metal-organic compounds
Structure of poly[diaqua[μ-1,2-bis(pyridin-4-yl)ethane-κ2N:N′]bis(μ3-cyclobutane-1,1-dicarboxylato-κ3O,O′:O′′:O′′′)dimanganese(II)]
aDivision of General Education (Chemistry), Kwangwoon Univeristy, Seoul 139-701, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: ymeekim@ewha.ac.kr
In the title compound, [Mn(C6H6O4)(C12H12N2)(H2O)]n, the cyclobutane-1,1-dicarboxylate (cbdc) ligands bridge three MnII ions, forming layers parallel to the ac plane. These layers are additionally connected by 1,2-bis(pyridin-4-yl)ethane ligands to form a three-dimensional polymeric framework. An inversion centre is located at the mid-point of the central C—C bond of the 1,2-bis(pyridin-4-yl)ethane ligand. The coordination geometry of the MnII ion is distorted octahedral and is built up by four carboxylate O atoms, one water O atom and a pyridyl N atom. The pyridine ligand and the coordinating water molecule are in a trans configuration. One carboxylate group of the cbdc ligand acts as a chelating ligand towards one MnII atom, whereas the second carboxylate group coordinates two different MnII atoms.
Keywords: crystal structure; α,ω-alkanedicarboxylate; manganese(II); cyclobutane-1,1-dicarboxylate (cbdc) ligand.
CCDC reference: 1414117
1. Related literature
For rigid aromatic dicarboxylate ligands for MOFs, see: Sumida et al. (2012). For flexible cyclohexanedicarboxylate ligands for MOFs, see: Lee et al. (2011); Kim et al. (2011). For flexible α,ω-alkanedicarboxylate ligands for MOFs, see: Hwang et al. (2012, 2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1414117
https://doi.org/10.1107/S2056989015013791/im2468sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013791/im2468Isup2.hkl
Cyclobutane-1,1-dicarboxylic acid (0.08 mmol, 11.6 mg) and Mn(NO3)2.H2O (0.08 mmol) were dissolved in 4 ml H2O and carefully layered by 4 ml of an ethanolic solution of 1,2-di(pyridin-4-yl)ethane (104.22 mg, 0.08 mmol). Suitable crystals of the title compound were obtained in a few weeks (yield: 18.5 mg, 75.3%).
H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.93 (pyridyl) and 0.97 (cyclobutane) Å. They were included in the
using the riding-motion approximation with Uiso(H) = 1.2 Ueq(C). The positions of the H atoms of the water ligand were refined with a distance of 0.83 Å and Uiso(H) = 1.2 Ueq(O).Rigid, aromatic dicarboxylates (Sumida, et al., 2012) or flexible cyclohexanedicarboxylates (Lee, et al., 2011; Kim, et al., 2011) have been primarily selected as the dicarboxylate ligands in coordination polymers. Flexible α,ω-alkane-dicarboxylates can also be suitable ligands for coordination polymers with different topologies. In contrast to metal complexes with aromatic dicarboxylates, few metal complexes with flexible α,ω-alkane dicarboxylates have been reported in the literature. Recently, we reported Cu-MOFs with flexible α,ω-alkane-dicarboxylate, glutarate and bipyridyl ligands (Hwang, et al., 2012) and Zn-MOFs containing flexible α,ω-alkane-dicarboxylate, malonate and bipyridyl pillars (Hwang, et al., 2013). Two Cu-MOFs possessed very similar pore shapes with controllable pore dimensions and exhibited good selectivity for CO2 over N2 and H2, and one MOF appeared to be an efficient, mild, and easily recyclable heterogeneous catalyst for the transesterification of (Hwang, et al., 2012). A series of Zn-MOFs containing malonates and bipyridyl pillars formed three-dimensional (3-D) frameworks, and they catalyzed a heterogeneous transesterification reaction of phenyl acetate (Hwang, et al., 2013). We report here on new structure of poly{[µ2-1,2-di(pyridin-4-yl)ethane]-bis[aqua-(µ3-cyclobutane-1,1-dicarboxylato)]manganese(II)}, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n.
One of the repeating units of the polymeric title compound is shown in Fig. 1 and the three-dimensional packing of the title compound is presented in Fig. 2. In the title compound, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n, the cbdc ligands bridge three manganese(II) ions to form two-dimensional layers. These layers are additionally connected by dipyridyl-ethane ligands to form a three-dimensional polymeric framework. The central C—C bond of the dipyridyl-ethane ligand represents a crystallographic centre of inversion. The coordination geometry of each manganese(II) ion is distorted octahedral and is built up by four carboxylate oxygen atoms, one water oxygen atom, and a pyridyl nitrogen atom. The pyridine ligand and the coordinated water molecule are in a trans-configuration. The cyclobutane-1,1-dicarboxylate ligands bridge three manganese atoms. One carboxylate unit acts as a chelating ligand towards one manganese, whereas the second carboxylate group coordinates two different manganese atoms.
For rigid aromatic dicarboxylate ligands for MOFs, see: Sumida et al. (2012). For flexible cyclohexanedicarboxylate ligands for MOFs, see: Lee et al. (2011); Kim et al. (2011). For flexible α,ω-alkanedicarboxylate ligands for MOFs, see: Hwang et al. (2012, 2013).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C6H6O4)(C12H12N2)(H2O)] | Z = 4 |
Mr = 307.18 | F(000) = 632 |
Monoclinic, P21/n | Dx = 1.501 Mg m−3 |
a = 7.4300 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 24.095 (5) Å | µ = 0.99 mm−1 |
c = 7.5930 (15) Å | T = 293 K |
β = 91.27 (3)° | Block, colorless |
V = 1359.0 (5) Å3 | 0.13 × 0.08 × 0.05 mm |
Bruker APEX CCD diffractometer | 2125 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.034 |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | θmax = 26.0°, θmin = 1.7° |
Tmin = 0.88, Tmax = 0.95 | h = −8→9 |
7527 measured reflections | k = −21→29 |
2662 independent reflections | l = −9→9 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.1811P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2662 reflections | Δρmax = 0.39 e Å−3 |
178 parameters | Δρmin = −0.29 e Å−3 |
[Mn(C6H6O4)(C12H12N2)(H2O)] | V = 1359.0 (5) Å3 |
Mr = 307.18 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.4300 (15) Å | µ = 0.99 mm−1 |
b = 24.095 (5) Å | T = 293 K |
c = 7.5930 (15) Å | 0.13 × 0.08 × 0.05 mm |
β = 91.27 (3)° |
Bruker APEX CCD diffractometer | 2662 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 2125 reflections with I > 2σ(I) |
Tmin = 0.88, Tmax = 0.95 | Rint = 0.034 |
7527 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 2 restraints |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.39 e Å−3 |
2662 reflections | Δρmin = −0.29 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.56903 (5) | 0.22314 (2) | 0.89895 (4) | 0.02572 (14) | |
O1 | 0.7988 (3) | 0.28188 (7) | 0.9016 (2) | 0.0376 (4) | |
H1A | 0.862 (3) | 0.2740 (10) | 0.990 (2) | 0.045* | |
H1B | 0.845 (4) | 0.2733 (10) | 0.8068 (19) | 0.045* | |
O11 | 0.4039 (2) | 0.26636 (7) | 1.0848 (2) | 0.0349 (4) | |
O12 | 0.1878 (2) | 0.32060 (7) | 1.1812 (2) | 0.0391 (4) | |
O13 | 0.4141 (2) | 0.27030 (7) | 0.7117 (2) | 0.0365 (4) | |
O14 | 0.1867 (2) | 0.32247 (7) | 0.6172 (2) | 0.0384 (4) | |
N21 | 0.3644 (3) | 0.15190 (8) | 0.8880 (3) | 0.0340 (5) | |
C11 | 0.2977 (3) | 0.30685 (9) | 1.0674 (3) | 0.0275 (5) | |
C12 | 0.3020 (3) | 0.30895 (9) | 0.7320 (3) | 0.0269 (5) | |
C13 | 0.3075 (3) | 0.34313 (9) | 0.9013 (3) | 0.0288 (5) | |
C14 | 0.1857 (4) | 0.39463 (11) | 0.9051 (3) | 0.0446 (7) | |
H14A | 0.1467 | 0.4074 | 0.7893 | 0.053* | |
H14B | 0.0844 | 0.391 | 0.9826 | 0.053* | |
C15 | 0.3422 (5) | 0.42786 (12) | 0.9847 (4) | 0.0629 (9) | |
H15A | 0.3388 | 0.4313 | 1.1118 | 0.075* | |
H15B | 0.3588 | 0.4638 | 0.9299 | 0.075* | |
C16 | 0.4729 (4) | 0.38341 (11) | 0.9212 (3) | 0.0437 (7) | |
H16A | 0.5613 | 0.3719 | 1.0097 | 0.052* | |
H16B | 0.5294 | 0.3923 | 0.8109 | 0.052* | |
C21 | 0.1888 (4) | 0.15938 (11) | 0.9101 (3) | 0.0403 (6) | |
H21 | 0.1467 | 0.1955 | 0.9207 | 0.048* | |
C22 | 0.0664 (4) | 0.11689 (12) | 0.9181 (3) | 0.0440 (7) | |
H22 | −0.0548 | 0.1246 | 0.9338 | 0.053* | |
C23 | 0.1237 (4) | 0.06274 (12) | 0.9029 (4) | 0.0469 (7) | |
C24 | 0.3048 (4) | 0.05483 (12) | 0.8781 (5) | 0.0596 (9) | |
H24 | 0.35 | 0.0191 | 0.8663 | 0.072* | |
C25 | 0.4190 (4) | 0.09962 (12) | 0.8707 (4) | 0.0535 (8) | |
H25 | 0.5406 | 0.093 | 0.8527 | 0.064* | |
C26 | −0.0063 (5) | 0.01499 (14) | 0.9168 (4) | 0.0657 (10) | |
H26A | −0.1279 | 0.0291 | 0.9013 | 0.079* | |
H26B | 0.0152 | −0.0108 | 0.8215 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0270 (2) | 0.0301 (2) | 0.0201 (2) | −0.00067 (14) | 0.00202 (14) | 0.00066 (14) |
O1 | 0.0372 (11) | 0.0463 (11) | 0.0294 (10) | −0.0050 (8) | 0.0007 (8) | 0.0017 (9) |
O11 | 0.0431 (11) | 0.0388 (10) | 0.0232 (9) | 0.0110 (8) | 0.0089 (8) | 0.0047 (7) |
O12 | 0.0472 (11) | 0.0397 (10) | 0.0310 (9) | 0.0081 (8) | 0.0183 (8) | 0.0036 (8) |
O13 | 0.0450 (11) | 0.0422 (11) | 0.0219 (8) | 0.0107 (8) | −0.0043 (7) | −0.0054 (7) |
O14 | 0.0417 (10) | 0.0422 (10) | 0.0308 (9) | 0.0082 (8) | −0.0114 (8) | −0.0067 (8) |
N21 | 0.0326 (12) | 0.0349 (12) | 0.0344 (12) | −0.0048 (9) | 0.0026 (9) | −0.0005 (9) |
C11 | 0.0328 (13) | 0.0282 (13) | 0.0215 (11) | −0.0059 (10) | 0.0009 (10) | −0.0027 (9) |
C12 | 0.0314 (13) | 0.0286 (13) | 0.0208 (11) | −0.0061 (10) | 0.0025 (10) | 0.0018 (9) |
C13 | 0.0371 (14) | 0.0269 (13) | 0.0227 (12) | −0.0027 (10) | 0.0033 (10) | −0.0017 (10) |
C14 | 0.067 (2) | 0.0358 (15) | 0.0306 (14) | 0.0140 (14) | −0.0014 (13) | −0.0004 (11) |
C15 | 0.103 (3) | 0.0377 (17) | 0.0479 (19) | −0.0099 (17) | 0.0024 (18) | −0.0060 (14) |
C16 | 0.0573 (18) | 0.0441 (16) | 0.0300 (14) | −0.0205 (14) | 0.0047 (13) | 0.0004 (12) |
C21 | 0.0338 (14) | 0.0409 (16) | 0.0463 (16) | −0.0045 (12) | 0.0022 (12) | −0.0035 (12) |
C22 | 0.0344 (15) | 0.0556 (18) | 0.0422 (16) | −0.0112 (13) | 0.0041 (12) | −0.0015 (13) |
C23 | 0.0491 (17) | 0.0491 (18) | 0.0425 (16) | −0.0197 (14) | 0.0015 (13) | 0.0086 (13) |
C24 | 0.060 (2) | 0.0306 (16) | 0.088 (3) | −0.0046 (14) | 0.0037 (18) | 0.0042 (15) |
C25 | 0.0392 (16) | 0.0377 (17) | 0.084 (2) | −0.0003 (13) | 0.0101 (16) | 0.0048 (15) |
C26 | 0.074 (2) | 0.064 (2) | 0.059 (2) | −0.0362 (18) | −0.0118 (18) | 0.0165 (16) |
Mn1—O13 | 2.1369 (18) | C14—C15 | 1.525 (4) |
Mn1—O14i | 2.1571 (17) | C14—H14A | 0.97 |
Mn1—O11 | 2.1583 (16) | C14—H14B | 0.97 |
Mn1—O12ii | 2.1650 (17) | C15—C16 | 1.531 (4) |
Mn1—O1 | 2.2175 (19) | C15—H15A | 0.97 |
Mn1—N21 | 2.293 (2) | C15—H15B | 0.97 |
O1—H1A | 0.830 (2) | C16—H16A | 0.97 |
O1—H1B | 0.830 (2) | C16—H16B | 0.97 |
O11—C11 | 1.260 (3) | C21—C22 | 1.372 (4) |
O12—C11 | 1.247 (3) | C21—H21 | 0.93 |
O12—Mn1iii | 2.1650 (17) | C22—C23 | 1.378 (4) |
O13—C12 | 1.261 (3) | C22—H22 | 0.93 |
O14—C12 | 1.252 (3) | C23—C24 | 1.376 (4) |
O14—Mn1iv | 2.1570 (17) | C23—C26 | 1.507 (4) |
N21—C25 | 1.331 (3) | C24—C25 | 1.375 (4) |
N21—C21 | 1.331 (3) | C24—H24 | 0.93 |
C11—C13 | 1.538 (3) | C25—H25 | 0.93 |
C12—C13 | 1.526 (3) | C26—C26v | 1.457 (6) |
C13—C14 | 1.537 (3) | C26—H26A | 0.97 |
C13—C16 | 1.570 (3) | C26—H26B | 0.97 |
O13—Mn1—O14i | 170.14 (7) | C15—C14—H14A | 113.8 |
O13—Mn1—O11 | 82.69 (6) | C13—C14—H14A | 113.8 |
O14i—Mn1—O11 | 88.28 (7) | C15—C14—H14B | 113.8 |
O13—Mn1—O12ii | 88.48 (7) | C13—C14—H14B | 113.8 |
O14i—Mn1—O12ii | 99.99 (7) | H14A—C14—H14B | 111.0 |
O11—Mn1—O12ii | 168.94 (7) | C14—C15—C16 | 89.5 (2) |
O13—Mn1—O1 | 94.01 (7) | C14—C15—H15A | 113.7 |
O14i—Mn1—O1 | 91.12 (7) | C16—C15—H15A | 113.7 |
O11—Mn1—O1 | 97.75 (7) | C14—C15—H15B | 113.7 |
O12ii—Mn1—O1 | 89.47 (7) | C16—C15—H15B | 113.7 |
O13—Mn1—N21 | 91.54 (7) | H15A—C15—H15B | 111.0 |
O14i—Mn1—N21 | 84.46 (7) | C15—C16—C13 | 87.8 (2) |
O11—Mn1—N21 | 89.93 (7) | C15—C16—H16A | 114.0 |
O12ii—Mn1—N21 | 83.63 (7) | C13—C16—H16A | 114.0 |
O1—Mn1—N21 | 171.03 (7) | C15—C16—H16B | 114.0 |
Mn1—O1—H1A | 106.3 (19) | C13—C16—H16B | 114.0 |
Mn1—O1—H1B | 100 (2) | H16A—C16—H16B | 111.2 |
H1A—O1—H1B | 114 (3) | N21—C21—C22 | 123.9 (3) |
C11—O11—Mn1 | 131.98 (14) | N21—C21—H21 | 118.1 |
C11—O12—Mn1iii | 133.16 (16) | C22—C21—H21 | 118.1 |
C12—O13—Mn1 | 131.20 (15) | C21—C22—C23 | 119.8 (3) |
C12—O14—Mn1iv | 131.45 (16) | C21—C22—H22 | 120.1 |
C25—N21—C21 | 116.3 (2) | C23—C22—H22 | 120.1 |
C25—N21—Mn1 | 120.58 (17) | C24—C23—C22 | 116.6 (2) |
C21—N21—Mn1 | 123.01 (17) | C24—C23—C26 | 122.3 (3) |
O12—C11—O11 | 123.5 (2) | C22—C23—C26 | 121.1 (3) |
O12—C11—C13 | 117.4 (2) | C25—C24—C23 | 120.2 (3) |
O11—C11—C13 | 119.0 (2) | C25—C24—H24 | 119.9 |
O14—C12—O13 | 123.4 (2) | C23—C24—H24 | 119.9 |
O14—C12—C13 | 116.8 (2) | N21—C25—C24 | 123.3 (3) |
O13—C12—C13 | 119.7 (2) | N21—C25—H25 | 118.3 |
C12—C13—C14 | 116.5 (2) | C24—C25—H25 | 118.3 |
C12—C13—C11 | 112.53 (18) | C26v—C26—C23 | 114.2 (3) |
C14—C13—C11 | 113.9 (2) | C26v—C26—H26A | 108.7 |
C12—C13—C16 | 114.90 (19) | C23—C26—H26A | 108.7 |
C14—C13—C16 | 87.64 (19) | C26v—C26—H26B | 108.7 |
C11—C13—C16 | 108.9 (2) | C23—C26—H26B | 108.7 |
C15—C14—C13 | 89.3 (2) | H26A—C26—H26B | 107.6 |
Mn1iii—O12—C11—O11 | −20.6 (4) | C12—C13—C14—C15 | −134.6 (2) |
Mn1iii—O12—C11—C13 | 161.91 (16) | C11—C13—C14—C15 | 91.8 (2) |
Mn1—O11—C11—O12 | 166.53 (16) | C16—C13—C14—C15 | −17.9 (2) |
Mn1—O11—C11—C13 | −16.1 (3) | C13—C14—C15—C16 | 18.3 (2) |
Mn1iv—O14—C12—O13 | 22.8 (4) | C14—C15—C16—C13 | −17.9 (2) |
Mn1iv—O14—C12—C13 | −159.34 (15) | C12—C13—C16—C15 | 136.1 (2) |
Mn1—O13—C12—O14 | −159.83 (17) | C14—C13—C16—C15 | 17.8 (2) |
Mn1—O13—C12—C13 | 22.4 (3) | C11—C13—C16—C15 | −96.7 (2) |
O14—C12—C13—C14 | −6.7 (3) | C25—N21—C21—C22 | 1.0 (4) |
O13—C12—C13—C14 | 171.3 (2) | Mn1—N21—C21—C22 | −174.6 (2) |
O14—C12—C13—C11 | 127.5 (2) | N21—C21—C22—C23 | 0.0 (4) |
O13—C12—C13—C11 | −54.5 (3) | C21—C22—C23—C24 | −0.7 (4) |
O14—C12—C13—C16 | −107.1 (3) | C21—C22—C23—C26 | 178.1 (3) |
O13—C12—C13—C16 | 70.9 (3) | C22—C23—C24—C25 | 0.4 (5) |
O12—C11—C13—C12 | −131.6 (2) | C26—C23—C24—C25 | −178.4 (3) |
O11—C11—C13—C12 | 50.8 (3) | C21—N21—C25—C24 | −1.3 (4) |
O12—C11—C13—C14 | 3.8 (3) | Mn1—N21—C25—C24 | 174.4 (3) |
O11—C11—C13—C14 | −173.7 (2) | C23—C24—C25—N21 | 0.6 (5) |
O12—C11—C13—C16 | 99.8 (2) | C24—C23—C26—C26v | 74.0 (5) |
O11—C11—C13—C16 | −77.8 (3) | C22—C23—C26—C26v | −104.7 (5) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C6H6O4)(C12H12N2)(H2O)] |
Mr | 307.18 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.4300 (15), 24.095 (5), 7.5930 (15) |
β (°) | 91.27 (3) |
V (Å3) | 1359.0 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.99 |
Crystal size (mm) | 0.13 × 0.08 × 0.05 |
Data collection | |
Diffractometer | Bruker APEX CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.88, 0.95 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7527, 2662, 2125 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.097, 1.06 |
No. of reflections | 2662 |
No. of parameters | 178 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.29 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).
Acknowledgements
Financial support from Kwangwoon University in the year 2015 is gratefully acknowledged.
References
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759–12765. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815–4823. Web of Science CSD CrossRef CAS Google Scholar
Kim, E. Y., Park, H. M., Kim, H.-Y., Kim, J. H., Hyun, M. Y., Lee, J. H., Kim, C., Kim, S.-J. & Kim, Y. (2011). J. Mol. Struct. 994, 335–342. Web of Science CSD CrossRef CAS Google Scholar
Lee, Y. J., Kim, E. Y., Kim, S. H., Jang, S. P., Lee, T. G., Kim, C., Kim, S.-J. & Kim, Y. (2011). New J. Chem. 35, 833–841. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724–781. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rigid, aromatic dicarboxylates (Sumida, et al., 2012) or flexible cyclohexanedicarboxylates (Lee, et al., 2011; Kim, et al., 2011) have been primarily selected as the dicarboxylate ligands in coordination polymers. Flexible α,ω-alkane-dicarboxylates can also be suitable ligands for coordination polymers with different topologies. In contrast to metal complexes with aromatic dicarboxylates, few metal complexes with flexible α,ω-alkane dicarboxylates have been reported in the literature. Recently, we reported Cu-MOFs with flexible α,ω-alkane-dicarboxylate, glutarate and bipyridyl ligands (Hwang, et al., 2012) and Zn-MOFs containing flexible α,ω-alkane-dicarboxylate, malonate and bipyridyl pillars (Hwang, et al., 2013). Two Cu-MOFs possessed very similar pore shapes with controllable pore dimensions and exhibited good selectivity for CO2 over N2 and H2, and one MOF appeared to be an efficient, mild, and easily recyclable heterogeneous catalyst for the transesterification of esters (Hwang, et al., 2012). A series of Zn-MOFs containing malonates and bipyridyl pillars formed three-dimensional (3-D) frameworks, and they catalyzed a heterogeneous transesterification reaction of phenyl acetate (Hwang, et al., 2013). We report here on new structure of poly{[µ2-1,2-di(pyridin-4-yl)ethane]-bis[aqua-(µ3-cyclobutane-1,1-dicarboxylato)]manganese(II)}, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n.
One of the repeating units of the polymeric title compound is shown in Fig. 1 and the three-dimensional packing of the title compound is presented in Fig. 2. In the title compound, [Mn(H2O)(µ3-C6H6O4)(µ2-C12H12N2)]n, the cbdc ligands bridge three manganese(II) ions to form two-dimensional layers. These layers are additionally connected by dipyridyl-ethane ligands to form a three-dimensional polymeric framework. The central C—C bond of the dipyridyl-ethane ligand represents a crystallographic centre of inversion. The coordination geometry of each manganese(II) ion is distorted octahedral and is built up by four carboxylate oxygen atoms, one water oxygen atom, and a pyridyl nitrogen atom. The pyridine ligand and the coordinated water molecule are in a trans-configuration. The cyclobutane-1,1-dicarboxylate ligands bridge three manganese atoms. One carboxylate unit acts as a chelating ligand towards one manganese, whereas the second carboxylate group coordinates two different manganese atoms.