85 (12)C43—C44—C45—C460.9 (3)
Fe—C6—C10—C960.04 (11)C44—C45—C46—C410.1 (3)
C7—C6—C10—Fe59.94 (10)C42—C41—C46—C451.3 (3)
P2—C6—C10—Fe119.81 (13)P2—C41—C46—C45178.86 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.952.923.6111 (18)130
Symmetry code: (i) x1, y, z.
Summary of structural data (Å) for Ph2P(Y)C5H4FeC5H4P(Y)Ph2. top
YSymmetryY—P···P—YSolventCSD refcodeaReference
O1180KADXAOCasellato et al. (1988)
O1180WARMUXPilloni et al. (1993)
O155.57 (18)H2ORUVJEX01Bar et al. (2008)
O11802H2OHATTURMunyejabo et al. (1994)
S1180ZEQSODFang et al. (1995)
S-53.09 (3)This work
Se1180KIHWABArsenyan et al. (2012)
Se1180CH2Cl2RIPTITPilloni et al. (1997)
Note: (a) Cambridge Structural Database (Groom & Allen, 2014), Version 5.35.
 

Acknowledgements

This research is supported by the Trans-disciplinary Research Grant Scheme (TR002–2014 A) provided by the Ministry of Education, Malaysia.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationArsenyan, P., Petrenko, A., Oberte, K. & Belyakov, S. (2012). Chem. Heterocycl. Compd, 48, pp 1263–1266.  Google Scholar
First citationBar, A. K., Chakrabarty, R. & Mukherjee, P. S. (2008). Organometallics, 27, 3806–3810.  Web of Science CSD CrossRef CAS Google Scholar
First citationBolte, M., Naumann, F. & Hashmi, A. S. K. (1997). Acta Cryst. C53, 1785–1786.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCasellato, U., Ajo, D., Valle, G., Corain, B., Longato, B. & Graziani, R. (1988). J. Crystallogr. Spectrosc. Res. 18, 583–590.  CSD CrossRef CAS Web of Science Google Scholar
First citationClemente, D. A. & Marzotto, A. (2004). Acta Cryst. B60, 287–292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403–2409.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1995). J. Chem. Soc. Dalton Trans. pp. 3563–3564.  CrossRef Web of Science Google Scholar
First citationGimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1998). J. Chem. Soc. Dalton Trans. pp. 1277–1280.  Web of Science CSD CrossRef Google Scholar
First citationGimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127–141.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMunyejabo, V., Postel, M., Roustan, J. L. & Bensimon, C. (1994). Acta Cryst. C50, 224–226.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPilloni, G., Corain, B., Degano, M., Longato, B. & Zanotti, G. (1993). J. Chem. Soc. Dalton Trans. pp. 1777–1778.  CSD CrossRef Web of Science Google Scholar
First citationPilloni, G., Longato, B. & Bandoli, G. (1998). Inorg. Chim. Acta, 277, 163–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationPilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819–826.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds