research communications
of (±)-1-({[4-(allyloxy)phenyl]sulfanyl}methyl)-2-(diphenylthiophosphoryl)ferrocene
aUniversité de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France, bCNRS, LCC (Laboratoire de Chimie de Coordination), IUT, Département de Chimie, avenue Georges Pompidou, BP258, 81104 Castres, France, cCIRIMAT, équipe PPB, Université Paul Sabatier, ENSIACET – Bureau 2-r1-5, 4 Allée Emile Monso BP 44362, 31432 Toulouse Cedex 4, France, and dLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: daran@lcc-toulouse.fr
The title compound, [Fe(C5H5)(C27H24OPS2)], is built up from a ferrocene moiety substituted in the 1- and 2-positions by {[4-(allyloxy)phenyl]sulfanyl}methyl and diphenylthiophosphoryl groups, respectively. The two S atoms lie on opposite sides of the cyclopentadienyl ring plane to which they are attached. In the crystal, C—H⋯S hydrogen bonds link the molecules into a ribbon running parallel to the (-110) plane. C—H⋯π interactions link the ribbons to form a three-dimensional network.
CCDC reference: 1412894
1. Chemical context
Homogenous asymmetric catalysis by transition metals has received considerable attention over the last few decades and numerous chiral ligands and complexes allowing high efficiency reactions have been reported (Jacobsen et al., 1999; Börner, 2008). Amongst the various chiral ligands which have been synthesized, ferrocenyl have proven to be very efficient for numerous asymmetric reactions (Buergler et al., 2012; Gómez Arrayás et al., 2006; Toma et al., 2014). We have long been interested in the synthesis of chiral ferrocenyl ligands for asymmetric catalysis (Audin et al., 2010; Bayda et al., 2014; Wei et al., 2012; Loxq et al., 2014) and, in particular, we synthesized a series of chiral P,S-ferrocenyl ligands with which have been successfully used in different homogeneous asymmetric catalytic reactions, such as allylic substitution, methoxycarbonylation and hydrogenation (Kozinets et al., 2012; Diab et al., 2008). We recently started to explore the grafting of these ligands on solid support. This will allow us to work in heterogeneous conditions favoring both easy catalyst separation from products and recycling. Beside the expected catalyst activity reduction observed under heterogeneous conditions compared to homogeneous reaction, surface–catalyst interaction has proven to play an important, and still unclear, role on selectivity. A better understanding of these interactions would improve both grafting interest and probably industrial applications of such systems.
To reach this goal, we needed to developed new chiral P,S-ferrocenyl ligands bearing an alkene moiety such as compound (3), allowing polymerization or functionalization for inorganic grafting of the ligand [such as compound (4)] (Fig. 1). Functionalized P,S ferrocenyl phosphine is prepared in a three-step synthesis from 2-thiodiphenylphosphino(hydroxymethyl)ferrocene (1) (Fig. 1). This compound can be prepared in multigram quantities and isolated as a or in an enantiomerically pure form, opening direct access to chiral ligands (Mateus et al., 2006). Its functionalization can be performed in a one-pot process by successive addition of a strong acid (HBF4), generating probably a ferrocenyl carbocation, and then the thiol. Addition of a base allows to generate the phenolate which reacts with bromoallyl giving rise to compound (3). The phosphoryl group, protected from oxidation by sulfuration in order to carry out the former steps in air, can be recovered by refluxing in toluene with P(NMe2)3.
2. Structural commentary
The molecular structure of compound (3) (see Scheme) is built up from a ferrocene moiety substituted by a diphenylthiophosphoryl and a {[4-(allyloxy)phenyl]sulfanyl}methyl chain (Fig. 2). As observed in other (diphenylthiophosphoryl)ferrocenes (Table 1), the S atom (S1) of the diphenylthiophosphoryl group is endo towards Fe with respect to the Cp ring with a distance to the ring of 1.263 (5) Å (a perpendicular distance of S1 to the Cp ring plane). This distance is the largest one observed within similar structures. The difference observed might be related to the occurrence of the C30—H30B⋯S1(−x, −y, −z) hydrogen bond. Atom S2 is exo, with a distance to the Cp ring of 1.763 (4) Å, which is in agreement with the values observed for related compounds. The much shorter distance, 0.457 Å, is related to the lowest angle (15.77°) observed between the C2/C21/S2 plane and the Cp ring. In all other compounds, including the title one, the C2/C21/S2 plane is roughly perpendicular to the Cp ring, with values ranging from 71.83 to 89.50° (Table 1).
The geometry of the ferrocenyl is identical to related compounds with the two Cp rings nearly parallel to each other with a dihedral angle of 3.94 (15)° in the title compound, whereas the corresponding values range from 0.70 to 2.38° in the other compounds (Table 1). The two Cp rings are roughly eclipsed, with a twist angle of 2.8 (2)°. As observed in Table 1, the geometry of the C—PSPh2 and C—CH2-S fragments are roughly identical within experimental error. In the diphenylthiophosphoryl group, the C1—P1 distances range from 1.788 (4) to 1.802 (3) Å, whereas the P1—S1 distances range from 1.956 (2) to 1.961 (1) Å. In the C—CH2-S fragment, the C2—C21 distances range from 1.488 (2) to 1.502 (11) Å, whereas the C21—S2 distances range from 1.811 (3) to 1.835 (2) Å.
3. Supramolecular features
The cohesion within the crystal is based on weak C—H⋯S and C—H⋯π interactions (Table 2). The C—H⋯S interactions build up a ribbon developing parallel to the (10) plane (Fig. 3). The C—H⋯π interactions link the ribbons to form a three-dimensional network (Fig. 4).
|
4. Database survey
A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) reveals seven hits for related seven structures having a ferrocene moiety 1,2-disubstituted by a diphenylthiophosphoroyl and an allyl ether thiol (Mouas Toma et al., 2014; Malacea et al., 2013; Routaboul et al., 2007).
5. Synthesis and crystallization
In a Schlenk tube, (1) (0.749 mg, 1.74 mmol) (see Fig. 1) was dissolved in dry dichloromethane (8 ml). A 54% solution of tetrafluoroboric acid in ether (0.73 ml, 5.30 mmol) was then added. After 1 min stirring, a solution of 4-hydroxythiophenol (20 mmol) in dry dichloromethane (8 ml) was added. After 1 min of stirring, the crude material was filtered on silica gel with ether as After evaporation of the solvent, (2) (0.73 g, 1.35 mmol) was obtained as a yellow solid (yield 78%). (2) (290 mg (5.38 × 10−4 M) and caesium carbonate (450 mg, 2.5 equivalents) in acetone (20 ml) were mixed for 2 min. Then, allyl bromide (0.047 ml, 1 equivalent) was added to the mixture, which was heated under reflux overnight. After cooling to room temperature, the product was recovered by on silica with petroleum ether/ethyl acetate (90/10). After evaporation of the solvent, compound (3) (yield 266 mg, 85%) was isolated as a yellow–orange powder.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.95 (aromatic) or 0.99 Å (methylene) and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1412894
https://doi.org/10.1107/S2056989015013560/is5405sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013560/is5405Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).[Fe(C5H5)(C27H24OPS2)] | Z = 2 |
Mr = 580.49 | F(000) = 604 |
Triclinic, P1 | Dx = 1.409 Mg m−3 |
a = 7.8161 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3179 (3) Å | Cell parameters from 11224 reflections |
c = 21.6998 (6) Å | θ = 3.5–29.3° |
α = 97.773 (3)° | µ = 0.79 mm−1 |
β = 99.672 (3)° | T = 173 K |
γ = 95.329 (3)° | Platelet, yellow |
V = 1368.26 (8) Å3 | 0.55 × 0.50 × 0.07 mm |
Agilent Xcalibur Eos (Gemini ultra) diffractometer | 5592 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4965 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 26.4°, θmin = 3.4° |
ω scan | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −10→10 |
Tmin = 0.637, Tmax = 0.946 | l = −27→27 |
27439 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.073P)2 + 0.8499P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
5592 reflections | Δρmax = 1.06 e Å−3 |
334 parameters | Δρmin = −0.68 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.57578 (4) | 0.69829 (4) | 0.36521 (2) | 0.01812 (12) | |
S1 | 0.41109 (8) | 0.22036 (7) | 0.28912 (3) | 0.02775 (16) | |
S2 | 0.55111 (9) | 0.62383 (10) | 0.14588 (3) | 0.03703 (18) | |
P1 | 0.65260 (7) | 0.31849 (7) | 0.29668 (3) | 0.01835 (14) | |
O1 | 0.0549 (3) | 0.2125 (2) | −0.06613 (8) | 0.0341 (4) | |
C1 | 0.6885 (3) | 0.5381 (3) | 0.30945 (10) | 0.0180 (4) | |
C2 | 0.5970 (3) | 0.6457 (3) | 0.27254 (10) | 0.0209 (4) | |
C3 | 0.6735 (3) | 0.8083 (3) | 0.29799 (11) | 0.0246 (5) | |
H3 | 0.6395 | 0.9045 | 0.2827 | 0.030* | |
C4 | 0.8091 (3) | 0.8031 (3) | 0.34994 (11) | 0.0245 (5) | |
H4 | 0.8803 | 0.8950 | 0.3754 | 0.029* | |
C5 | 0.8198 (3) | 0.6372 (3) | 0.35734 (10) | 0.0199 (4) | |
H5 | 0.8997 | 0.5985 | 0.3884 | 0.024* | |
C6 | 0.5246 (3) | 0.6660 (3) | 0.45271 (11) | 0.0268 (5) | |
H6 | 0.5970 | 0.6220 | 0.4844 | 0.032* | |
C7 | 0.3915 (3) | 0.5764 (3) | 0.40439 (12) | 0.0283 (5) | |
H7 | 0.3593 | 0.4616 | 0.3981 | 0.034* | |
C8 | 0.3149 (3) | 0.6875 (4) | 0.36722 (12) | 0.0331 (6) | |
H8 | 0.2228 | 0.6603 | 0.3316 | 0.040* | |
C9 | 0.4005 (4) | 0.8474 (3) | 0.39274 (13) | 0.0330 (6) | |
H9 | 0.3750 | 0.9457 | 0.3773 | 0.040* | |
C10 | 0.5301 (3) | 0.8339 (3) | 0.44512 (12) | 0.0288 (5) | |
H10 | 0.6074 | 0.9215 | 0.4708 | 0.035* | |
C21 | 0.4545 (3) | 0.5985 (3) | 0.21561 (11) | 0.0254 (5) | |
H21A | 0.3599 | 0.6691 | 0.2183 | 0.030* | |
H21B | 0.4044 | 0.4835 | 0.2131 | 0.030* | |
C22 | 0.3966 (3) | 0.5028 (3) | 0.08384 (11) | 0.0289 (5) | |
C23 | 0.3552 (4) | 0.3363 (4) | 0.08290 (12) | 0.0356 (6) | |
H23 | 0.4059 | 0.2859 | 0.1172 | 0.043* | |
C24 | 0.2406 (4) | 0.2436 (3) | 0.03231 (13) | 0.0362 (6) | |
H24 | 0.2117 | 0.1302 | 0.0324 | 0.043* | |
C25 | 0.1677 (3) | 0.3150 (3) | −0.01840 (11) | 0.0292 (5) | |
C26 | 0.2098 (3) | 0.4802 (3) | −0.01862 (12) | 0.0308 (5) | |
H26 | 0.1616 | 0.5296 | −0.0536 | 0.037* | |
C27 | 0.3232 (3) | 0.5734 (3) | 0.03275 (12) | 0.0311 (5) | |
H27 | 0.3508 | 0.6872 | 0.0329 | 0.037* | |
C28 | −0.0096 (3) | 0.2804 (3) | −0.12162 (12) | 0.0305 (5) | |
H28A | 0.0890 | 0.3363 | −0.1369 | 0.037* | |
H28B | −0.0896 | 0.3617 | −0.1115 | 0.037* | |
C29 | −0.1045 (3) | 0.1461 (3) | −0.17163 (13) | 0.0332 (6) | |
H29 | −0.1928 | 0.0732 | −0.1614 | 0.040* | |
C30 | −0.0706 (4) | 0.1246 (4) | −0.22922 (13) | 0.0409 (7) | |
H30A | 0.0172 | 0.1962 | −0.2403 | 0.049* | |
H30B | −0.1340 | 0.0376 | −0.2598 | 0.049* | |
C111 | 0.7998 (3) | 0.2652 (3) | 0.36315 (10) | 0.0194 (4) | |
C112 | 0.7401 (3) | 0.2600 (3) | 0.42011 (12) | 0.0269 (5) | |
H112 | 0.6228 | 0.2772 | 0.4225 | 0.032* | |
C113 | 0.8504 (3) | 0.2299 (3) | 0.47306 (11) | 0.0301 (5) | |
H113 | 0.8095 | 0.2287 | 0.5118 | 0.036* | |
C114 | 1.0212 (3) | 0.2015 (3) | 0.46948 (11) | 0.0274 (5) | |
H114 | 1.0971 | 0.1804 | 0.5058 | 0.033* | |
C115 | 1.0806 (3) | 0.2040 (3) | 0.41296 (12) | 0.0248 (5) | |
H115 | 1.1970 | 0.1833 | 0.4105 | 0.030* | |
C116 | 0.9712 (3) | 0.2364 (3) | 0.35992 (11) | 0.0224 (5) | |
H116 | 1.0131 | 0.2390 | 0.3214 | 0.027* | |
C121 | 0.7425 (3) | 0.2591 (3) | 0.22639 (11) | 0.0226 (5) | |
C122 | 0.8897 (3) | 0.3491 (3) | 0.21468 (12) | 0.0291 (5) | |
H122 | 0.9439 | 0.4431 | 0.2437 | 0.035* | |
C123 | 0.9575 (4) | 0.3019 (3) | 0.16083 (13) | 0.0343 (6) | |
H123 | 1.0593 | 0.3622 | 0.1533 | 0.041* | |
C124 | 0.8764 (4) | 0.1664 (3) | 0.11795 (13) | 0.0373 (6) | |
H124 | 0.9217 | 0.1354 | 0.0807 | 0.045* | |
C125 | 0.7303 (4) | 0.0764 (3) | 0.12911 (12) | 0.0352 (6) | |
H125 | 0.6756 | −0.0165 | 0.0996 | 0.042* | |
C126 | 0.6633 (3) | 0.1212 (3) | 0.18318 (11) | 0.0267 (5) | |
H126 | 0.5636 | 0.0583 | 0.1910 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02424 (19) | 0.01838 (18) | 0.01314 (18) | 0.00476 (13) | 0.00804 (13) | 0.00005 (12) |
S1 | 0.0243 (3) | 0.0266 (3) | 0.0302 (3) | −0.0024 (2) | 0.0060 (2) | −0.0008 (2) |
S2 | 0.0342 (4) | 0.0605 (5) | 0.0152 (3) | −0.0022 (3) | 0.0066 (2) | 0.0045 (3) |
P1 | 0.0225 (3) | 0.0173 (3) | 0.0152 (3) | 0.0031 (2) | 0.0057 (2) | −0.0009 (2) |
O1 | 0.0461 (11) | 0.0333 (10) | 0.0205 (9) | 0.0090 (8) | −0.0001 (8) | −0.0002 (7) |
C1 | 0.0229 (11) | 0.0182 (10) | 0.0136 (10) | 0.0028 (8) | 0.0074 (8) | −0.0009 (8) |
C2 | 0.0277 (12) | 0.0231 (11) | 0.0144 (10) | 0.0062 (9) | 0.0097 (9) | 0.0022 (8) |
C3 | 0.0367 (13) | 0.0212 (11) | 0.0195 (11) | 0.0053 (9) | 0.0131 (10) | 0.0045 (9) |
C4 | 0.0300 (12) | 0.0204 (11) | 0.0233 (12) | −0.0012 (9) | 0.0123 (9) | −0.0019 (9) |
C5 | 0.0204 (11) | 0.0233 (11) | 0.0161 (11) | 0.0015 (8) | 0.0071 (8) | −0.0007 (8) |
C6 | 0.0347 (13) | 0.0340 (13) | 0.0160 (11) | 0.0074 (10) | 0.0147 (10) | 0.0048 (9) |
C7 | 0.0321 (13) | 0.0297 (12) | 0.0261 (13) | 0.0006 (10) | 0.0191 (10) | 0.0002 (10) |
C8 | 0.0231 (12) | 0.0560 (17) | 0.0218 (12) | 0.0081 (11) | 0.0091 (10) | 0.0023 (11) |
C9 | 0.0404 (15) | 0.0348 (13) | 0.0326 (14) | 0.0192 (11) | 0.0217 (11) | 0.0079 (11) |
C10 | 0.0373 (14) | 0.0295 (12) | 0.0208 (12) | 0.0047 (10) | 0.0160 (10) | −0.0059 (9) |
C21 | 0.0286 (12) | 0.0332 (12) | 0.0160 (11) | 0.0075 (10) | 0.0065 (9) | 0.0035 (9) |
C22 | 0.0294 (13) | 0.0456 (15) | 0.0139 (11) | 0.0106 (11) | 0.0092 (9) | 0.0011 (10) |
C23 | 0.0442 (16) | 0.0457 (15) | 0.0203 (13) | 0.0223 (13) | 0.0057 (11) | 0.0063 (11) |
C24 | 0.0514 (17) | 0.0343 (14) | 0.0244 (13) | 0.0155 (12) | 0.0067 (12) | 0.0028 (10) |
C25 | 0.0333 (13) | 0.0388 (14) | 0.0168 (12) | 0.0133 (11) | 0.0079 (10) | −0.0012 (10) |
C26 | 0.0372 (14) | 0.0387 (14) | 0.0180 (12) | 0.0107 (11) | 0.0048 (10) | 0.0057 (10) |
C27 | 0.0364 (14) | 0.0390 (14) | 0.0186 (12) | 0.0066 (11) | 0.0068 (10) | 0.0036 (10) |
C28 | 0.0310 (13) | 0.0389 (14) | 0.0215 (12) | 0.0085 (11) | 0.0041 (10) | 0.0025 (10) |
C29 | 0.0272 (13) | 0.0415 (15) | 0.0292 (14) | 0.0025 (11) | 0.0022 (10) | 0.0047 (11) |
C30 | 0.0409 (16) | 0.0482 (17) | 0.0289 (15) | 0.0022 (13) | 0.0022 (12) | −0.0040 (12) |
C111 | 0.0254 (11) | 0.0156 (10) | 0.0176 (11) | 0.0034 (8) | 0.0058 (8) | 0.0010 (8) |
C112 | 0.0258 (12) | 0.0336 (13) | 0.0237 (12) | 0.0067 (10) | 0.0103 (9) | 0.0037 (10) |
C113 | 0.0371 (14) | 0.0387 (14) | 0.0169 (12) | 0.0065 (11) | 0.0095 (10) | 0.0052 (10) |
C114 | 0.0319 (13) | 0.0287 (12) | 0.0197 (12) | 0.0023 (10) | 0.0007 (9) | 0.0025 (9) |
C115 | 0.0228 (11) | 0.0248 (11) | 0.0266 (12) | 0.0040 (9) | 0.0050 (9) | 0.0019 (9) |
C116 | 0.0273 (12) | 0.0210 (10) | 0.0204 (11) | 0.0043 (9) | 0.0096 (9) | 0.0010 (8) |
C121 | 0.0318 (12) | 0.0211 (11) | 0.0158 (11) | 0.0088 (9) | 0.0061 (9) | 0.0006 (8) |
C122 | 0.0399 (14) | 0.0237 (11) | 0.0259 (13) | 0.0066 (10) | 0.0128 (11) | 0.0015 (9) |
C123 | 0.0480 (16) | 0.0325 (13) | 0.0301 (14) | 0.0117 (12) | 0.0233 (12) | 0.0071 (11) |
C124 | 0.0564 (18) | 0.0383 (14) | 0.0234 (13) | 0.0210 (13) | 0.0177 (12) | 0.0032 (11) |
C125 | 0.0515 (17) | 0.0307 (13) | 0.0222 (13) | 0.0144 (12) | 0.0059 (11) | −0.0054 (10) |
C126 | 0.0355 (13) | 0.0234 (11) | 0.0206 (12) | 0.0074 (10) | 0.0041 (10) | −0.0002 (9) |
Fe1—C2 | 2.037 (2) | C22—C23 | 1.389 (4) |
Fe1—C1 | 2.038 (2) | C22—C27 | 1.389 (4) |
Fe1—C3 | 2.038 (2) | C23—C24 | 1.384 (4) |
Fe1—C10 | 2.040 (2) | C23—H23 | 0.9500 |
Fe1—C9 | 2.040 (2) | C24—C25 | 1.385 (4) |
Fe1—C8 | 2.041 (2) | C24—H24 | 0.9500 |
Fe1—C4 | 2.045 (2) | C25—C26 | 1.384 (4) |
Fe1—C5 | 2.048 (2) | C26—C27 | 1.391 (4) |
Fe1—C7 | 2.049 (2) | C26—H26 | 0.9500 |
Fe1—C6 | 2.052 (2) | C27—H27 | 0.9500 |
S1—P1 | 1.9571 (8) | C28—C29 | 1.491 (4) |
S2—C22 | 1.774 (3) | C28—H28A | 0.9900 |
S2—C21 | 1.829 (2) | C28—H28B | 0.9900 |
P1—C1 | 1.798 (2) | C29—C30 | 1.313 (4) |
P1—C121 | 1.812 (2) | C29—H29 | 0.9500 |
P1—C111 | 1.820 (2) | C30—H30A | 0.9500 |
O1—C25 | 1.376 (3) | C30—H30B | 0.9500 |
O1—C28 | 1.434 (3) | C111—C116 | 1.394 (3) |
C1—C5 | 1.437 (3) | C111—C112 | 1.397 (3) |
C1—C2 | 1.440 (3) | C112—C113 | 1.382 (3) |
C2—C3 | 1.425 (3) | C112—H112 | 0.9500 |
C2—C21 | 1.499 (3) | C113—C114 | 1.391 (4) |
C3—C4 | 1.420 (4) | C113—H113 | 0.9500 |
C3—H3 | 0.9500 | C114—C115 | 1.384 (3) |
C4—C5 | 1.420 (3) | C114—H114 | 0.9500 |
C4—H4 | 0.9500 | C115—C116 | 1.388 (3) |
C5—H5 | 0.9500 | C115—H115 | 0.9500 |
C6—C7 | 1.420 (4) | C116—H116 | 0.9500 |
C6—C10 | 1.425 (4) | C121—C122 | 1.393 (4) |
C6—H6 | 0.9500 | C121—C126 | 1.400 (3) |
C7—C8 | 1.416 (4) | C122—C123 | 1.387 (3) |
C7—H7 | 0.9500 | C122—H122 | 0.9500 |
C8—C9 | 1.427 (4) | C123—C124 | 1.387 (4) |
C8—H8 | 0.9500 | C123—H123 | 0.9500 |
C9—C10 | 1.414 (4) | C124—C125 | 1.381 (4) |
C9—H9 | 0.9500 | C124—H124 | 0.9500 |
C10—H10 | 0.9500 | C125—C126 | 1.383 (4) |
C21—H21A | 0.9900 | C125—H125 | 0.9500 |
C21—H21B | 0.9900 | C126—H126 | 0.9500 |
C2—Fe1—C1 | 41.39 (9) | C6—C7—H7 | 125.8 |
C2—Fe1—C3 | 40.92 (9) | Fe1—C7—H7 | 126.4 |
C1—Fe1—C3 | 68.89 (9) | C7—C8—C9 | 107.9 (2) |
C2—Fe1—C10 | 157.22 (10) | C7—C8—Fe1 | 70.06 (14) |
C1—Fe1—C10 | 159.09 (10) | C9—C8—Fe1 | 69.50 (14) |
C3—Fe1—C10 | 120.70 (10) | C7—C8—H8 | 126.1 |
C2—Fe1—C9 | 121.19 (10) | C9—C8—H8 | 126.1 |
C1—Fe1—C9 | 160.06 (11) | Fe1—C8—H8 | 126.0 |
C3—Fe1—C9 | 103.85 (10) | C10—C9—C8 | 107.9 (2) |
C10—Fe1—C9 | 40.56 (11) | C10—C9—Fe1 | 69.70 (14) |
C2—Fe1—C8 | 106.48 (10) | C8—C9—Fe1 | 69.57 (14) |
C1—Fe1—C8 | 125.26 (10) | C10—C9—H9 | 126.0 |
C3—Fe1—C8 | 119.57 (11) | C8—C9—H9 | 126.0 |
C10—Fe1—C8 | 68.52 (11) | Fe1—C9—H9 | 126.3 |
C9—Fe1—C8 | 40.93 (12) | C9—C10—C6 | 108.2 (2) |
C2—Fe1—C4 | 69.04 (9) | C9—C10—Fe1 | 69.74 (14) |
C1—Fe1—C4 | 68.88 (9) | C6—C10—Fe1 | 70.08 (13) |
C3—Fe1—C4 | 40.69 (10) | C9—C10—H10 | 125.9 |
C10—Fe1—C4 | 105.43 (10) | C6—C10—H10 | 125.9 |
C9—Fe1—C4 | 118.44 (10) | Fe1—C10—H10 | 125.9 |
C8—Fe1—C4 | 154.51 (11) | C2—C21—S2 | 107.47 (16) |
C2—Fe1—C5 | 69.40 (9) | C2—C21—H21A | 110.2 |
C1—Fe1—C5 | 41.19 (8) | S2—C21—H21A | 110.2 |
C3—Fe1—C5 | 68.57 (9) | C2—C21—H21B | 110.2 |
C10—Fe1—C5 | 121.60 (10) | S2—C21—H21B | 110.2 |
C9—Fe1—C5 | 155.17 (11) | H21A—C21—H21B | 108.5 |
C8—Fe1—C5 | 163.34 (11) | C23—C22—C27 | 118.8 (2) |
C4—Fe1—C5 | 40.60 (9) | C23—C22—S2 | 121.7 (2) |
C2—Fe1—C7 | 123.16 (10) | C27—C22—S2 | 119.4 (2) |
C1—Fe1—C7 | 110.66 (9) | C24—C23—C22 | 120.4 (2) |
C3—Fe1—C7 | 156.89 (11) | C24—C23—H23 | 119.8 |
C10—Fe1—C7 | 68.35 (10) | C22—C23—H23 | 119.8 |
C9—Fe1—C7 | 68.38 (11) | C23—C24—C25 | 120.5 (3) |
C8—Fe1—C7 | 40.50 (11) | C23—C24—H24 | 119.8 |
C4—Fe1—C7 | 162.25 (10) | C25—C24—H24 | 119.8 |
C5—Fe1—C7 | 127.34 (10) | O1—C25—C26 | 124.2 (2) |
C2—Fe1—C6 | 159.99 (10) | O1—C25—C24 | 115.9 (2) |
C1—Fe1—C6 | 124.74 (9) | C26—C25—C24 | 119.8 (2) |
C3—Fe1—C6 | 158.73 (10) | C25—C26—C27 | 119.5 (2) |
C10—Fe1—C6 | 40.77 (10) | C25—C26—H26 | 120.3 |
C9—Fe1—C6 | 68.40 (10) | C27—C26—H26 | 120.3 |
C8—Fe1—C6 | 68.33 (10) | C22—C27—C26 | 121.0 (3) |
C4—Fe1—C6 | 124.14 (10) | C22—C27—H27 | 119.5 |
C5—Fe1—C6 | 109.72 (10) | C26—C27—H27 | 119.5 |
C7—Fe1—C6 | 40.51 (10) | O1—C28—C29 | 108.9 (2) |
C22—S2—C21 | 102.52 (12) | O1—C28—H28A | 109.9 |
C1—P1—C121 | 104.21 (10) | C29—C28—H28A | 109.9 |
C1—P1—C111 | 102.94 (10) | O1—C28—H28B | 109.9 |
C121—P1—C111 | 106.95 (10) | C29—C28—H28B | 109.9 |
C1—P1—S1 | 116.26 (8) | H28A—C28—H28B | 108.3 |
C121—P1—S1 | 112.36 (8) | C30—C29—C28 | 122.5 (3) |
C111—P1—S1 | 113.13 (8) | C30—C29—H29 | 118.8 |
C25—O1—C28 | 116.8 (2) | C28—C29—H29 | 118.8 |
C5—C1—C2 | 107.83 (19) | C29—C30—H30A | 120.0 |
C5—C1—P1 | 125.49 (17) | C29—C30—H30B | 120.0 |
C2—C1—P1 | 126.64 (17) | H30A—C30—H30B | 120.0 |
C5—C1—Fe1 | 69.75 (12) | C116—C111—C112 | 119.2 (2) |
C2—C1—Fe1 | 69.26 (12) | C116—C111—P1 | 122.39 (17) |
P1—C1—Fe1 | 128.31 (11) | C112—C111—P1 | 118.36 (17) |
C3—C2—C1 | 107.2 (2) | C113—C112—C111 | 120.5 (2) |
C3—C2—C21 | 125.4 (2) | C113—C112—H112 | 119.7 |
C1—C2—C21 | 127.4 (2) | C111—C112—H112 | 119.7 |
C3—C2—Fe1 | 69.58 (13) | C112—C113—C114 | 119.9 (2) |
C1—C2—Fe1 | 69.35 (12) | C112—C113—H113 | 120.0 |
C21—C2—Fe1 | 128.74 (16) | C114—C113—H113 | 120.0 |
C4—C3—C2 | 108.8 (2) | C115—C114—C113 | 119.9 (2) |
C4—C3—Fe1 | 69.89 (13) | C115—C114—H114 | 120.0 |
C2—C3—Fe1 | 69.50 (13) | C113—C114—H114 | 120.0 |
C4—C3—H3 | 125.6 | C114—C115—C116 | 120.4 (2) |
C2—C3—H3 | 125.6 | C114—C115—H115 | 119.8 |
Fe1—C3—H3 | 126.6 | C116—C115—H115 | 119.8 |
C3—C4—C5 | 108.3 (2) | C115—C116—C111 | 120.0 (2) |
C3—C4—Fe1 | 69.42 (13) | C115—C116—H116 | 120.0 |
C5—C4—Fe1 | 69.81 (13) | C111—C116—H116 | 120.0 |
C3—C4—H4 | 125.8 | C122—C121—C126 | 119.4 (2) |
C5—C4—H4 | 125.8 | C122—C121—P1 | 120.81 (18) |
Fe1—C4—H4 | 126.5 | C126—C121—P1 | 119.81 (19) |
C4—C5—C1 | 107.8 (2) | C123—C122—C121 | 120.2 (2) |
C4—C5—Fe1 | 69.58 (13) | C123—C122—H122 | 119.9 |
C1—C5—Fe1 | 69.06 (12) | C121—C122—H122 | 119.9 |
C4—C5—H5 | 126.1 | C122—C123—C124 | 119.9 (3) |
C1—C5—H5 | 126.1 | C122—C123—H123 | 120.1 |
Fe1—C5—H5 | 126.8 | C124—C123—H123 | 120.1 |
C7—C6—C10 | 107.7 (2) | C125—C124—C123 | 120.4 (2) |
C7—C6—Fe1 | 69.64 (13) | C125—C124—H124 | 119.8 |
C10—C6—Fe1 | 69.15 (13) | C123—C124—H124 | 119.8 |
C7—C6—H6 | 126.2 | C124—C125—C126 | 120.1 (2) |
C10—C6—H6 | 126.2 | C124—C125—H125 | 119.9 |
Fe1—C6—H6 | 126.6 | C126—C125—H125 | 119.9 |
C8—C7—C6 | 108.3 (2) | C125—C126—C121 | 120.0 (2) |
C8—C7—Fe1 | 69.44 (14) | C125—C126—H126 | 120.0 |
C6—C7—Fe1 | 69.85 (13) | C121—C126—H126 | 120.0 |
C8—C7—H7 | 125.8 |
Cg1 and Cg2 are the centroids of the C111—C116 and C6—C10 rings, respectively |
D—H···A | D—H | H···A | D···A | D—H···A |
C28—H28A···S2i | 0.99 | 2.84 | 3.738 (3) | 150 |
C30—H30B···S1ii | 0.95 | 2.83 | 3.663 (3) | 147 |
C126—H126···S1 | 0.95 | 2.85 | 3.341 (2) | 113 |
C4—H4···Cg1iii | 0.95 | 2.81 | 3.63 | 146 |
C113—H113···Cg2iv | 0.95 | 2.73 | 3.60 | 153 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+1. |
Notes: ANG1 is the dihedral angle between the C2/C21/S2 plane and the Cp ring; S1-to-Cp1 and S2-to-Cp1 represent the perpendicular distance of the S atom to the substituted Cp ring plane; Cp1/Cp2 is the dihedral angle between the two Cp rings; C1—P1, P1—S1 and C2—C21 are the bond lengths. |
Refcode | ANG1 | S1-to-Cp1 | S2-to-Cp1 | Cp1/Cp2 | C1—P1 | P1—S1 | C2–C21 | C21—-S2 |
This work | 74.9 (1) | 1.263 (5) | 1.763 (4) | 3.94 (15) | 1.798 (2) | 1.9571 (8) | 1.499 (3) | 1.829 (2) |
CODXIE | 89.5 (1) | 0.986 (4) | 1.751 (3) | 2.30 (11) | 1.792 (2) | 1.9572 (6) | 1.488 (2) | 1.835 (2) |
GIPPEC | 73.1 (4) | 0.996 (1) | 1.748 (2) | 1.4 (3) | 1.788 (4) | 1.958 (2) | 1.496 (5) | 1.820 (4) |
GIPPEC | 74.9 (3) | 1.155 (1) | 1.757 (2) | 2.4 (3) | 1.798 (4) | 1.956 (2) | 1.495 (5) | 1.817 (4) |
GIPPIG | 15.8 (2) | 1.063 (1) | 0.457 (1) | 2.3 (2) | 1.792 (2) | 1.958 (1) | 1.500 (3) | 1.811 (3) |
GIPPOM | 71.8 (3) | 0.921 (1) | 1.647 (3) | 1.5 (2) | 1.802 (3) | 1.957 (1) | 1.502 (4) | 1.825 (3) |
GIPPUS | 73.9 (6) | 1.054 (1) | 1.638 (3) | 1.91 (6) | 1.789 (8) | 1.957 (3) | 1.502 (11) | 1.829 (8) |
GIPQAZ | 77.1 (2) | 0.858 | 1.500 (1) | 0.70 | 1.788 (2) | 1.961 (1) | 1.491 (3) | 1.817 (2) |
LEXCOH | 87.3 (7) | 0.83 (2) | 1.72 (2) | 2.0 (4) | 1.798 (2) | 1.957 (8) | 1.499 (3) | 1.829 (2) |
References for refcodes: CODXIE: Mouas Toma et al. (2014); GIPPEC, GIPPIG, GIPPUS and GIPQAZ: Malacea et al. (2013); LEXCOH: Routaboul et al. (2007). |
Acknowledgements
We gratefully acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS), from the Région Midi-Pyrénées, the Institut Universitaire de Technologie de Castres and from the Communauté d'agglomération de Castres–Mazamet.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Audin, C., Daran, J.-C., Deydier, E., Éric, , Manoury, , Éric, & Poli, R. (2010). C. R. Chim. 13, 890–899. Google Scholar
Bayda, S., Cassen, A., Daran, J.-C., Audin, C., Poli, R., Manoury, E. & Deydier, E. (2014). J. Organomet. Chem. 772–773, 258–264. CSD CrossRef CAS Google Scholar
Börner, A. (2008). In Phosphorus Ligands in Asymmetric Catalysis, Vols. 1–3. Weinheim: Wiley-VCH. Google Scholar
Buergler, J. F., Niedermann, K. & Togni, A. (2012). Chem. Eur. J. 18, 632–640. CSD CrossRef CAS PubMed Google Scholar
Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gómez Arrayás, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674–7715. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Jacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). In Comprehensive Asymmetric Catalysis, Vols. 1–3, Berlin: Springer. Google Scholar
Kozinets, E. M., Koniev, O., Filippov, O. A., Daran, J.-C., Poli, R., Shubina, E. S., Belkova, N. V. & Manoury, E. (2012). Dalton Trans. 41, 11849–11859. CSD CrossRef CAS PubMed Google Scholar
Loxq, P., Debono, N., Gülcemal, S., Daran, J.-C., Manoury, E., Poli, R., Çetinkaya, B. & Labande, A. (2014). New J. Chem. 38, 338–347. CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malacea, R., Daran, J.-C., Poli, R. & Manoury, E. (2013). Tetrahedron Asymmetry, 24, 612–620. Web of Science CSD CrossRef CAS Google Scholar
Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310. Web of Science CSD CrossRef CAS Google Scholar
Mouas Toma, N., Daran, J.-C., Merazig, H. & Manoury, E. (2014). Acta Cryst. C70, 460–464. CSD CrossRef IUCr Journals Google Scholar
Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toma, Š., Csizmadiová, J., Mečiarová, M. & Šebesta, R. (2014). Dalton Trans. 43, 16557–16579. CrossRef CAS PubMed Google Scholar
Wei, M.-M., García-Melchor, M., Daran, J.-C., Audin, C., Lledós, A., Poli, R., Deydier, E. & Manoury, E. (2012). Organometallics, 31, 6669–6680. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.