research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (±)-1-({[4-(all­yl­oxy)phen­yl]sulfan­yl}meth­yl)-2-(di­phenyl­thio­phosphor­yl)ferrocene

aUniversité de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France, bCNRS, LCC (Laboratoire de Chimie de Coordination), IUT, Département de Chimie, avenue Georges Pompidou, BP258, 81104 Castres, France, cCIRIMAT, équipe PPB, Université Paul Sabatier, ENSIACET – Bureau 2-r1-5, 4 Allée Emile Monso BP 44362, 31432 Toulouse Cedex 4, France, and dLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: daran@lcc-toulouse.fr

Edited by H. Ishida, Okayama University, Japan (Received 3 July 2015; accepted 15 July 2015; online 29 July 2015)

The title compound, [Fe(C5H5)(C27H24OPS2)], is built up from a ferrocene moiety substituted in the 1- and 2-positions by {[4-(all­yloxy)phen­yl]sulfan­yl}methyl and di­phenyl­thio­phosphoryl groups, respectively. The two S atoms lie on opposite sides of the cyclo­penta­dienyl ring plane to which they are attached. In the crystal, C—H⋯S hydrogen bonds link the mol­ecules into a ribbon running parallel to the (-110) plane. C—H⋯π inter­actions link the ribbons to form a three-dimensional network.

1. Chemical context

Homogenous asymmetric catalysis by transition metals has received considerable attention over the last few decades and numerous chiral ligands and complexes allowing high efficiency reactions have been reported (Jacobsen et al., 1999[Jacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). In Comprehensive Asymmetric Catalysis, Vols. 1-3, Berlin: Springer.]; Börner, 2008[Börner, A. (2008). In Phosphorus Ligands in Asymmetric Catalysis, Vols. 1-3. Weinheim: Wiley-VCH.]). Amongst the various chiral ligands which have been synthesized, ferrocenyl phosphines have proven to be very efficient for numerous asymmetric reactions (Buergler et al., 2012[Buergler, J. F., Niedermann, K. & Togni, A. (2012). Chem. Eur. J. 18, 632-640.]; Gómez Arrayás et al., 2006[Gómez Arrayás, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674-7715.]; Toma et al., 2014[Toma, Š., Csizmadiová, J., Mečiarová, M. & Šebesta, R. (2014). Dalton Trans. 43, 16557-16579.]). We have long been inter­ested in the synthesis of chiral ferrocenyl ligands for asymmetric catalysis (Audin et al., 2010[Audin, C., Daran, J.-C., Deydier, E., Éric, , Manoury, , Éric, & Poli, R. (2010). C. R. Chim. 13, 890-899.]; Bayda et al., 2014[Bayda, S., Cassen, A., Daran, J.-C., Audin, C., Poli, R., Manoury, E. & Deydier, E. (2014). J. Organomet. Chem. 772-773, 258-264.]; Wei et al., 2012[Wei, M.-M., García-Melchor, M., Daran, J.-C., Audin, C., Lledós, A., Poli, R., Deydier, E. & Manoury, E. (2012). Organometallics, 31, 6669-6680.]; Loxq et al., 2014[Loxq, P., Debono, N., Gülcemal, S., Daran, J.-C., Manoury, E., Poli, R., Çetinkaya, B. & Labande, A. (2014). New J. Chem. 38, 338-347.]) and, in particular, we synthesized a series of chiral P,S-ferrocenyl ligands with planar chirality, which have been successfully used in different homogeneous asymmetric catalytic reactions, such as allylic substitution, meth­oxy­carbonyl­ation and hydrogenation (Kozinets et al., 2012[Kozinets, E. M., Koniev, O., Filippov, O. A., Daran, J.-C., Poli, R., Shubina, E. S., Belkova, N. V. & Manoury, E. (2012). Dalton Trans. 41, 11849-11859.]; Diab et al., 2008[Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186-5189.]). We recently started to explore the grafting of these ligands on solid support. This will allow us to work in heterogeneous conditions favoring both easy catalyst separation from products and recycling. Beside the expected catalyst activity reduction observed under heterogeneous conditions compared to homogeneous reaction, surface–catalyst inter­action has proven to play an important, and still unclear, role on selectivity. A better understanding of these inter­actions would improve both grafting inter­est and probably industrial applications of such systems.

To reach this goal, we needed to developed new chiral P,S-ferrocenyl ligands bearing an alkene moiety such as compound (3), allowing polymerization or functionalization for inorganic grafting of the ligand [such as compound (4)] (Fig. 1[link]). Functionalized P,S ferrocenyl phosphine is prepared in a three-step synthesis from 2-thiodi­phenyl­phosphino(hy­droxy­meth­yl)ferrocene (1) (Fig. 1[link]). This compound can be prepared in multigram qu­anti­ties and isolated as a racemic mixture or in an enanti­omerically pure form, opening direct access to chiral ligands (Mateus et al., 2006[Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297-2310.]). Its functionalization can be performed in a one-pot process by successive addition of a strong acid (HBF4), generating probably a ferrocenyl carbocation, and then the nucleophile thiol. Addition of a base allows to generate the phenolate which reacts with bromo­allyl giving rise to compound (3). The phosphoryl group, protected from oxidation by sulfuration in order to carry out the former steps in air, can be recovered by refluxing in toluene with P(NMe2)3.

[Scheme 1]
[Figure 1]
Figure 1
Chemical pathway showing the formation of the title compound, (3).

2. Structural commentary

The mol­ecular structure of compound (3) (see Scheme) is built up from a ferrocene moiety substituted by a di­phenyl­thio­phosphoryl and a {[4-(all­yloxy)phen­yl]sulfan­yl}methyl chain (Fig. 2[link]). As observed in other (di­phenyl­thio­phosphor­yl)ferrocenes (Table 1[link]), the S atom (S1) of the di­phenyl­thio­phosphoryl group is endo towards Fe with respect to the Cp ring with a distance to the ring of 1.263 (5) Å (a perpendicular distance of S1 to the Cp ring plane). This distance is the largest one observed within similar structures. The difference observed might be related to the occurrence of the C30—H30B⋯S1(−x, −y, −z) hydrogen bond. Atom S2 is exo, with a distance to the Cp ring of 1.763 (4) Å, which is in agreement with the values observed for related compounds. The much shorter distance, 0.457 Å, is related to the lowest angle (15.77°) observed between the C2/C21/S2 plane and the Cp ring. In all other compounds, including the title one, the C2/C21/S2 plane is roughly perpendicular to the Cp ring, with values ranging from 71.83 to 89.50° (Table 1[link]).

Table 1
Comparison of geometrical parameters (Å, °) for the title compound and related structures

Notes: ANG1 is the dihedral angle between the C2/C21/S2 plane and the Cp ring; S1-to-Cp1 and S2-to-Cp1 represent the perpendicular distance of the S atom to the substituted Cp ring plane; Cp1/Cp2 is the dihedral angle between the two Cp rings; C1—P1, P1—S1 and C2—C21 are the bond lengths.

Refcode ANG1 S1-to-Cp1 S2-to-Cp1 Cp1/Cp2 C1—P1 P1—S1 C2–C21 C21—-S2
This work 74.9 (1) 1.263 (5) 1.763 (4) 3.94 (15) 1.798 (2) 1.9571 (8) 1.499 (3) 1.829 (2)
CODXIE 89.5 (1) 0.986 (4) 1.751 (3) 2.30 (11) 1.792 (2) 1.9572 (6) 1.488 (2) 1.835 (2)
GIPPEC 73.1 (4) 0.996 (1) 1.748 (2) 1.4 (3) 1.788 (4) 1.958 (2) 1.496 (5) 1.820 (4)
GIPPEC 74.9 (3) 1.155 (1) 1.757 (2) 2.4 (3) 1.798 (4) 1.956 (2) 1.495 (5) 1.817 (4)
GIPPIG 15.8 (2) 1.063 (1) 0.457 (1) 2.3 (2) 1.792 (2) 1.958 (1) 1.500 (3) 1.811 (3)
GIPPOM 71.8 (3) 0.921 (1) 1.647 (3) 1.5 (2) 1.802 (3) 1.957 (1) 1.502 (4) 1.825 (3)
GIPPUS 73.9 (6) 1.054 (1) 1.638 (3) 1.91 (6) 1.789 (8) 1.957 (3) 1.502 (11) 1.829 (8)
GIPQAZ 77.1 (2) 0.858 1.500 (1) 0.70 1.788 (2) 1.961 (1) 1.491 (3) 1.817 (2)
LEXCOH 87.3 (7) 0.83 (2) 1.72 (2) 2.0 (4) 1.798 (2) 1.957 (8) 1.499 (3) 1.829 (2)
References for refcodes: CODXIE: Mouas Toma et al. (2014[Mouas Toma, N., Daran, J.-C., Merazig, H. & Manoury, E. (2014). Acta Cryst. C70, 460-464.]); GIPPEC, GIPPIG, GIPPUS and GIPQAZ: Malacea et al. (2013[Malacea, R., Daran, J.-C., Poli, R. & Manoury, E. (2013). Tetrahedron Asymmetry, 24, 612-620.]); LEXCOH: Routaboul et al. (2007[Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064-1073.]).
[Figure 2]
Figure 2
Mol­ecular view of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

The geometry of the ferrocenyl is identical to related compounds with the two Cp rings nearly parallel to each other with a dihedral angle of 3.94 (15)° in the title compound, whereas the corresponding values range from 0.70 to 2.38° in the other compounds (Table 1[link]). The two Cp rings are roughly eclipsed, with a twist angle of 2.8 (2)°. As observed in Table 1[link], the geometry of the C—PSPh2 and C—CH2-S fragments are roughly identical within experimental error. In the di­phenyl­thio­phosphoryl group, the C1—P1 distances range from 1.788 (4) to 1.802 (3) Å, whereas the P1—S1 distances range from 1.956 (2) to 1.961 (1) Å. In the C—CH2-S fragment, the C2—C21 distances range from 1.488 (2) to 1.502 (11) Å, whereas the C21—S2 distances range from 1.811 (3) to 1.835 (2) Å.

3. Supra­molecular features

The cohesion within the crystal is based on weak C—H⋯S and C—H⋯π inter­actions (Table 2[link]). The C—H⋯S inter­actions build up a ribbon developing parallel to the ([\overline{1}]10) plane (Fig. 3[link]). The C—H⋯π inter­actions link the ribbons to form a three-dimensional network (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C111—C116 and C6—C10 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28A⋯S2i 0.99 2.84 3.738 (3) 150
C30—H30B⋯S1ii 0.95 2.83 3.663 (3) 147
C126—H126⋯S1 0.95 2.85 3.341 (2) 113
C4—H4⋯Cg1iii 0.95 2.81 3.63 146
C113—H113⋯Cg2iv 0.95 2.73 3.60 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Packing view in projection down the b axis, showing the C—H⋯S hydrogen bonds (dashed lines). H atoms are represented as small spheres of arbitrary radii. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x, −y, −z.]
[Figure 4]
Figure 4
Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) packing view, showing the C—H⋯π inter­actions (blue lines) building a three-dimensional network. H atoms are represented as small spheres of arbitrary radii.

4. Database survey

A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reveals seven hits for related seven structures having a ferrocene moiety 1,2-disubstituted by a di­phenyl­thio­phosphoroyl and an allyl ether thiol (Mouas Toma et al., 2014[Mouas Toma, N., Daran, J.-C., Merazig, H. & Manoury, E. (2014). Acta Cryst. C70, 460-464.]; Malacea et al., 2013[Malacea, R., Daran, J.-C., Poli, R. & Manoury, E. (2013). Tetrahedron Asymmetry, 24, 612-620.]; Routaboul et al., 2007[Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064-1073.]).

5. Synthesis and crystallization

In a Schlenk tube, (1) (0.749 mg, 1.74 mmol) (see Fig. 1[link]) was dissolved in dry di­chloro­methane (8 ml). A 54% solution of tetra­fluoro­boric acid in ether (0.73 ml, 5.30 mmol) was then added. After 1 min stirring, a solution of 4-hy­droxy­thio­phenol (20 mmol) in dry di­chloro­methane (8 ml) was added. After 1 min of stirring, the crude material was filtered on silica gel with ether as eluent. After evaporation of the solvent, (2) (0.73 g, 1.35 mmol) was obtained as a yellow solid (yield 78%). (2) (290 mg (5.38 × 10−4 M) and caesium carbonate (450 mg, 2.5 equivalents) in acetone (20 ml) were mixed for 2 min. Then, allyl bromide (0.047 ml, 1 equivalent) was added to the mixture, which was heated under reflux overnight. After cooling to room temperature, the product was recovered by chromatography on silica with petroleum ether/ethyl acetate (90/10). After evaporation of the solvent, compound (3) (yield 266 mg, 85%) was isolated as a yellow–orange powder.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.95 (aromatic) or 0.99 Å (methyl­ene) and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C27H24OPS2)]
Mr 580.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.8161 (3), 8.3179 (3), 21.6998 (6)
α, β, γ (°) 97.773 (3), 99.672 (3), 95.329 (3)
V3) 1368.26 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.55 × 0.50 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur Eos (Gemini ultra)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.637, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 27439, 5592, 4965
Rint 0.052
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.10
No. of reflections 5592
No. of parameters 334
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.06, −0.68
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(±)-1-({[4-(Allyloxy)phenyl]sulfanyl}methyl)-2-(diphenylthiophosphoryl)ferrocene top
Crystal data top
[Fe(C5H5)(C27H24OPS2)]Z = 2
Mr = 580.49F(000) = 604
Triclinic, P1Dx = 1.409 Mg m3
a = 7.8161 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3179 (3) ÅCell parameters from 11224 reflections
c = 21.6998 (6) Åθ = 3.5–29.3°
α = 97.773 (3)°µ = 0.79 mm1
β = 99.672 (3)°T = 173 K
γ = 95.329 (3)°Platelet, yellow
V = 1368.26 (8) Å30.55 × 0.50 × 0.07 mm
Data collection top
Agilent Xcalibur Eos (Gemini ultra)
diffractometer
5592 independent reflections
Radiation source: Enhance (Mo) X-ray Source4965 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1010
Tmin = 0.637, Tmax = 0.946l = 2727
27439 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.073P)2 + 0.8499P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
5592 reflectionsΔρmax = 1.06 e Å3
334 parametersΔρmin = 0.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.57578 (4)0.69829 (4)0.36521 (2)0.01812 (12)
S10.41109 (8)0.22036 (7)0.28912 (3)0.02775 (16)
S20.55111 (9)0.62383 (10)0.14588 (3)0.03703 (18)
P10.65260 (7)0.31849 (7)0.29668 (3)0.01835 (14)
O10.0549 (3)0.2125 (2)0.06613 (8)0.0341 (4)
C10.6885 (3)0.5381 (3)0.30945 (10)0.0180 (4)
C20.5970 (3)0.6457 (3)0.27254 (10)0.0209 (4)
C30.6735 (3)0.8083 (3)0.29799 (11)0.0246 (5)
H30.63950.90450.28270.030*
C40.8091 (3)0.8031 (3)0.34994 (11)0.0245 (5)
H40.88030.89500.37540.029*
C50.8198 (3)0.6372 (3)0.35734 (10)0.0199 (4)
H50.89970.59850.38840.024*
C60.5246 (3)0.6660 (3)0.45271 (11)0.0268 (5)
H60.59700.62200.48440.032*
C70.3915 (3)0.5764 (3)0.40439 (12)0.0283 (5)
H70.35930.46160.39810.034*
C80.3149 (3)0.6875 (4)0.36722 (12)0.0331 (6)
H80.22280.66030.33160.040*
C90.4005 (4)0.8474 (3)0.39274 (13)0.0330 (6)
H90.37500.94570.37730.040*
C100.5301 (3)0.8339 (3)0.44512 (12)0.0288 (5)
H100.60740.92150.47080.035*
C210.4545 (3)0.5985 (3)0.21561 (11)0.0254 (5)
H21A0.35990.66910.21830.030*
H21B0.40440.48350.21310.030*
C220.3966 (3)0.5028 (3)0.08384 (11)0.0289 (5)
C230.3552 (4)0.3363 (4)0.08290 (12)0.0356 (6)
H230.40590.28590.11720.043*
C240.2406 (4)0.2436 (3)0.03231 (13)0.0362 (6)
H240.21170.13020.03240.043*
C250.1677 (3)0.3150 (3)0.01840 (11)0.0292 (5)
C260.2098 (3)0.4802 (3)0.01862 (12)0.0308 (5)
H260.16160.52960.05360.037*
C270.3232 (3)0.5734 (3)0.03275 (12)0.0311 (5)
H270.35080.68720.03290.037*
C280.0096 (3)0.2804 (3)0.12162 (12)0.0305 (5)
H28A0.08900.33630.13690.037*
H28B0.08960.36170.11150.037*
C290.1045 (3)0.1461 (3)0.17163 (13)0.0332 (6)
H290.19280.07320.16140.040*
C300.0706 (4)0.1246 (4)0.22922 (13)0.0409 (7)
H30A0.01720.19620.24030.049*
H30B0.13400.03760.25980.049*
C1110.7998 (3)0.2652 (3)0.36315 (10)0.0194 (4)
C1120.7401 (3)0.2600 (3)0.42011 (12)0.0269 (5)
H1120.62280.27720.42250.032*
C1130.8504 (3)0.2299 (3)0.47306 (11)0.0301 (5)
H1130.80950.22870.51180.036*
C1141.0212 (3)0.2015 (3)0.46948 (11)0.0274 (5)
H1141.09710.18040.50580.033*
C1151.0806 (3)0.2040 (3)0.41296 (12)0.0248 (5)
H1151.19700.18330.41050.030*
C1160.9712 (3)0.2364 (3)0.35992 (11)0.0224 (5)
H1161.01310.23900.32140.027*
C1210.7425 (3)0.2591 (3)0.22639 (11)0.0226 (5)
C1220.8897 (3)0.3491 (3)0.21468 (12)0.0291 (5)
H1220.94390.44310.24370.035*
C1230.9575 (4)0.3019 (3)0.16083 (13)0.0343 (6)
H1231.05930.36220.15330.041*
C1240.8764 (4)0.1664 (3)0.11795 (13)0.0373 (6)
H1240.92170.13540.08070.045*
C1250.7303 (4)0.0764 (3)0.12911 (12)0.0352 (6)
H1250.67560.01650.09960.042*
C1260.6633 (3)0.1212 (3)0.18318 (11)0.0267 (5)
H1260.56360.05830.19100.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02424 (19)0.01838 (18)0.01314 (18)0.00476 (13)0.00804 (13)0.00005 (12)
S10.0243 (3)0.0266 (3)0.0302 (3)0.0024 (2)0.0060 (2)0.0008 (2)
S20.0342 (4)0.0605 (5)0.0152 (3)0.0022 (3)0.0066 (2)0.0045 (3)
P10.0225 (3)0.0173 (3)0.0152 (3)0.0031 (2)0.0057 (2)0.0009 (2)
O10.0461 (11)0.0333 (10)0.0205 (9)0.0090 (8)0.0001 (8)0.0002 (7)
C10.0229 (11)0.0182 (10)0.0136 (10)0.0028 (8)0.0074 (8)0.0009 (8)
C20.0277 (12)0.0231 (11)0.0144 (10)0.0062 (9)0.0097 (9)0.0022 (8)
C30.0367 (13)0.0212 (11)0.0195 (11)0.0053 (9)0.0131 (10)0.0045 (9)
C40.0300 (12)0.0204 (11)0.0233 (12)0.0012 (9)0.0123 (9)0.0019 (9)
C50.0204 (11)0.0233 (11)0.0161 (11)0.0015 (8)0.0071 (8)0.0007 (8)
C60.0347 (13)0.0340 (13)0.0160 (11)0.0074 (10)0.0147 (10)0.0048 (9)
C70.0321 (13)0.0297 (12)0.0261 (13)0.0006 (10)0.0191 (10)0.0002 (10)
C80.0231 (12)0.0560 (17)0.0218 (12)0.0081 (11)0.0091 (10)0.0023 (11)
C90.0404 (15)0.0348 (13)0.0326 (14)0.0192 (11)0.0217 (11)0.0079 (11)
C100.0373 (14)0.0295 (12)0.0208 (12)0.0047 (10)0.0160 (10)0.0059 (9)
C210.0286 (12)0.0332 (12)0.0160 (11)0.0075 (10)0.0065 (9)0.0035 (9)
C220.0294 (13)0.0456 (15)0.0139 (11)0.0106 (11)0.0092 (9)0.0011 (10)
C230.0442 (16)0.0457 (15)0.0203 (13)0.0223 (13)0.0057 (11)0.0063 (11)
C240.0514 (17)0.0343 (14)0.0244 (13)0.0155 (12)0.0067 (12)0.0028 (10)
C250.0333 (13)0.0388 (14)0.0168 (12)0.0133 (11)0.0079 (10)0.0012 (10)
C260.0372 (14)0.0387 (14)0.0180 (12)0.0107 (11)0.0048 (10)0.0057 (10)
C270.0364 (14)0.0390 (14)0.0186 (12)0.0066 (11)0.0068 (10)0.0036 (10)
C280.0310 (13)0.0389 (14)0.0215 (12)0.0085 (11)0.0041 (10)0.0025 (10)
C290.0272 (13)0.0415 (15)0.0292 (14)0.0025 (11)0.0022 (10)0.0047 (11)
C300.0409 (16)0.0482 (17)0.0289 (15)0.0022 (13)0.0022 (12)0.0040 (12)
C1110.0254 (11)0.0156 (10)0.0176 (11)0.0034 (8)0.0058 (8)0.0010 (8)
C1120.0258 (12)0.0336 (13)0.0237 (12)0.0067 (10)0.0103 (9)0.0037 (10)
C1130.0371 (14)0.0387 (14)0.0169 (12)0.0065 (11)0.0095 (10)0.0052 (10)
C1140.0319 (13)0.0287 (12)0.0197 (12)0.0023 (10)0.0007 (9)0.0025 (9)
C1150.0228 (11)0.0248 (11)0.0266 (12)0.0040 (9)0.0050 (9)0.0019 (9)
C1160.0273 (12)0.0210 (10)0.0204 (11)0.0043 (9)0.0096 (9)0.0010 (8)
C1210.0318 (12)0.0211 (11)0.0158 (11)0.0088 (9)0.0061 (9)0.0006 (8)
C1220.0399 (14)0.0237 (11)0.0259 (13)0.0066 (10)0.0128 (11)0.0015 (9)
C1230.0480 (16)0.0325 (13)0.0301 (14)0.0117 (12)0.0233 (12)0.0071 (11)
C1240.0564 (18)0.0383 (14)0.0234 (13)0.0210 (13)0.0177 (12)0.0032 (11)
C1250.0515 (17)0.0307 (13)0.0222 (13)0.0144 (12)0.0059 (11)0.0054 (10)
C1260.0355 (13)0.0234 (11)0.0206 (12)0.0074 (10)0.0041 (10)0.0002 (9)
Geometric parameters (Å, º) top
Fe1—C22.037 (2)C22—C231.389 (4)
Fe1—C12.038 (2)C22—C271.389 (4)
Fe1—C32.038 (2)C23—C241.384 (4)
Fe1—C102.040 (2)C23—H230.9500
Fe1—C92.040 (2)C24—C251.385 (4)
Fe1—C82.041 (2)C24—H240.9500
Fe1—C42.045 (2)C25—C261.384 (4)
Fe1—C52.048 (2)C26—C271.391 (4)
Fe1—C72.049 (2)C26—H260.9500
Fe1—C62.052 (2)C27—H270.9500
S1—P11.9571 (8)C28—C291.491 (4)
S2—C221.774 (3)C28—H28A0.9900
S2—C211.829 (2)C28—H28B0.9900
P1—C11.798 (2)C29—C301.313 (4)
P1—C1211.812 (2)C29—H290.9500
P1—C1111.820 (2)C30—H30A0.9500
O1—C251.376 (3)C30—H30B0.9500
O1—C281.434 (3)C111—C1161.394 (3)
C1—C51.437 (3)C111—C1121.397 (3)
C1—C21.440 (3)C112—C1131.382 (3)
C2—C31.425 (3)C112—H1120.9500
C2—C211.499 (3)C113—C1141.391 (4)
C3—C41.420 (4)C113—H1130.9500
C3—H30.9500C114—C1151.384 (3)
C4—C51.420 (3)C114—H1140.9500
C4—H40.9500C115—C1161.388 (3)
C5—H50.9500C115—H1150.9500
C6—C71.420 (4)C116—H1160.9500
C6—C101.425 (4)C121—C1221.393 (4)
C6—H60.9500C121—C1261.400 (3)
C7—C81.416 (4)C122—C1231.387 (3)
C7—H70.9500C122—H1220.9500
C8—C91.427 (4)C123—C1241.387 (4)
C8—H80.9500C123—H1230.9500
C9—C101.414 (4)C124—C1251.381 (4)
C9—H90.9500C124—H1240.9500
C10—H100.9500C125—C1261.383 (4)
C21—H21A0.9900C125—H1250.9500
C21—H21B0.9900C126—H1260.9500
C2—Fe1—C141.39 (9)C6—C7—H7125.8
C2—Fe1—C340.92 (9)Fe1—C7—H7126.4
C1—Fe1—C368.89 (9)C7—C8—C9107.9 (2)
C2—Fe1—C10157.22 (10)C7—C8—Fe170.06 (14)
C1—Fe1—C10159.09 (10)C9—C8—Fe169.50 (14)
C3—Fe1—C10120.70 (10)C7—C8—H8126.1
C2—Fe1—C9121.19 (10)C9—C8—H8126.1
C1—Fe1—C9160.06 (11)Fe1—C8—H8126.0
C3—Fe1—C9103.85 (10)C10—C9—C8107.9 (2)
C10—Fe1—C940.56 (11)C10—C9—Fe169.70 (14)
C2—Fe1—C8106.48 (10)C8—C9—Fe169.57 (14)
C1—Fe1—C8125.26 (10)C10—C9—H9126.0
C3—Fe1—C8119.57 (11)C8—C9—H9126.0
C10—Fe1—C868.52 (11)Fe1—C9—H9126.3
C9—Fe1—C840.93 (12)C9—C10—C6108.2 (2)
C2—Fe1—C469.04 (9)C9—C10—Fe169.74 (14)
C1—Fe1—C468.88 (9)C6—C10—Fe170.08 (13)
C3—Fe1—C440.69 (10)C9—C10—H10125.9
C10—Fe1—C4105.43 (10)C6—C10—H10125.9
C9—Fe1—C4118.44 (10)Fe1—C10—H10125.9
C8—Fe1—C4154.51 (11)C2—C21—S2107.47 (16)
C2—Fe1—C569.40 (9)C2—C21—H21A110.2
C1—Fe1—C541.19 (8)S2—C21—H21A110.2
C3—Fe1—C568.57 (9)C2—C21—H21B110.2
C10—Fe1—C5121.60 (10)S2—C21—H21B110.2
C9—Fe1—C5155.17 (11)H21A—C21—H21B108.5
C8—Fe1—C5163.34 (11)C23—C22—C27118.8 (2)
C4—Fe1—C540.60 (9)C23—C22—S2121.7 (2)
C2—Fe1—C7123.16 (10)C27—C22—S2119.4 (2)
C1—Fe1—C7110.66 (9)C24—C23—C22120.4 (2)
C3—Fe1—C7156.89 (11)C24—C23—H23119.8
C10—Fe1—C768.35 (10)C22—C23—H23119.8
C9—Fe1—C768.38 (11)C23—C24—C25120.5 (3)
C8—Fe1—C740.50 (11)C23—C24—H24119.8
C4—Fe1—C7162.25 (10)C25—C24—H24119.8
C5—Fe1—C7127.34 (10)O1—C25—C26124.2 (2)
C2—Fe1—C6159.99 (10)O1—C25—C24115.9 (2)
C1—Fe1—C6124.74 (9)C26—C25—C24119.8 (2)
C3—Fe1—C6158.73 (10)C25—C26—C27119.5 (2)
C10—Fe1—C640.77 (10)C25—C26—H26120.3
C9—Fe1—C668.40 (10)C27—C26—H26120.3
C8—Fe1—C668.33 (10)C22—C27—C26121.0 (3)
C4—Fe1—C6124.14 (10)C22—C27—H27119.5
C5—Fe1—C6109.72 (10)C26—C27—H27119.5
C7—Fe1—C640.51 (10)O1—C28—C29108.9 (2)
C22—S2—C21102.52 (12)O1—C28—H28A109.9
C1—P1—C121104.21 (10)C29—C28—H28A109.9
C1—P1—C111102.94 (10)O1—C28—H28B109.9
C121—P1—C111106.95 (10)C29—C28—H28B109.9
C1—P1—S1116.26 (8)H28A—C28—H28B108.3
C121—P1—S1112.36 (8)C30—C29—C28122.5 (3)
C111—P1—S1113.13 (8)C30—C29—H29118.8
C25—O1—C28116.8 (2)C28—C29—H29118.8
C5—C1—C2107.83 (19)C29—C30—H30A120.0
C5—C1—P1125.49 (17)C29—C30—H30B120.0
C2—C1—P1126.64 (17)H30A—C30—H30B120.0
C5—C1—Fe169.75 (12)C116—C111—C112119.2 (2)
C2—C1—Fe169.26 (12)C116—C111—P1122.39 (17)
P1—C1—Fe1128.31 (11)C112—C111—P1118.36 (17)
C3—C2—C1107.2 (2)C113—C112—C111120.5 (2)
C3—C2—C21125.4 (2)C113—C112—H112119.7
C1—C2—C21127.4 (2)C111—C112—H112119.7
C3—C2—Fe169.58 (13)C112—C113—C114119.9 (2)
C1—C2—Fe169.35 (12)C112—C113—H113120.0
C21—C2—Fe1128.74 (16)C114—C113—H113120.0
C4—C3—C2108.8 (2)C115—C114—C113119.9 (2)
C4—C3—Fe169.89 (13)C115—C114—H114120.0
C2—C3—Fe169.50 (13)C113—C114—H114120.0
C4—C3—H3125.6C114—C115—C116120.4 (2)
C2—C3—H3125.6C114—C115—H115119.8
Fe1—C3—H3126.6C116—C115—H115119.8
C3—C4—C5108.3 (2)C115—C116—C111120.0 (2)
C3—C4—Fe169.42 (13)C115—C116—H116120.0
C5—C4—Fe169.81 (13)C111—C116—H116120.0
C3—C4—H4125.8C122—C121—C126119.4 (2)
C5—C4—H4125.8C122—C121—P1120.81 (18)
Fe1—C4—H4126.5C126—C121—P1119.81 (19)
C4—C5—C1107.8 (2)C123—C122—C121120.2 (2)
C4—C5—Fe169.58 (13)C123—C122—H122119.9
C1—C5—Fe169.06 (12)C121—C122—H122119.9
C4—C5—H5126.1C122—C123—C124119.9 (3)
C1—C5—H5126.1C122—C123—H123120.1
Fe1—C5—H5126.8C124—C123—H123120.1
C7—C6—C10107.7 (2)C125—C124—C123120.4 (2)
C7—C6—Fe169.64 (13)C125—C124—H124119.8
C10—C6—Fe169.15 (13)C123—C124—H124119.8
C7—C6—H6126.2C124—C125—C126120.1 (2)
C10—C6—H6126.2C124—C125—H125119.9
Fe1—C6—H6126.6C126—C125—H125119.9
C8—C7—C6108.3 (2)C125—C126—C121120.0 (2)
C8—C7—Fe169.44 (14)C125—C126—H126120.0
C6—C7—Fe169.85 (13)C121—C126—H126120.0
C8—C7—H7125.8
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C111—C116 and C6—C10 rings, respectively
D—H···AD—HH···AD···AD—H···A
C28—H28A···S2i0.992.843.738 (3)150
C30—H30B···S1ii0.952.833.663 (3)147
C126—H126···S10.952.853.341 (2)113
C4—H4···Cg1iii0.952.813.63146
C113—H113···Cg2iv0.952.733.60153
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
Comparison of geometrical parameters (Å, °) for the title compound and related structures. top
Notes: ANG1 is the dihedral angle between the C2/C21/S2 plane and the Cp ring; S1-to-Cp1 and S2-to-Cp1 represent the perpendicular distance of the S atom to the substituted Cp ring plane; Cp1/Cp2 is the dihedral angle between the two Cp rings; C1—P1, P1—S1 and C2—C21 are the bond lengths.
RefcodeANG1S1-to-Cp1S2-to-Cp1Cp1/Cp2C1—P1P1—S1C2–C21C21—-S2
This work74.9 (1)1.263 (5)1.763 (4)3.94 (15)1.798 (2)1.9571 (8)1.499 (3)1.829 (2)
CODXIE89.5 (1)0.986 (4)1.751 (3)2.30 (11)1.792 (2)1.9572 (6)1.488 (2)1.835 (2)
GIPPEC73.1 (4)0.996 (1)1.748 (2)1.4 (3)1.788 (4)1.958 (2)1.496 (5)1.820 (4)
GIPPEC74.9 (3)1.155 (1)1.757 (2)2.4 (3)1.798 (4)1.956 (2)1.495 (5)1.817 (4)
GIPPIG15.8 (2)1.063 (1)0.457 (1)2.3 (2)1.792 (2)1.958 (1)1.500 (3)1.811 (3)
GIPPOM71.8 (3)0.921 (1)1.647 (3)1.5 (2)1.802 (3)1.957 (1)1.502 (4)1.825 (3)
GIPPUS73.9 (6)1.054 (1)1.638 (3)1.91 (6)1.789 (8)1.957 (3)1.502 (11)1.829 (8)
GIPQAZ77.1 (2)0.8581.500 (1)0.701.788 (2)1.961 (1)1.491 (3)1.817 (2)
LEXCOH87.3 (7)0.83 (2)1.72 (2)2.0 (4)1.798 (2)1.957 (8)1.499 (3)1.829 (2)
References for refcodes: CODXIE: Mouas Toma et al. (2014); GIPPEC, GIPPIG, GIPPUS and GIPQAZ: Malacea et al. (2013); LEXCOH: Routaboul et al. (2007).
 

Acknowledgements

We gratefully acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS), from the Région Midi-Pyrénées, the Institut Universitaire de Technologie de Castres and from the Communauté d'agglomération de Castres–Maza­met.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAudin, C., Daran, J.-C., Deydier, E., Éric, , Manoury, , Éric, & Poli, R. (2010). C. R. Chim. 13, 890–899.  Google Scholar
First citationBayda, S., Cassen, A., Daran, J.-C., Audin, C., Poli, R., Manoury, E. & Deydier, E. (2014). J. Organomet. Chem. 772–773, 258–264.  CSD CrossRef CAS Google Scholar
First citationBörner, A. (2008). In Phosphorus Ligands in Asymmetric Catalysis, Vols. 1–3. Weinheim: Wiley-VCH.  Google Scholar
First citationBuergler, J. F., Niedermann, K. & Togni, A. (2012). Chem. Eur. J. 18, 632–640.  CSD CrossRef CAS PubMed Google Scholar
First citationDiab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGómez Arrayás, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674–7715.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). In Comprehensive Asymmetric Catalysis, Vols. 1–3, Berlin: Springer.  Google Scholar
First citationKozinets, E. M., Koniev, O., Filippov, O. A., Daran, J.-C., Poli, R., Shubina, E. S., Belkova, N. V. & Manoury, E. (2012). Dalton Trans. 41, 11849–11859.  CSD CrossRef CAS PubMed Google Scholar
First citationLoxq, P., Debono, N., Gülcemal, S., Daran, J.-C., Manoury, E., Poli, R., Çetinkaya, B. & Labande, A. (2014). New J. Chem. 38, 338–347.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalacea, R., Daran, J.-C., Poli, R. & Manoury, E. (2013). Tetrahedron Asymmetry, 24, 612–620.  Web of Science CSD CrossRef CAS Google Scholar
First citationMateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.  Web of Science CSD CrossRef CAS Google Scholar
First citationMouas Toma, N., Daran, J.-C., Merazig, H. & Manoury, E. (2014). Acta Cryst. C70, 460–464.  CSD CrossRef IUCr Journals Google Scholar
First citationRoutaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToma, Š., Csizmadiová, J., Mečiarová, M. & Šebesta, R. (2014). Dalton Trans. 43, 16557–16579.  CrossRef CAS PubMed Google Scholar
First citationWei, M.-M., García-Melchor, M., Daran, J.-C., Audin, C., Lledós, A., Poli, R., Deydier, E. & Manoury, E. (2012). Organometallics, 31, 6669–6680.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds