organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-benzyl-2-hy­dr­oxy-5-oxopyrrolidin-3-yl acetate

aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 7 July 2015; accepted 12 July 2015; online 17 July 2015)

In the title compound, C13H15NO4, the oxopyrrolidin-3-yl ring has an envelope conformation, with the C atom bearing the acetate group being the flap. The acetate and phenyl groups are inclined with respect to the central ring, forming dihedral angles of 50.20 (12) and 87.40 (9)°, respectively, with the least-squares plane through the ring. The dihedral angle between the acetate group and the phenyl ring is 63.22 (8)°, indicating a twisted conformation in the mol­ecule. In the crystal, supra­molecular chains along the b axis are formed by (hy­droxy)O—H⋯O(ring carbon­yl) hydrogen bonds. The chains are consolidated into the three-dimensional architecture by C—H⋯O inter­actions.

1. Related literature

For the synthesis of symmetrical 1,4-dioxanes, including the title compound, via Lewis-acid-catalysed N-acyl­iminium ion cyclo­dimerization, and for a related structure, see: Ali et al. (2015[Ali, B., Zukerman-Schpector, J., Ferreira, F. P., Shamim, A., Pimenta, D. C. & Stefani, H. A. (2015). Tetrahedron Lett. 56, 1153-1158.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H15NO4

  • Mr = 249.26

  • Orthorhombic, P 21 21 21

  • a = 26.504 (2) Å

  • b = 6.3668 (5) Å

  • c = 7.6040 (6) Å

  • V = 1283.14 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.56 × 0.40 × 0.36 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.673, Tmax = 0.745

  • 4917 measured reflections

  • 2246 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.014

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.06

  • 2246 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.82 1.86 2.671 (2) 170
C5—H5A⋯O2ii 0.97 2.49 3.452 (3) 170
C5—H5B⋯O3iii 0.97 2.51 3.437 (3) 160
C12—H12⋯O2iv 0.93 2.54 3.421 (4) 158
Symmetry code: (i) x, y-1, z; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. http://www.chemaxon.com]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the synthesis of symmetrical 1,4-dioxanes, including the title compound, via Lewis-acid-catalysed N-acyliminium ion cyclodimerization, and for a related structure, see: Ali et al. (2015).

Experimental top

The title compound was prepared as described in the literature (Ali et al., 2015) and crystals were obtained from the slow evaporation of its methanol solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C). The O-bound H-atom was treated similarly with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

For the synthesis of symmetrical 1,4-dioxanes, including the title compound, via Lewis-acid-catalysed N-acyliminium ion cyclodimerization, and for a related structure, see: Ali et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along the b axis mediated by O—H···O hydrogen bonding shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents. The O—H···O and C—H···O interactions shown as orange and blue dashed lines, respectively.
1-Benzyl-2-hydroxy-5-oxopyrrolidin-3-yl acetate top
Crystal data top
C13H15NO4Dx = 1.290 Mg m3
Mr = 249.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3310 reflections
a = 26.504 (2) Åθ = 2.8–25.3°
b = 6.3668 (5) ŵ = 0.10 mm1
c = 7.6040 (6) ÅT = 293 K
V = 1283.14 (17) Å3Block, colourless
Z = 40.56 × 0.40 × 0.36 mm
F(000) = 528
Data collection top
Bruker APEXII CCD
diffractometer
2087 reflections with I > 2σ(I)
φ and ω scansRint = 0.014
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.3°, θmin = 2.8°
Tmin = 0.673, Tmax = 0.745h = 3126
4917 measured reflectionsk = 57
2246 independent reflectionsl = 97
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1542P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2246 reflectionsΔρmax = 0.10 e Å3
165 parametersΔρmin = 0.18 e Å3
Crystal data top
C13H15NO4V = 1283.14 (17) Å3
Mr = 249.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 26.504 (2) ŵ = 0.10 mm1
b = 6.3668 (5) ÅT = 293 K
c = 7.6040 (6) Å0.56 × 0.40 × 0.36 mm
Data collection top
Bruker APEXII CCD
diffractometer
2246 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2087 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.745Rint = 0.014
4917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.10 e Å3
2246 reflectionsΔρmin = 0.18 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04798 (6)0.8021 (3)0.0393 (2)0.0590 (4)
O20.10250 (7)0.5494 (3)0.0319 (3)0.0797 (6)
O30.05817 (6)0.6595 (2)0.3698 (2)0.0626 (5)
H3O0.06780.54860.41310.094*
O40.09632 (7)1.2919 (2)0.4745 (3)0.0736 (5)
N10.11194 (6)0.9434 (3)0.4315 (3)0.0528 (5)
C10.08701 (8)0.8984 (3)0.1433 (3)0.0540 (5)
H10.11750.91600.07170.065*
C20.09990 (8)0.7747 (3)0.3111 (3)0.0497 (5)
H20.12910.68310.29240.060*
C40.09357 (8)1.1311 (3)0.3844 (3)0.0547 (5)
C50.06905 (10)1.1103 (4)0.2074 (4)0.0614 (6)
H5A0.07991.22160.12890.074*
H5B0.03261.11390.21730.074*
C60.06079 (10)0.6229 (4)0.0410 (3)0.0594 (6)
C70.01803 (12)0.5271 (5)0.1385 (4)0.0792 (8)
H7A0.00410.41410.07060.119*
H7B0.02990.47380.24920.119*
H7C0.00750.63140.15890.119*
C80.13462 (9)0.9012 (4)0.6024 (3)0.0605 (6)
H8A0.11530.79250.66130.073*
H8B0.13281.02720.67380.073*
C90.18888 (8)0.8323 (4)0.5891 (3)0.0525 (5)
C100.20395 (10)0.6420 (4)0.6570 (4)0.0707 (7)
H100.18030.55280.70790.085*
C110.25400 (13)0.5831 (6)0.6500 (5)0.0973 (11)
H110.26430.45630.69910.117*
C120.28864 (12)0.7121 (8)0.5703 (5)0.1080 (14)
H120.32220.67110.56270.130*
C130.27379 (11)0.9002 (9)0.5023 (4)0.1085 (14)
H130.29740.98770.44910.130*
C140.22412 (10)0.9614 (6)0.5120 (4)0.0799 (9)
H140.21431.09050.46620.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0530 (9)0.0571 (9)0.0668 (10)0.0025 (7)0.0072 (7)0.0012 (8)
O20.0751 (12)0.0781 (12)0.0861 (13)0.0164 (10)0.0149 (10)0.0015 (11)
O30.0543 (8)0.0431 (8)0.0902 (12)0.0007 (7)0.0038 (8)0.0173 (8)
O40.0824 (12)0.0420 (8)0.0963 (13)0.0005 (8)0.0194 (10)0.0025 (9)
N10.0482 (9)0.0437 (9)0.0664 (11)0.0037 (8)0.0082 (9)0.0093 (8)
C10.0446 (11)0.0507 (12)0.0667 (13)0.0019 (9)0.0034 (9)0.0113 (11)
C20.0414 (10)0.0410 (10)0.0667 (13)0.0048 (9)0.0002 (9)0.0066 (10)
C40.0470 (11)0.0385 (10)0.0785 (15)0.0031 (9)0.0072 (10)0.0097 (11)
C50.0593 (13)0.0433 (11)0.0817 (16)0.0010 (10)0.0149 (12)0.0136 (11)
C60.0685 (15)0.0562 (12)0.0535 (12)0.0004 (12)0.0092 (11)0.0130 (11)
C70.103 (2)0.0685 (16)0.0663 (15)0.0102 (16)0.0066 (16)0.0010 (13)
C80.0590 (13)0.0645 (14)0.0578 (12)0.0100 (11)0.0006 (10)0.0109 (11)
C90.0502 (11)0.0596 (13)0.0478 (10)0.0003 (10)0.0082 (9)0.0043 (11)
C100.0658 (15)0.0616 (14)0.0847 (17)0.0089 (12)0.0054 (13)0.0060 (15)
C110.080 (2)0.099 (2)0.113 (3)0.038 (2)0.021 (2)0.009 (2)
C120.0561 (16)0.185 (4)0.083 (2)0.029 (2)0.0068 (16)0.022 (3)
C130.0540 (16)0.197 (4)0.0745 (19)0.027 (2)0.0063 (14)0.025 (3)
C140.0660 (16)0.103 (2)0.0712 (16)0.0153 (15)0.0117 (13)0.0294 (17)
Geometric parameters (Å, º) top
O1—C61.338 (3)C7—H7A0.9600
O1—C11.439 (3)C7—H7B0.9600
O2—C61.202 (3)C7—H7C0.9600
O3—C21.400 (3)C8—C91.507 (3)
O3—H3O0.8200C8—H8A0.9700
O4—C41.234 (3)C8—H8B0.9700
N1—C41.339 (3)C9—C141.375 (4)
N1—C21.447 (3)C9—C101.376 (4)
N1—C81.457 (3)C10—C111.380 (4)
C1—C51.512 (3)C10—H100.9300
C1—C21.538 (3)C11—C121.373 (5)
C1—H10.9800C11—H110.9300
C2—H20.9800C12—C131.363 (6)
C4—C51.501 (4)C12—H120.9300
C5—H5A0.9700C13—C141.375 (5)
C5—H5B0.9700C13—H130.9300
C6—C71.486 (4)C14—H140.9300
C6—O1—C1115.57 (18)C6—C7—H7B109.5
C2—O3—H3O109.5H7A—C7—H7B109.5
C4—N1—C2114.41 (18)C6—C7—H7C109.5
C4—N1—C8123.6 (2)H7A—C7—H7C109.5
C2—N1—C8121.22 (18)H7B—C7—H7C109.5
O1—C1—C5109.34 (18)N1—C8—C9112.81 (19)
O1—C1—C2113.42 (17)N1—C8—H8A109.0
C5—C1—C2105.0 (2)C9—C8—H8A109.0
O1—C1—H1109.6N1—C8—H8B109.0
C5—C1—H1109.6C9—C8—H8B109.0
C2—C1—H1109.6H8A—C8—H8B107.8
O3—C2—N1111.19 (18)C14—C9—C10119.3 (2)
O3—C2—C1110.93 (17)C14—C9—C8120.2 (2)
N1—C2—C1101.18 (17)C10—C9—C8120.5 (2)
O3—C2—H2111.1C9—C10—C11120.3 (3)
N1—C2—H2111.1C9—C10—H10119.9
C1—C2—H2111.1C11—C10—H10119.9
O4—C4—N1124.8 (2)C12—C11—C10119.8 (3)
O4—C4—C5126.6 (2)C12—C11—H11120.1
N1—C4—C5108.6 (2)C10—C11—H11120.1
C4—C5—C1103.40 (18)C13—C12—C11120.0 (3)
C4—C5—H5A111.1C13—C12—H12120.0
C1—C5—H5A111.1C11—C12—H12120.0
C4—C5—H5B111.1C12—C13—C14120.3 (3)
C1—C5—H5B111.1C12—C13—H13119.8
H5A—C5—H5B109.0C14—C13—H13119.8
O2—C6—O1122.6 (2)C13—C14—C9120.3 (3)
O2—C6—C7124.8 (3)C13—C14—H14119.9
O1—C6—C7112.6 (2)C9—C14—H14119.9
C6—C7—H7A109.5
C6—O1—C1—C5173.36 (18)O1—C1—C5—C4146.44 (18)
C6—O1—C1—C269.8 (2)C2—C1—C5—C424.4 (2)
C4—N1—C2—O397.9 (2)C1—O1—C6—O22.1 (3)
C8—N1—C2—O372.3 (2)C1—O1—C6—C7177.2 (2)
C4—N1—C2—C120.0 (2)C4—N1—C8—C9119.2 (2)
C8—N1—C2—C1169.84 (18)C2—N1—C8—C971.6 (3)
O1—C1—C2—O327.8 (3)N1—C8—C9—C1459.4 (3)
C5—C1—C2—O391.5 (2)N1—C8—C9—C10121.9 (2)
O1—C1—C2—N1145.88 (18)C14—C9—C10—C111.0 (4)
C5—C1—C2—N126.6 (2)C8—C9—C10—C11177.7 (3)
C2—N1—C4—O4174.5 (2)C9—C10—C11—C121.9 (5)
C8—N1—C4—O44.6 (4)C10—C11—C12—C131.6 (6)
C2—N1—C4—C54.9 (3)C11—C12—C13—C140.4 (6)
C8—N1—C4—C5174.8 (2)C12—C13—C14—C90.6 (5)
O4—C4—C5—C1167.7 (2)C10—C9—C14—C130.3 (4)
N1—C4—C5—C113.0 (3)C8—C9—C14—C13179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.821.862.671 (2)170
C5—H5A···O2ii0.972.493.452 (3)170
C5—H5B···O3iii0.972.513.437 (3)160
C12—H12···O2iv0.932.543.421 (4)158
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.821.862.671 (2)170
C5—H5A···O2ii0.972.493.452 (3)170
C5—H5B···O3iii0.972.513.437 (3)160
C12—H12···O2iv0.932.543.421 (4)158
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y+1, z+1/2.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZS, 306121/2013-2 to IC and 308320/2010-7 to HAS), FAPESP (2012/17954-4 and 2013/21925-2) and CAPES are acknowledged for financial support.

References

First citationAli, B., Zukerman-Schpector, J., Ferreira, F. P., Shamim, A., Pimenta, D. C. & Stefani, H. A. (2015). Tetrahedron Lett. 56, 1153–1158.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. http://www.chemaxon.com  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds