organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl 2-[(2-sulfan­yl­quinolin-3-yl)methyl­­idene]malonate

aDepartment of Physics, Govt. First Grade College, Davangere 577 004, Karnataka, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, cDepartment of Physics, Y. Y. D. Govt. First Grade College, Belur 573 115, Hassan, Karnataka, India, and dDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by J. Jasinsk, Keene State College, USA (Received 29 June 2015; accepted 16 July 2015; online 22 July 2015)

In the title compound, C17H17N O4S, the quinoline ring system is nearly planar, with a maximum deviation of 0.0496 (16) Å. A weak intra­molecular C—H⋯O inter­action is observed. In the crystal, C—H⋯O, S—H⋯N and ππ stacking inter­actions between the fused benzene ring of quinoline and the pyridine moieties [shortest centroid–centroid distance = 3.6754 (11) Å] are observed. Inversion-related weak C—H⋯O inter­molecular inter­actions diagonally along [010], with R22(10) ring motifs, and S—H⋯N inter­molecular inter­actions diagonally along [100], with R22(8) ring motifs, are present, forming a three-dimensional network structure. No classical hydrogen bonds are observed.

1. Related literature

For biological applications of quinolines, see: Nandeshwarappa et al.(2006[Nandeshwarappa, B. P., Aruna Kumar, D. B., Bhojya Naik, H. S. & Mahadevan, K. M. (2006). Phosphorus Sulfur Silicon, 181, 1997-2003.]); Noda et al. (2001[Noda, N., Yashiki, Y., Nakatani, T., Miyahara, K. & Du, X. M. (2001). Chem. Pharm. Bull. 49, 930-931.]); Pandey et al. (2004[Pandey, V. K., Tusi, S., Tusi, Z., Joshi, M. & Bajpai, S. A. (2004). Acta Pharm. 54, 1-12.]); Sharma et al. (2008[Sharma, S., Ravichandran, V., Jain, P. K., Mourya, V. K. & Agrawal, R. K. (2008). J. Enzyme Inhib. Med. Chem. 23, 424-431.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H17NO4S

  • Mr = 331.37

  • Triclinic, [P \overline 1]

  • a = 7.3739 (4) Å

  • b = 7.8148 (4) Å

  • c = 15.8149 (7) Å

  • α = 90.158 (2)°

  • β = 99.486 (2)°

  • γ = 113.301 (2)°

  • V = 823.24 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 1.000

  • 21213 measured reflections

  • 5853 independent reflections

  • 4295 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.213

  • S = 1.04

  • 5853 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
S1—H1⋯N6i 1.20 2.37 3.3389 (14) 136
C9—H9⋯O4 0.99 (3) 2.41 (3) 3.122 (2) 129 (2)
C22—H22B⋯O2ii 0.97 2.52 3.438 (4) 158
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Quinolines are a heterocyclic class of organic compounds containing a pyridine ring fused with benzene found in nature mainly in plants. Alkaloid quinine is a traditional anti-malarial drug also used in tonics. The quinoline skeleton has since been used as a basis for design of many synthetic anti-malarial compounds, of which chloroquinoline is one such example. Despite its relatively low efficacy and tolerability, quinine still plays an important role in the treatment of multi resistant malaria (Nandeshwarappa et al.2006). It has also played a historical role in organic chemistry as a target for structural determination and total synthesis reactions (Sharma et al.2008), as well as stereo selective (Noda et al.2001) and enantio selective (Pande et al., 2004) total synthesis reactions. The chemistry of quinoline has gained increasing attention due to its various diverse pharmacological activities. We report herin the crystal structure of a new quinoline derivative, diethyl 2-((2-mercaptoquinolin-3-yl) methylene)malonate, C17H17N O4S, (I) (Fig. 1).

In the asymmetric unit of (I), the quinoline ring system is nearly planar, with a maximum deviation of 0.0496 (16) Å for atom C8. In the crystal, weak intramolecular C—H···O, intermolecular C—H···O, S—H···N (Table 1) and ππ stacking interactions between the fused benzene ring of quinoline, Cg(2) [C10—C15], and pyridine, Cg(1) [N6//C7–C11], [shortest centroid–centroid distance = 3.6751 (11) Å] are observed. Inversion related weak C—H···O intermolecular interactions diagonally along [010] with R22(10) ring motifs and S—H···N intermolecular interactions diagonally along [100] with R22(8) ring motifs are present forming a three-dimensional network structure (Fig. 2). No classical hydrogen bonds are observed.

Related literature top

For biological applications of quinolines, see: Nandeshwarappa et al.(2006); Noda et al. (2001); Pandey et al. (2004); Sharma et al. (2008).

Experimental top

All the chemicals of analytical reagent grade were used directly without further purification. An equimolar quantity of 2-mercapto-3-formyl quinoline (0.01 mm) and diethylmalonate (0.001mm) were refluxed for 24 hr in acetonitrile at 353 K. After completion of the reaction the solvent was removed from the vacuue and recrystalized from ethanol. Yellow needles of the title compound were grown from ethanol solution by slow evaporation at room temperature. Colour: Yellow. Yield= 82%, m.p.:458 K.

Refinement top

All H atoms were positioned geometrically, with S—H = 1.2 Å, C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Structure description top

Quinolines are a heterocyclic class of organic compounds containing a pyridine ring fused with benzene found in nature mainly in plants. Alkaloid quinine is a traditional anti-malarial drug also used in tonics. The quinoline skeleton has since been used as a basis for design of many synthetic anti-malarial compounds, of which chloroquinoline is one such example. Despite its relatively low efficacy and tolerability, quinine still plays an important role in the treatment of multi resistant malaria (Nandeshwarappa et al.2006). It has also played a historical role in organic chemistry as a target for structural determination and total synthesis reactions (Sharma et al.2008), as well as stereo selective (Noda et al.2001) and enantio selective (Pande et al., 2004) total synthesis reactions. The chemistry of quinoline has gained increasing attention due to its various diverse pharmacological activities. We report herin the crystal structure of a new quinoline derivative, diethyl 2-((2-mercaptoquinolin-3-yl) methylene)malonate, C17H17N O4S, (I) (Fig. 1).

In the asymmetric unit of (I), the quinoline ring system is nearly planar, with a maximum deviation of 0.0496 (16) Å for atom C8. In the crystal, weak intramolecular C—H···O, intermolecular C—H···O, S—H···N (Table 1) and ππ stacking interactions between the fused benzene ring of quinoline, Cg(2) [C10—C15], and pyridine, Cg(1) [N6//C7–C11], [shortest centroid–centroid distance = 3.6751 (11) Å] are observed. Inversion related weak C—H···O intermolecular interactions diagonally along [010] with R22(10) ring motifs and S—H···N intermolecular interactions diagonally along [100] with R22(8) ring motifs are present forming a three-dimensional network structure (Fig. 2). No classical hydrogen bonds are observed.

For biological applications of quinolines, see: Nandeshwarappa et al.(2006); Noda et al. (2001); Pandey et al. (2004); Sharma et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound, C17H17N O4S. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the packing in the title molecule, C17H17N O4S, along the a axis. Dashed lines indicate weak C—H···O and S—H···N intermolecular interactions with inversio- related C—H···O intermolecular interactions diagonally along [010] with R22(10) ring motifs and S—H···N intermolecular interactions diagonally along [100] with R22(8) ring motifs forming a three-dimensional network structure.
Diethyl 2-[(2-sulfanylquinolin-3-yl)methylidene]malonate top
Crystal data top
C17H17NO4SF(000) = 348
Mr = 331.37Dx = 1.337 Mg m3
Triclinic, P1Melting point: 458 K
a = 7.3739 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8148 (4) ÅCell parameters from 5853 reflections
c = 15.8149 (7) Åθ = 2.6–32.5°
α = 90.158 (2)°µ = 0.22 mm1
β = 99.486 (2)°T = 296 K
γ = 113.301 (2)°Plate, yellow
V = 823.24 (7) Å30.24 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5853 independent reflections
Radiation source: fine-focus sealed tube4295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 32.5°, θmin = 2.6°
ω and φ scansh = 1110
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.770, Tmax = 1.000l = 2323
21213 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.213 w = 1/[σ2(Fo2) + (0.1265P)2 + 0.1563P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5853 reflectionsΔρmax = 0.98 e Å3
234 parametersΔρmin = 0.48 e Å3
Crystal data top
C17H17NO4Sγ = 113.301 (2)°
Mr = 331.37V = 823.24 (7) Å3
Triclinic, P1Z = 2
a = 7.3739 (4) ÅMo Kα radiation
b = 7.8148 (4) ŵ = 0.22 mm1
c = 15.8149 (7) ÅT = 296 K
α = 90.158 (2)°0.24 × 0.20 × 0.12 mm
β = 99.486 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5853 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4295 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.025
21213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.213H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.98 e Å3
5853 reflectionsΔρmin = 0.48 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89170 (8)0.93555 (6)0.36268 (3)0.05361 (17)
H10.91301.05420.41630.080*
O20.9018 (3)0.6179 (2)0.10198 (11)0.0741 (5)
O30.6426 (2)0.3469 (2)0.05791 (8)0.0546 (3)
O40.5360 (3)0.1266 (2)0.23539 (12)0.0772 (5)
O50.3614 (2)0.2881 (2)0.17989 (10)0.0584 (4)
N60.8126 (2)0.71751 (18)0.48999 (9)0.0417 (3)
C70.8326 (2)0.7292 (2)0.40651 (10)0.0380 (3)
C80.7963 (2)0.5561 (2)0.35911 (10)0.0370 (3)
C90.7551 (2)0.3953 (2)0.40069 (10)0.0398 (3)
C100.7342 (2)0.3901 (2)0.48846 (10)0.0383 (3)
C110.7609 (2)0.5567 (2)0.53269 (10)0.0388 (3)
C120.7363 (3)0.5596 (3)0.61848 (11)0.0491 (4)
C130.6855 (3)0.3962 (3)0.65909 (13)0.0552 (4)
C140.6621 (3)0.2299 (3)0.61664 (14)0.0555 (5)
C150.6872 (3)0.2268 (2)0.53337 (13)0.0480 (4)
C160.8203 (2)0.5658 (2)0.26908 (10)0.0409 (3)
C170.7083 (2)0.4422 (2)0.20334 (10)0.0408 (3)
C180.5287 (3)0.2679 (2)0.20902 (10)0.0452 (4)
C190.7642 (3)0.4825 (3)0.11661 (11)0.0480 (4)
C200.1759 (3)0.1201 (4)0.17362 (19)0.0786 (7)
H20A0.17670.02500.13430.094*
H20B0.16380.07060.22960.094*
C210.0112 (5)0.1699 (7)0.1429 (4)0.153 (2)
H21A0.03060.28430.17310.229*
H21B0.11140.07240.15250.229*
H21C0.00380.18640.08250.229*
C220.6792 (4)0.3723 (4)0.03002 (13)0.0671 (6)
H22A0.67440.48910.04820.081*
H22B0.81090.37610.03330.081*
C230.5247 (5)0.2163 (5)0.08543 (16)0.0886 (9)
H23A0.53720.10230.06980.133*
H23B0.54030.23500.14420.133*
H23C0.39460.20860.07880.133*
H90.737 (4)0.276 (4)0.3721 (18)0.066 (7)*
H120.762 (4)0.689 (4)0.6437 (17)0.063 (7)*
H130.658 (4)0.395 (4)0.715 (2)0.079 (8)*
H140.628 (5)0.139 (5)0.643 (2)0.081 (9)*
H150.659 (4)0.107 (4)0.5002 (17)0.067 (7)*
H160.917 (3)0.662 (3)0.2553 (14)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0738 (3)0.0359 (2)0.0479 (3)0.0171 (2)0.0148 (2)0.00743 (17)
O20.0679 (9)0.0726 (10)0.0589 (8)0.0024 (8)0.0283 (7)0.0006 (7)
O30.0549 (7)0.0603 (8)0.0379 (6)0.0098 (6)0.0140 (5)0.0042 (5)
O40.0872 (12)0.0437 (7)0.0777 (11)0.0108 (7)0.0076 (9)0.0067 (7)
O50.0415 (6)0.0578 (8)0.0658 (8)0.0070 (5)0.0153 (6)0.0071 (6)
N60.0510 (7)0.0334 (6)0.0386 (6)0.0135 (5)0.0112 (5)0.0010 (5)
C70.0385 (7)0.0340 (6)0.0382 (7)0.0113 (5)0.0064 (5)0.0000 (5)
C80.0334 (6)0.0358 (6)0.0370 (6)0.0097 (5)0.0042 (5)0.0023 (5)
C90.0377 (7)0.0339 (6)0.0426 (7)0.0109 (5)0.0021 (5)0.0043 (5)
C100.0329 (6)0.0341 (6)0.0424 (7)0.0089 (5)0.0037 (5)0.0026 (5)
C110.0365 (7)0.0365 (7)0.0400 (7)0.0107 (5)0.0080 (5)0.0040 (5)
C120.0539 (9)0.0499 (9)0.0425 (8)0.0176 (7)0.0146 (7)0.0047 (7)
C130.0530 (10)0.0634 (11)0.0481 (9)0.0188 (8)0.0174 (8)0.0153 (8)
C140.0499 (9)0.0497 (10)0.0597 (11)0.0121 (7)0.0108 (8)0.0200 (8)
C150.0440 (8)0.0370 (7)0.0558 (9)0.0104 (6)0.0049 (7)0.0077 (7)
C160.0379 (7)0.0400 (7)0.0408 (7)0.0112 (6)0.0082 (6)0.0002 (6)
C170.0396 (7)0.0429 (7)0.0370 (7)0.0128 (6)0.0090 (5)0.0005 (6)
C180.0496 (8)0.0419 (8)0.0340 (7)0.0084 (6)0.0062 (6)0.0028 (6)
C190.0449 (8)0.0536 (9)0.0419 (8)0.0142 (7)0.0128 (6)0.0002 (7)
C200.0509 (11)0.0720 (15)0.0844 (16)0.0077 (10)0.0189 (11)0.0015 (12)
C210.0525 (17)0.125 (3)0.240 (6)0.0057 (18)0.007 (2)0.052 (4)
C220.0709 (13)0.0810 (15)0.0411 (9)0.0172 (11)0.0226 (9)0.0020 (9)
C230.115 (2)0.0886 (19)0.0448 (11)0.0240 (17)0.0127 (12)0.0065 (11)
Geometric parameters (Å, º) top
S1—C71.6796 (16)C13—H130.94 (3)
S1—H11.2000C14—C151.361 (3)
O2—C191.197 (2)C14—H140.80 (3)
O3—C191.326 (2)C15—H151.00 (3)
O3—C221.459 (2)C16—C171.333 (2)
O4—C181.199 (2)C16—H160.86 (2)
O5—C181.314 (2)C17—C181.494 (2)
O5—C201.462 (3)C17—C191.495 (2)
N6—C71.352 (2)C20—C211.429 (5)
N6—C111.375 (2)C20—H20A0.9700
C7—C81.451 (2)C20—H20B0.9700
C8—C91.369 (2)C21—H21A0.9600
C8—C161.462 (2)C21—H21B0.9600
C9—C101.421 (2)C21—H21C0.9600
C9—H90.99 (3)C22—C231.456 (4)
C10—C111.403 (2)C22—H22A0.9700
C10—C151.411 (2)C22—H22B0.9700
C11—C121.399 (2)C23—H23A0.9600
C12—C131.374 (3)C23—H23B0.9600
C12—H121.02 (3)C23—H23C0.9600
C13—C141.396 (3)
C7—S1—H1109.5C16—C17—C18125.18 (14)
C19—O3—C22116.21 (16)C16—C17—C19117.59 (15)
C18—O5—C20116.10 (19)C18—C17—C19117.22 (14)
C7—N6—C11125.49 (13)O4—C18—O5124.31 (18)
N6—C7—C8116.36 (14)O4—C18—C17124.41 (18)
N6—C7—S1119.98 (11)O5—C18—C17111.27 (15)
C8—C7—S1123.65 (12)O2—C19—O3124.24 (16)
C9—C8—C7119.72 (14)O2—C19—C17124.71 (17)
C9—C8—C16122.79 (14)O3—C19—C17111.04 (15)
C7—C8—C16117.33 (14)C21—C20—O5108.0 (3)
C8—C9—C10121.62 (14)C21—C20—H20A110.1
C8—C9—H9122.7 (16)O5—C20—H20A110.1
C10—C9—H9115.7 (16)C21—C20—H20B110.1
C11—C10—C15118.31 (15)O5—C20—H20B110.1
C11—C10—C9118.09 (14)H20A—C20—H20B108.4
C15—C10—C9123.61 (15)C20—C21—H21A109.5
N6—C11—C12120.63 (14)C20—C21—H21B109.5
N6—C11—C10118.56 (14)H21A—C21—H21B109.5
C12—C11—C10120.81 (15)C20—C21—H21C109.5
C13—C12—C11118.92 (17)H21A—C21—H21C109.5
C13—C12—H12127.7 (14)H21B—C21—H21C109.5
C11—C12—H12113.3 (14)C23—C22—O3108.17 (19)
C12—C13—C14121.07 (18)C23—C22—H22A110.1
C12—C13—H13119.0 (18)O3—C22—H22A110.1
C14—C13—H13119.8 (18)C23—C22—H22B110.1
C15—C14—C13120.20 (17)O3—C22—H22B110.1
C15—C14—H14124 (2)H22A—C22—H22B108.4
C13—C14—H14116 (2)C22—C23—H23A109.5
C14—C15—C10120.66 (17)C22—C23—H23B109.5
C14—C15—H15121.4 (15)H23A—C23—H23B109.5
C10—C15—H15117.6 (15)C22—C23—H23C109.5
C17—C16—C8127.50 (15)H23A—C23—H23C109.5
C17—C16—H16114.3 (14)H23B—C23—H23C109.5
C8—C16—H16118.2 (14)
C11—N6—C7—C80.1 (2)C11—C10—C15—C142.2 (2)
C11—N6—C7—S1178.63 (13)C9—C10—C15—C14177.58 (16)
N6—C7—C8—C93.4 (2)C9—C8—C16—C1742.8 (3)
S1—C7—C8—C9177.93 (12)C7—C8—C16—C17141.69 (17)
N6—C7—C8—C16179.02 (14)C8—C16—C17—C181.8 (3)
S1—C7—C8—C162.3 (2)C8—C16—C17—C19179.45 (16)
C7—C8—C9—C104.1 (2)C20—O5—C18—O45.2 (3)
C16—C8—C9—C10179.47 (14)C20—O5—C18—C17173.63 (17)
C8—C9—C10—C111.3 (2)C16—C17—C18—O478.9 (3)
C8—C9—C10—C15178.46 (15)C19—C17—C18—O4102.4 (2)
C7—N6—C11—C12177.33 (16)C16—C17—C18—O5102.3 (2)
C7—N6—C11—C102.9 (2)C19—C17—C18—O576.47 (19)
C15—C10—C11—N6178.10 (14)C22—O3—C19—O22.2 (3)
C9—C10—C11—N62.1 (2)C22—O3—C19—C17178.64 (18)
C15—C10—C11—C121.7 (2)C16—C17—C19—O20.2 (3)
C9—C10—C11—C12178.05 (15)C18—C17—C19—O2178.7 (2)
N6—C11—C12—C13179.72 (17)C16—C17—C19—O3178.96 (16)
C10—C11—C12—C130.1 (3)C18—C17—C19—O32.2 (2)
C11—C12—C13—C141.2 (3)C18—O5—C20—C21178.7 (3)
C12—C13—C14—C150.7 (3)C19—O3—C22—C23176.6 (2)
C13—C14—C15—C101.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1···N6i1.202.373.3389 (14)136
C9—H9···O40.99 (3)2.41 (3)3.122 (2)129 (2)
C22—H22B···O2ii0.972.523.438 (4)158
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1···N6i1.202.37003.3389 (14)136.00
C9—H9···O40.99 (3)2.41 (3)3.122 (2)129 (2)
C22—H22B···O2ii0.972.52003.438 (4)158
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank to Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad for CCD X-ray facilities, the X-ray data collection, GCMS, IR, CHNS and NMR data, and the UGC, New Delhi, for financial assistance.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNandeshwarappa, B. P., Aruna Kumar, D. B., Bhojya Naik, H. S. & Mahadevan, K. M. (2006). Phosphorus Sulfur Silicon, 181, 1997–2003.  CrossRef CAS Google Scholar
First citationNoda, N., Yashiki, Y., Nakatani, T., Miyahara, K. & Du, X. M. (2001). Chem. Pharm. Bull. 49, 930–931.  CrossRef PubMed CAS Google Scholar
First citationPandey, V. K., Tusi, S., Tusi, Z., Joshi, M. & Bajpai, S. A. (2004). Acta Pharm. 54, 1–12.  PubMed CAS Google Scholar
First citationSharma, S., Ravichandran, V., Jain, P. K., Mourya, V. K. & Agrawal, R. K. (2008). J. Enzyme Inhib. Med. Chem. 23, 424–431.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds