metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of poly[di­aqua­[μ-1,2-bis­­(pyri­din-4-yl)ethane-κ2N:N′]bis­­(μ3-cyclo­butane-1,1-di­carboxyl­ato-κ3O,O′:O′′:O′′′)dimanganese(II)]

aDivision of General Education (Chemistry), Kwangwoon Univeristy, Seoul 139-701, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: ymeekim@ewha.ac.kr

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 30 June 2015; accepted 21 July 2015; online 25 July 2015)

In the title compound, [Mn(C6H6O4)(C12H12N2)(H2O)]n, the cyclo­butane-1,1-di­carboxyl­ate (cbdc) ligands bridge three MnII ions, forming layers parallel to the ac plane. These layers are additionally connected by 1,2-bis­(pyridin-4-yl)ethane ligands to form a three-dimensional polymeric framework. An inversion centre is located at the mid-point of the central C—C bond of the 1,2-bis­(pyridin-4-yl)ethane ligand. The coordination geometry of the MnII ion is distorted octa­hedral and is built up by four carboxyl­ate O atoms, one water O atom and a pyridyl N atom. The pyridine ligand and the coordinating water mol­ecule are in a trans configuration. One carboxyl­ate group of the cbdc ligand acts as a chelating ligand towards one MnII atom, whereas the second carboxyl­ate group coordinates two different MnII atoms.

1. Related literature

For rigid aromatic di­carboxyl­ate ligands for MOFs, see: Sumida et al. (2012[Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724-781.]). For flexible cyclo­hexa­nedi­carboxyl­ate ligands for MOFs, see: Lee et al. (2011[Lee, Y. J., Kim, E. Y., Kim, S. H., Jang, S. P., Lee, T. G., Kim, C., Kim, S.-J. & Kim, Y. (2011). New J. Chem. 35, 833-841.]); Kim et al. (2011[Kim, E. Y., Park, H. M., Kim, H.-Y., Kim, J. H., Hyun, M. Y., Lee, J. H., Kim, C., Kim, S.-J. & Kim, Y. (2011). J. Mol. Struct. 994, 335-342.]). For flexible α,ω-alkanedi­carboxyl­ate ligands for MOFs, see: Hwang et al. (2012[Hwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759-12765.], 2013[Hwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815-4823.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn(C6H6O4)(C12H12N2)(H2O)]

  • Mr = 307.18

  • Monoclinic, P 21 /n

  • a = 7.4300 (15) Å

  • b = 24.095 (5) Å

  • c = 7.5930 (15) Å

  • β = 91.27 (3)°

  • V = 1359.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 293 K

  • 0.13 × 0.08 × 0.05 mm

2.2. Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.95

  • 7527 measured reflections

  • 2662 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.06

  • 2662 reflections

  • 178 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rigid, aromatic dicarboxylates (Sumida, et al., 2012) or flexible cyclohexanedicarboxylates (Lee, et al., 2011; Kim, et al., 2011) have been primarily selected as the dicarboxylate ligands in coordination polymers. Flexible α,ω-alkane-dicarboxylates can also be suitable ligands for coordination polymers with different topologies. In contrast to metal complexes with aromatic dicarboxylates, few metal complexes with flexible α,ω-alkane dicarboxylates have been reported in the literature. Recently, we reported Cu-MOFs with flexible α,ω-alkane-dicarboxylate, glutarate and bipyridyl ligands (Hwang, et al., 2012) and Zn-MOFs containing flexible α,ω-alkane-dicarboxylate, malonate and bipyridyl pillars (Hwang, et al., 2013). Two Cu-MOFs possessed very similar pore shapes with controllable pore dimensions and exhibited good selectivity for CO2 over N2 and H2, and one MOF appeared to be an efficient, mild, and easily recyclable heterogeneous catalyst for the transesterification of esters (Hwang, et al., 2012). A series of Zn-MOFs containing malonates and bipyridyl pillars formed three-dimensional (3-D) frameworks, and they catalyzed a heterogeneous transesterification reaction of phenyl acetate (Hwang, et al., 2013). We report here on new structure of poly{[µ2-1,2-di(pyridin-4-yl)ethane]-bis[aqua-(µ3-cyclobutane-1,1-dicarboxylato)]manganese(II)}, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n.

One of the repeating units of the polymeric title compound is shown in Fig. 1 and the three-dimensional packing of the title compound is presented in Fig. 2. In the title compound, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n, the cbdc ligands bridge three manganese(II) ions to form two-dimensional layers. These layers are additionally connected by dipyridyl-ethane ligands to form a three-dimensional polymeric framework. The central C—C bond of the dipyridyl-ethane ligand represents a crystallographic centre of inversion. The coordination geometry of each manganese(II) ion is distorted octahedral and is built up by four carboxylate oxygen atoms, one water oxygen atom, and a pyridyl nitrogen atom. The pyridine ligand and the coordinated water molecule are in a trans-configuration. The cyclobutane-1,1-dicarboxylate ligands bridge three manganese atoms. One carboxylate unit acts as a chelating ligand towards one manganese, whereas the second carboxylate group coordinates two different manganese atoms.

Related literature top

For rigid aromatic dicarboxylate ligands for MOFs, see: Sumida et al. (2012). For flexible cyclohexanedicarboxylate ligands for MOFs, see: Lee et al. (2011); Kim et al. (2011). For flexible α,ω-alkanedicarboxylate ligands for MOFs, see: Hwang et al. (2012, 2013).

Experimental top

Cyclobutane-1,1-dicarboxylic acid (0.08 mmol, 11.6 mg) and Mn(NO3)2.H2O (0.08 mmol) were dissolved in 4 ml H2O and carefully layered by 4 ml of an ethanolic solution of 1,2-di(pyridin-4-yl)ethane (104.22 mg, 0.08 mmol). Suitable crystals of the title compound were obtained in a few weeks (yield: 18.5 mg, 75.3%).

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.93 (pyridyl) and 0.97 (cyclobutane) Å. They were included in the refinement using the riding-motion approximation with Uiso(H) = 1.2 Ueq(C). The positions of the H atoms of the water ligand were refined with a distance of 0.83 Å and Uiso(H) = 1.2 Ueq(O).

Structure description top

Rigid, aromatic dicarboxylates (Sumida, et al., 2012) or flexible cyclohexanedicarboxylates (Lee, et al., 2011; Kim, et al., 2011) have been primarily selected as the dicarboxylate ligands in coordination polymers. Flexible α,ω-alkane-dicarboxylates can also be suitable ligands for coordination polymers with different topologies. In contrast to metal complexes with aromatic dicarboxylates, few metal complexes with flexible α,ω-alkane dicarboxylates have been reported in the literature. Recently, we reported Cu-MOFs with flexible α,ω-alkane-dicarboxylate, glutarate and bipyridyl ligands (Hwang, et al., 2012) and Zn-MOFs containing flexible α,ω-alkane-dicarboxylate, malonate and bipyridyl pillars (Hwang, et al., 2013). Two Cu-MOFs possessed very similar pore shapes with controllable pore dimensions and exhibited good selectivity for CO2 over N2 and H2, and one MOF appeared to be an efficient, mild, and easily recyclable heterogeneous catalyst for the transesterification of esters (Hwang, et al., 2012). A series of Zn-MOFs containing malonates and bipyridyl pillars formed three-dimensional (3-D) frameworks, and they catalyzed a heterogeneous transesterification reaction of phenyl acetate (Hwang, et al., 2013). We report here on new structure of poly{[µ2-1,2-di(pyridin-4-yl)ethane]-bis[aqua-(µ3-cyclobutane-1,1-dicarboxylato)]manganese(II)}, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n.

One of the repeating units of the polymeric title compound is shown in Fig. 1 and the three-dimensional packing of the title compound is presented in Fig. 2. In the title compound, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n, the cbdc ligands bridge three manganese(II) ions to form two-dimensional layers. These layers are additionally connected by dipyridyl-ethane ligands to form a three-dimensional polymeric framework. The central C—C bond of the dipyridyl-ethane ligand represents a crystallographic centre of inversion. The coordination geometry of each manganese(II) ion is distorted octahedral and is built up by four carboxylate oxygen atoms, one water oxygen atom, and a pyridyl nitrogen atom. The pyridine ligand and the coordinated water molecule are in a trans-configuration. The cyclobutane-1,1-dicarboxylate ligands bridge three manganese atoms. One carboxylate unit acts as a chelating ligand towards one manganese, whereas the second carboxylate group coordinates two different manganese atoms.

For rigid aromatic dicarboxylate ligands for MOFs, see: Sumida et al. (2012). For flexible cyclohexanedicarboxylate ligands for MOFs, see: Lee et al. (2011); Kim et al. (2011). For flexible α,ω-alkanedicarboxylate ligands for MOFs, see: Hwang et al. (2012, 2013).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of the three-dimensional structure of the title compound showing displacement ellipsoids at the 50% probability level. Symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z; (ii) 1/2 + x, 1/2 - y, 1/2 + z); (iii) -x, -y, 2 - z.
[Figure 2] Fig. 2. The three-dimensional framework of the title compound. All hydrogen atoms were omitted for clarity.
Poly[diaqua[µ-1,2-bis(pyridin-4-yl)ethane-κ2N:N']bis(µ3-cyclobutane-1,1-dicarboxylato-κ3O,O':O'':O''')dimanganese(II)] top
Crystal data top
[Mn(C6H6O4)(C12H12N2)(H2O)]Z = 4
Mr = 307.18F(000) = 632
Monoclinic, P21/nDx = 1.501 Mg m3
a = 7.4300 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 24.095 (5) ŵ = 0.99 mm1
c = 7.5930 (15) ÅT = 293 K
β = 91.27 (3)°Block, colorless
V = 1359.0 (5) Å30.13 × 0.08 × 0.05 mm
Data collection top
Bruker APEX CCD
diffractometer
2125 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
θmax = 26.0°, θmin = 1.7°
Tmin = 0.88, Tmax = 0.95h = 89
7527 measured reflectionsk = 2129
2662 independent reflectionsl = 99
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.1811P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2662 reflectionsΔρmax = 0.39 e Å3
178 parametersΔρmin = 0.29 e Å3
Crystal data top
[Mn(C6H6O4)(C12H12N2)(H2O)]V = 1359.0 (5) Å3
Mr = 307.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4300 (15) ŵ = 0.99 mm1
b = 24.095 (5) ÅT = 293 K
c = 7.5930 (15) Å0.13 × 0.08 × 0.05 mm
β = 91.27 (3)°
Data collection top
Bruker APEX CCD
diffractometer
2662 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2125 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.95Rint = 0.034
7527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
2662 reflectionsΔρmin = 0.29 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.56903 (5)0.22314 (2)0.89895 (4)0.02572 (14)
O10.7988 (3)0.28188 (7)0.9016 (2)0.0376 (4)
H1A0.862 (3)0.2740 (10)0.990 (2)0.045*
H1B0.845 (4)0.2733 (10)0.8068 (19)0.045*
O110.4039 (2)0.26636 (7)1.0848 (2)0.0349 (4)
O120.1878 (2)0.32060 (7)1.1812 (2)0.0391 (4)
O130.4141 (2)0.27030 (7)0.7117 (2)0.0365 (4)
O140.1867 (2)0.32247 (7)0.6172 (2)0.0384 (4)
N210.3644 (3)0.15190 (8)0.8880 (3)0.0340 (5)
C110.2977 (3)0.30685 (9)1.0674 (3)0.0275 (5)
C120.3020 (3)0.30895 (9)0.7320 (3)0.0269 (5)
C130.3075 (3)0.34313 (9)0.9013 (3)0.0288 (5)
C140.1857 (4)0.39463 (11)0.9051 (3)0.0446 (7)
H14A0.14670.40740.78930.053*
H14B0.08440.3910.98260.053*
C150.3422 (5)0.42786 (12)0.9847 (4)0.0629 (9)
H15A0.33880.43131.11180.075*
H15B0.35880.46380.92990.075*
C160.4729 (4)0.38341 (11)0.9212 (3)0.0437 (7)
H16A0.56130.37191.00970.052*
H16B0.52940.39230.81090.052*
C210.1888 (4)0.15938 (11)0.9101 (3)0.0403 (6)
H210.14670.19550.92070.048*
C220.0664 (4)0.11689 (12)0.9181 (3)0.0440 (7)
H220.05480.12460.93380.053*
C230.1237 (4)0.06274 (12)0.9029 (4)0.0469 (7)
C240.3048 (4)0.05483 (12)0.8781 (5)0.0596 (9)
H240.350.01910.86630.072*
C250.4190 (4)0.09962 (12)0.8707 (4)0.0535 (8)
H250.54060.0930.85270.064*
C260.0063 (5)0.01499 (14)0.9168 (4)0.0657 (10)
H26A0.12790.02910.90130.079*
H26B0.01520.01080.82150.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0270 (2)0.0301 (2)0.0201 (2)0.00067 (14)0.00202 (14)0.00066 (14)
O10.0372 (11)0.0463 (11)0.0294 (10)0.0050 (8)0.0007 (8)0.0017 (9)
O110.0431 (11)0.0388 (10)0.0232 (9)0.0110 (8)0.0089 (8)0.0047 (7)
O120.0472 (11)0.0397 (10)0.0310 (9)0.0081 (8)0.0183 (8)0.0036 (8)
O130.0450 (11)0.0422 (11)0.0219 (8)0.0107 (8)0.0043 (7)0.0054 (7)
O140.0417 (10)0.0422 (10)0.0308 (9)0.0082 (8)0.0114 (8)0.0067 (8)
N210.0326 (12)0.0349 (12)0.0344 (12)0.0048 (9)0.0026 (9)0.0005 (9)
C110.0328 (13)0.0282 (13)0.0215 (11)0.0059 (10)0.0009 (10)0.0027 (9)
C120.0314 (13)0.0286 (13)0.0208 (11)0.0061 (10)0.0025 (10)0.0018 (9)
C130.0371 (14)0.0269 (13)0.0227 (12)0.0027 (10)0.0033 (10)0.0017 (10)
C140.067 (2)0.0358 (15)0.0306 (14)0.0140 (14)0.0014 (13)0.0004 (11)
C150.103 (3)0.0377 (17)0.0479 (19)0.0099 (17)0.0024 (18)0.0060 (14)
C160.0573 (18)0.0441 (16)0.0300 (14)0.0205 (14)0.0047 (13)0.0004 (12)
C210.0338 (14)0.0409 (16)0.0463 (16)0.0045 (12)0.0022 (12)0.0035 (12)
C220.0344 (15)0.0556 (18)0.0422 (16)0.0112 (13)0.0041 (12)0.0015 (13)
C230.0491 (17)0.0491 (18)0.0425 (16)0.0197 (14)0.0015 (13)0.0086 (13)
C240.060 (2)0.0306 (16)0.088 (3)0.0046 (14)0.0037 (18)0.0042 (15)
C250.0392 (16)0.0377 (17)0.084 (2)0.0003 (13)0.0101 (16)0.0048 (15)
C260.074 (2)0.064 (2)0.059 (2)0.0362 (18)0.0118 (18)0.0165 (16)
Geometric parameters (Å, º) top
Mn1—O132.1369 (18)C14—C151.525 (4)
Mn1—O14i2.1571 (17)C14—H14A0.97
Mn1—O112.1583 (16)C14—H14B0.97
Mn1—O12ii2.1650 (17)C15—C161.531 (4)
Mn1—O12.2175 (19)C15—H15A0.97
Mn1—N212.293 (2)C15—H15B0.97
O1—H1A0.830 (2)C16—H16A0.97
O1—H1B0.830 (2)C16—H16B0.97
O11—C111.260 (3)C21—C221.372 (4)
O12—C111.247 (3)C21—H210.93
O12—Mn1iii2.1650 (17)C22—C231.378 (4)
O13—C121.261 (3)C22—H220.93
O14—C121.252 (3)C23—C241.376 (4)
O14—Mn1iv2.1570 (17)C23—C261.507 (4)
N21—C251.331 (3)C24—C251.375 (4)
N21—C211.331 (3)C24—H240.93
C11—C131.538 (3)C25—H250.93
C12—C131.526 (3)C26—C26v1.457 (6)
C13—C141.537 (3)C26—H26A0.97
C13—C161.570 (3)C26—H26B0.97
O13—Mn1—O14i170.14 (7)C15—C14—H14A113.8
O13—Mn1—O1182.69 (6)C13—C14—H14A113.8
O14i—Mn1—O1188.28 (7)C15—C14—H14B113.8
O13—Mn1—O12ii88.48 (7)C13—C14—H14B113.8
O14i—Mn1—O12ii99.99 (7)H14A—C14—H14B111.0
O11—Mn1—O12ii168.94 (7)C14—C15—C1689.5 (2)
O13—Mn1—O194.01 (7)C14—C15—H15A113.7
O14i—Mn1—O191.12 (7)C16—C15—H15A113.7
O11—Mn1—O197.75 (7)C14—C15—H15B113.7
O12ii—Mn1—O189.47 (7)C16—C15—H15B113.7
O13—Mn1—N2191.54 (7)H15A—C15—H15B111.0
O14i—Mn1—N2184.46 (7)C15—C16—C1387.8 (2)
O11—Mn1—N2189.93 (7)C15—C16—H16A114.0
O12ii—Mn1—N2183.63 (7)C13—C16—H16A114.0
O1—Mn1—N21171.03 (7)C15—C16—H16B114.0
Mn1—O1—H1A106.3 (19)C13—C16—H16B114.0
Mn1—O1—H1B100 (2)H16A—C16—H16B111.2
H1A—O1—H1B114 (3)N21—C21—C22123.9 (3)
C11—O11—Mn1131.98 (14)N21—C21—H21118.1
C11—O12—Mn1iii133.16 (16)C22—C21—H21118.1
C12—O13—Mn1131.20 (15)C21—C22—C23119.8 (3)
C12—O14—Mn1iv131.45 (16)C21—C22—H22120.1
C25—N21—C21116.3 (2)C23—C22—H22120.1
C25—N21—Mn1120.58 (17)C24—C23—C22116.6 (2)
C21—N21—Mn1123.01 (17)C24—C23—C26122.3 (3)
O12—C11—O11123.5 (2)C22—C23—C26121.1 (3)
O12—C11—C13117.4 (2)C25—C24—C23120.2 (3)
O11—C11—C13119.0 (2)C25—C24—H24119.9
O14—C12—O13123.4 (2)C23—C24—H24119.9
O14—C12—C13116.8 (2)N21—C25—C24123.3 (3)
O13—C12—C13119.7 (2)N21—C25—H25118.3
C12—C13—C14116.5 (2)C24—C25—H25118.3
C12—C13—C11112.53 (18)C26v—C26—C23114.2 (3)
C14—C13—C11113.9 (2)C26v—C26—H26A108.7
C12—C13—C16114.90 (19)C23—C26—H26A108.7
C14—C13—C1687.64 (19)C26v—C26—H26B108.7
C11—C13—C16108.9 (2)C23—C26—H26B108.7
C15—C14—C1389.3 (2)H26A—C26—H26B107.6
Mn1iii—O12—C11—O1120.6 (4)C12—C13—C14—C15134.6 (2)
Mn1iii—O12—C11—C13161.91 (16)C11—C13—C14—C1591.8 (2)
Mn1—O11—C11—O12166.53 (16)C16—C13—C14—C1517.9 (2)
Mn1—O11—C11—C1316.1 (3)C13—C14—C15—C1618.3 (2)
Mn1iv—O14—C12—O1322.8 (4)C14—C15—C16—C1317.9 (2)
Mn1iv—O14—C12—C13159.34 (15)C12—C13—C16—C15136.1 (2)
Mn1—O13—C12—O14159.83 (17)C14—C13—C16—C1517.8 (2)
Mn1—O13—C12—C1322.4 (3)C11—C13—C16—C1596.7 (2)
O14—C12—C13—C146.7 (3)C25—N21—C21—C221.0 (4)
O13—C12—C13—C14171.3 (2)Mn1—N21—C21—C22174.6 (2)
O14—C12—C13—C11127.5 (2)N21—C21—C22—C230.0 (4)
O13—C12—C13—C1154.5 (3)C21—C22—C23—C240.7 (4)
O14—C12—C13—C16107.1 (3)C21—C22—C23—C26178.1 (3)
O13—C12—C13—C1670.9 (3)C22—C23—C24—C250.4 (5)
O12—C11—C13—C12131.6 (2)C26—C23—C24—C25178.4 (3)
O11—C11—C13—C1250.8 (3)C21—N21—C25—C241.3 (4)
O12—C11—C13—C143.8 (3)Mn1—N21—C25—C24174.4 (3)
O11—C11—C13—C14173.7 (2)C23—C24—C25—N210.6 (5)
O12—C11—C13—C1699.8 (2)C24—C23—C26—C26v74.0 (5)
O11—C11—C13—C1677.8 (3)C22—C23—C26—C26v104.7 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Mn(C6H6O4)(C12H12N2)(H2O)]
Mr307.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4300 (15), 24.095 (5), 7.5930 (15)
β (°) 91.27 (3)
V3)1359.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.13 × 0.08 × 0.05
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.88, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
7527, 2662, 2125
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.06
No. of reflections2662
No. of parameters178
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from Kwangwoon University in the year 2015 is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759–12765.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815–4823.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, E. Y., Park, H. M., Kim, H.-Y., Kim, J. H., Hyun, M. Y., Lee, J. H., Kim, C., Kim, S.-J. & Kim, Y. (2011). J. Mol. Struct. 994, 335–342.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, Y. J., Kim, E. Y., Kim, S. H., Jang, S. P., Lee, T. G., Kim, C., Kim, S.-J. & Kim, Y. (2011). New J. Chem. 35, 833–841.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724–781.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds