organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(4-fluoro­phen­yl)-4-(4-meth­­oxy­phen­yl)-1H-1,2,3-triazole

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 11 June 2015; accepted 24 June 2015; online 4 July 2015)

In the title compound, C15H12FN3O, the triazole ring forms dihedral angles of 30.57 (8) and 21.81 (9)° with the fluoro-substituted and meth­oxy-substituted benzene rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. In the crystal, ππ inter­actions between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010].

1. Related literature

For related literature on 1,2,3-triazoles, see: Aher et al. (2009[Aher, N. G., Pore, V. S., Mishra, N. N., Kumar, A., Shukla, P. K., Sharma, A. & Bhat, M. K. (2009). Bioorg. Med. Chem. Lett. 19, 759-763.]); Jordao et al. (2009[Jordão, A. K., Ferreira, V. F., Lima, E. S., de Souza, M. C. B. V., Carlos, E. C. L., Castro, H. C., Geraldo, R. B., Rodrigues, C. R., Almeida, M. C. B. & Cunha, A. C. (2009). Bioorg. Med. Chem. 17, 3713-3719.]); Vijaya Raghava Reddy et al. (2010[Vijaya Raghava Reddy, L., Venkat Reddy, P., Mishra, N. N., Shukla, P. K., Yadav, G., Srivastava, R. & Shaw, A. K. (2010). Carbohydr. Res. 345, 1515-1521.]); Soltis et al. (1996[Soltis, M. J., Yeh, H. J., Cole, K. A., Whittaker, N., Wersto, R. P. & Kohn, E. C. (1996). Drug Metab. Dispos. 24, 799-806.]). For applications of 1,2,3-triazoles, see: Pérez-Balderas et al. (2003[Pérez-Balderas, F., Ortega-Muñoz, M., Morales-Sanfrutos, J., Hernández-Mateo, F., Calvo-Flores, F. G., Calvo-Asín, J. A., Isac-García, J. & Santoyo-González, F. (2003). Org. Lett. 5, 1951-1954.]); Wu et al. (2004[Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Fréchet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928-3932.]); Kumar & Pandey (2008[Kumar, A. & Pandey, P. S. (2008). Org. Lett. 10, 165-168.]); Haridas et al. (2008[Haridas, V., Lal, K., Sharma, Y. K. & Upreti, S. (2008). Org. Lett. 10, 1645-1647.]); Turner et al., (2007[Turner, R. A., Oliver, A. G. & Lokey, R. S. (2007). Org. Lett. 9, 5011-5014.]); Angell & Burgess (2007[Angell, Y. & Burgess, K. (2007). Chem. Soc. Rev. 36, 1674-1689.]); For the synthesis of 1,2,3-triazoles, see: Huisgen et al. (1965[Huisgen, R., Knorr, R., Möbius, L. & Szeimies, G. (1965). Chem. Ber. 98, 4014-4021.]); Wang et al. (2010[Wang, D., Li, N., Zhao, M., Shi, W., Ma, C. & Chen, B. (2010). Green Chem. 12, 2120.]). For related structures, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1956-o1957.]); Zhang et al. (2004[Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613-o615.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H12FN3O

  • Mr = 269.28

  • Triclinic, [P \overline 1]

  • a = 5.6572 (5) Å

  • b = 7.3692 (8) Å

  • c = 15.5711 (15) Å

  • α = 79.202 (9)°

  • β = 81.159 (8)°

  • γ = 89.442 (8)°

  • V = 629.95 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.806, Tmax = 1.000

  • 4369 measured reflections

  • 2461 independent reflections

  • 1575 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.179

  • S = 1.04

  • 2461 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,3-Triazoles are an important class of organic compounds which have become prominent in recent years as superbly versatile five membered nitrogen heterocycles. The 1,2,3-triazole family exhibit a broad spectrum of bioactivities such as antifungal (Aher et al., 2009) antiviral (Jordao et al., 2009), antibacterial (Vijaya Raghava Reddy et al., 2010) and anticancer (Soltis et al., 1996) activities. Furthermore 1,4-disubstituted 1,2,3-triazoles have also been used as a ligation tool for the synthesis of neoglyco-conjugates (Perez-Balderas et al., 2003), multivalent dendrimeric peptides (Wu et al., 2004), ionic receptors (Kumar et al., 2008), triazolophanes (Haridas et al., 2008), cyclic peptides (Turner et al., 2007) and peptidomimetics (Angell et al., 2007). 1,2,3-Triazoles are traditionally obtained using the thermal 1,3-dipolar cycloaddition of organic azides with alkynes (Huisgen et al., 1965) that has been known for nearly five decades. Recently, copper based catalysis was found to dramatically accelerate the reaction under mild conditions while achieving a high regioselectivity towards the 1,4-regioisomer of the triazole product (Wang et al., 2010). This powerful, highly reliable, and selective reaction is the paradigm of a click reaction, which placed it in a class of its own and has enabled many novel applications.

The molecular structure of the title compound is shown in Fig. 1. The triazole ring forms dihedral angles of 30.57 (8)° and 21.81 (9)° with the fluoro-substituted and methoxy-substituted benzen rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. All bond lengths and angles are normal and correspond to those observed in the related structures (Zhang et al., 2004; Abdel-Wahab et al., 2012). The C15—F1 bond length [1.357 (4) Å] agrees well with the accepted value of 1.340 Å for the F-Caromatic length and is in good agreement with a structure of this type (Abdel-Wahab et al., 2012). In the crystal, ππ interactions observed between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010] (Fig. 2).

Related literature top

For related literature on 1,2,3-triazoles, see: Aher et al. (2009); Jordao et al. (2009); Vijaya Raghava Reddy et al. (2010); Soltis et al. (1996). For applications of 1,2,3-triazoles, see: Pérez-Balderas et al. (2003); Wu et al. (2004); Kumar & Pandey (2008); Haridas et al. (2008); Turner et al., (2007); Angell & Burgess (2007); For the synthesis of 1,2,3-triazoles, see: Huisgen et al. (1965); Wang et al. (2010). For related structures, see: Abdel-Wahab et al. (2012); Zhang et al. (2004).

Experimental top

Synthesis of 1-(4-flourophenyl)-4-(4-methoxyphenyl) -1H-1,2,3-triazole: To 4-fluoroaniline (0.22 g, 2 mmol) in a round bottomed flask maintained at 273-278 K, mixture of conc. HCl: H2O (1.5 ml, 1:1) was added and stirred for 5 min. Then solution of NaNO2 (0.17 g, 2.5 mmol in 1 ml water) was added dropwise over a period of 5 min. After stirring for another 5 min, sodium azide (0.19 g, 3 mmol) was added and the reaction mixture was further stirred for another 10 min. Finally, 4-methoxyphenylacetylene (0.19 g, 1.5 mmol) and catalyst [Cu(0)-Fe3O4@SiO2/NH2Cel] (0.05 g) were added to the reaction mixture followed by stirring at room temperature for 6 h. The reaction was then stopped and the catalyst was separated using an external magnet. The reaction mixture was extracted with EtOAc, washed with water and dried over Na2SO4. Finally, the product was obtained after removal of the solvent under reduced pressure followed by crystallization with EtOAc: pet ether. The product, 1-(4-flourophenyl)-4-(4-methoxyphenyl) -1H-1,2,3-triazole was obtained as shiny white crystals.

Refinement top

All H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.96 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Structure description top

1,2,3-Triazoles are an important class of organic compounds which have become prominent in recent years as superbly versatile five membered nitrogen heterocycles. The 1,2,3-triazole family exhibit a broad spectrum of bioactivities such as antifungal (Aher et al., 2009) antiviral (Jordao et al., 2009), antibacterial (Vijaya Raghava Reddy et al., 2010) and anticancer (Soltis et al., 1996) activities. Furthermore 1,4-disubstituted 1,2,3-triazoles have also been used as a ligation tool for the synthesis of neoglyco-conjugates (Perez-Balderas et al., 2003), multivalent dendrimeric peptides (Wu et al., 2004), ionic receptors (Kumar et al., 2008), triazolophanes (Haridas et al., 2008), cyclic peptides (Turner et al., 2007) and peptidomimetics (Angell et al., 2007). 1,2,3-Triazoles are traditionally obtained using the thermal 1,3-dipolar cycloaddition of organic azides with alkynes (Huisgen et al., 1965) that has been known for nearly five decades. Recently, copper based catalysis was found to dramatically accelerate the reaction under mild conditions while achieving a high regioselectivity towards the 1,4-regioisomer of the triazole product (Wang et al., 2010). This powerful, highly reliable, and selective reaction is the paradigm of a click reaction, which placed it in a class of its own and has enabled many novel applications.

The molecular structure of the title compound is shown in Fig. 1. The triazole ring forms dihedral angles of 30.57 (8)° and 21.81 (9)° with the fluoro-substituted and methoxy-substituted benzen rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. All bond lengths and angles are normal and correspond to those observed in the related structures (Zhang et al., 2004; Abdel-Wahab et al., 2012). The C15—F1 bond length [1.357 (4) Å] agrees well with the accepted value of 1.340 Å for the F-Caromatic length and is in good agreement with a structure of this type (Abdel-Wahab et al., 2012). In the crystal, ππ interactions observed between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010] (Fig. 2).

For related literature on 1,2,3-triazoles, see: Aher et al. (2009); Jordao et al. (2009); Vijaya Raghava Reddy et al. (2010); Soltis et al. (1996). For applications of 1,2,3-triazoles, see: Pérez-Balderas et al. (2003); Wu et al. (2004); Kumar & Pandey (2008); Haridas et al. (2008); Turner et al., (2007); Angell & Burgess (2007); For the synthesis of 1,2,3-triazoles, see: Huisgen et al. (1965); Wang et al. (2010). For related structures, see: Abdel-Wahab et al. (2012); Zhang et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis.
1-(4-Fluorophenyl)-4-(4-methoxyphenyl)-1H-1,2,3-triazole top
Crystal data top
C15H12FN3OZ = 2
Mr = 269.28F(000) = 280
Triclinic, P1Dx = 1.420 Mg m3
Dm = 1.42 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6572 (5) ÅCell parameters from 1205 reflections
b = 7.3692 (8) Åθ = 4.0–28.0°
c = 15.5711 (15) ŵ = 0.10 mm1
α = 79.202 (9)°T = 293 K
β = 81.159 (8)°Block, white
γ = 89.442 (8)°0.30 × 0.20 × 0.20 mm
V = 629.95 (11) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2461 independent reflections
Radiation source: fine-focus sealed tube1575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scansh = 46
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 79
Tmin = 0.806, Tmax = 1.000l = 1819
4369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.0652P]
where P = (Fo2 + 2Fc2)/3
2461 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H12FN3Oγ = 89.442 (8)°
Mr = 269.28V = 629.95 (11) Å3
Triclinic, P1Z = 2
a = 5.6572 (5) ÅMo Kα radiation
b = 7.3692 (8) ŵ = 0.10 mm1
c = 15.5711 (15) ÅT = 293 K
α = 79.202 (9)°0.30 × 0.20 × 0.20 mm
β = 81.159 (8)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2461 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1575 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 1.000Rint = 0.034
4369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2461 reflectionsΔρmin = 0.22 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2052 (4)0.1487 (2)0.41281 (12)0.0782 (6)
N10.1232 (4)0.1852 (3)0.07275 (13)0.0404 (5)
N20.0970 (4)0.1982 (3)0.04842 (15)0.0505 (6)
N30.0714 (4)0.2743 (3)0.03467 (15)0.0489 (6)
C40.1657 (4)0.3132 (3)0.06593 (16)0.0367 (6)
C50.2893 (4)0.2552 (3)0.00235 (15)0.0395 (6)
H50.45400.26230.00090.047*
C60.2436 (4)0.3971 (3)0.15737 (16)0.0371 (6)
C70.1015 (5)0.3849 (3)0.22101 (17)0.0426 (6)
H70.04540.32280.20400.051*
C80.1707 (5)0.4613 (4)0.30769 (18)0.0483 (7)
H80.07170.45010.34900.058*
C90.3880 (5)0.5558 (3)0.33479 (17)0.0457 (7)
O90.4360 (4)0.6328 (3)0.42195 (14)0.0718 (7)
C100.5341 (5)0.5698 (3)0.27319 (17)0.0452 (6)
H100.68040.63270.29060.054*
C110.4626 (5)0.4900 (3)0.18530 (16)0.0414 (6)
H110.56290.49870.14410.050*
C120.1484 (4)0.1035 (3)0.16056 (16)0.0371 (6)
C130.0340 (5)0.1177 (3)0.22842 (16)0.0430 (6)
H130.16940.18440.21660.052*
C140.0162 (5)0.0338 (4)0.31322 (18)0.0518 (7)
H140.13910.04170.35940.062*
C150.1878 (5)0.0630 (3)0.32897 (18)0.0500 (7)
C160.3719 (5)0.0751 (3)0.26282 (19)0.0503 (7)
H160.50880.13920.27520.060*
C170.3531 (5)0.0081 (3)0.17797 (17)0.0425 (6)
H170.47730.00070.13220.051*
C180.6617 (8)0.6997 (5)0.4596 (2)0.0918 (12)
H18A0.70310.79880.43210.138*
H18B0.66480.74460.52180.138*
H18C0.77490.60250.45120.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0830 (15)0.0859 (12)0.0607 (12)0.0042 (11)0.0198 (10)0.0062 (9)
N10.0268 (11)0.0459 (12)0.0481 (13)0.0005 (9)0.0039 (9)0.0096 (9)
N20.0252 (11)0.0691 (14)0.0558 (15)0.0006 (10)0.0048 (10)0.0098 (11)
N30.0260 (12)0.0675 (15)0.0508 (14)0.0006 (11)0.0033 (10)0.0069 (11)
C40.0268 (13)0.0389 (12)0.0455 (15)0.0003 (10)0.0056 (10)0.0105 (10)
C50.0224 (12)0.0470 (14)0.0483 (15)0.0018 (11)0.0025 (10)0.0090 (11)
C60.0279 (13)0.0391 (12)0.0458 (15)0.0054 (10)0.0075 (11)0.0108 (10)
C70.0303 (13)0.0450 (13)0.0536 (16)0.0001 (11)0.0086 (11)0.0107 (11)
C80.0393 (15)0.0583 (16)0.0513 (17)0.0049 (13)0.0158 (13)0.0136 (12)
C90.0450 (16)0.0499 (14)0.0404 (15)0.0101 (13)0.0063 (12)0.0049 (11)
O90.0608 (14)0.0911 (15)0.0542 (13)0.0043 (12)0.0021 (11)0.0045 (11)
C100.0321 (14)0.0458 (14)0.0553 (17)0.0029 (12)0.0001 (12)0.0083 (12)
C110.0331 (14)0.0447 (13)0.0484 (15)0.0003 (11)0.0088 (11)0.0120 (11)
C120.0293 (13)0.0358 (12)0.0458 (15)0.0034 (10)0.0048 (11)0.0070 (10)
C130.0316 (13)0.0452 (14)0.0497 (16)0.0032 (11)0.0020 (11)0.0063 (11)
C140.0441 (16)0.0556 (16)0.0522 (18)0.0000 (14)0.0027 (13)0.0092 (12)
C150.0532 (18)0.0471 (15)0.0493 (17)0.0049 (13)0.0165 (14)0.0011 (12)
C160.0401 (15)0.0457 (14)0.0657 (19)0.0059 (12)0.0131 (14)0.0079 (13)
C170.0317 (13)0.0425 (13)0.0535 (16)0.0001 (11)0.0038 (11)0.0121 (11)
C180.091 (3)0.109 (3)0.068 (2)0.032 (2)0.000 (2)0.0060 (19)
Geometric parameters (Å, º) top
F1—C151.357 (3)O9—C181.376 (4)
N1—C51.354 (3)C10—C111.384 (3)
N1—N21.354 (3)C10—H100.9300
N1—C121.415 (3)C11—H110.9300
N2—N31.297 (3)C12—C131.377 (3)
N3—C41.368 (3)C12—C171.385 (3)
C4—C51.362 (3)C13—C141.367 (3)
C4—C61.444 (3)C13—H130.9300
C5—H50.9300C14—C151.381 (4)
C6—C71.384 (3)C14—H140.9300
C6—C111.390 (3)C15—C161.363 (4)
C7—C81.360 (3)C16—C171.368 (3)
C7—H70.9300C16—H160.9300
C8—C91.387 (4)C17—H170.9300
C8—H80.9300C18—H18A0.9600
C9—O91.356 (3)C18—H18B0.9600
C9—C101.377 (4)C18—H18C0.9600
C5—N1—N2109.5 (2)C10—C11—C6121.3 (2)
C5—N1—C12130.8 (2)C10—C11—H11119.4
N2—N1—C12119.7 (2)C6—C11—H11119.4
N3—N2—N1107.7 (2)C13—C12—C17120.3 (2)
N2—N3—C4109.6 (2)C13—C12—N1119.3 (2)
C5—C4—N3107.4 (2)C17—C12—N1120.4 (2)
C5—C4—C6131.8 (2)C14—C13—C12120.1 (2)
N3—C4—C6120.8 (2)C14—C13—H13120.0
N1—C5—C4105.8 (2)C12—C13—H13120.0
N1—C5—H5127.1C13—C14—C15118.7 (2)
C4—C5—H5127.1C13—C14—H14120.7
C7—C6—C11117.5 (2)C15—C14—H14120.7
C7—C6—C4120.5 (2)F1—C15—C16119.1 (2)
C11—C6—C4122.0 (2)F1—C15—C14119.0 (3)
C8—C7—C6121.9 (3)C16—C15—C14121.9 (3)
C8—C7—H7119.1C15—C16—C17119.2 (2)
C6—C7—H7119.1C15—C16—H16120.4
C7—C8—C9120.3 (2)C17—C16—H16120.4
C7—C8—H8119.9C16—C17—C12119.7 (2)
C9—C8—H8119.9C16—C17—H17120.1
O9—C9—C10125.0 (3)C12—C17—H17120.1
O9—C9—C8115.6 (3)O9—C18—H18A109.5
C10—C9—C8119.3 (2)O9—C18—H18B109.5
C9—O9—C18120.7 (3)H18A—C18—H18B109.5
C9—C10—C11119.8 (3)O9—C18—H18C109.5
C9—C10—H10120.1H18A—C18—H18C109.5
C11—C10—H10120.1H18B—C18—H18C109.5
C5—N1—N2—N30.1 (3)O9—C9—C10—C11178.0 (2)
C12—N1—N2—N3178.86 (19)C8—C9—C10—C110.1 (4)
N1—N2—N3—C40.3 (3)C9—C10—C11—C60.7 (4)
N2—N3—C4—C50.6 (3)C7—C6—C11—C101.0 (3)
N2—N3—C4—C6179.3 (2)C4—C6—C11—C10179.9 (2)
N2—N1—C5—C40.5 (2)C5—N1—C12—C13150.9 (2)
C12—N1—C5—C4179.1 (2)N2—N1—C12—C1330.7 (3)
N3—C4—C5—N10.7 (2)C5—N1—C12—C1730.0 (3)
C6—C4—C5—N1179.1 (2)N2—N1—C12—C17148.5 (2)
C5—C4—C6—C7156.9 (2)C17—C12—C13—C141.6 (4)
N3—C4—C6—C721.4 (3)N1—C12—C13—C14177.6 (2)
C5—C4—C6—C1122.2 (4)C12—C13—C14—C150.6 (4)
N3—C4—C6—C11159.5 (2)C13—C14—C15—F1179.1 (2)
C11—C6—C7—C80.4 (3)C13—C14—C15—C160.8 (4)
C4—C6—C7—C8179.5 (2)F1—C15—C16—C17178.8 (2)
C6—C7—C8—C90.4 (4)C14—C15—C16—C171.2 (4)
C7—C8—C9—O9177.6 (2)C15—C16—C17—C120.1 (4)
C7—C8—C9—C100.7 (4)C13—C12—C17—C161.2 (4)
C10—C9—O9—C1814.0 (4)N1—C12—C17—C16177.9 (2)
C8—C9—O9—C18167.9 (3)

Experimental details

Crystal data
Chemical formulaC15H12FN3O
Mr269.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.6572 (5), 7.3692 (8), 15.5711 (15)
α, β, γ (°)79.202 (9), 81.159 (8), 89.442 (8)
V3)629.95 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.806, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4369, 2461, 1575
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.179, 1.04
No. of reflections2461
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1956–o1957.  CSD CrossRef IUCr Journals Google Scholar
First citationAher, N. G., Pore, V. S., Mishra, N. N., Kumar, A., Shukla, P. K., Sharma, A. & Bhat, M. K. (2009). Bioorg. Med. Chem. Lett. 19, 759–763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngell, Y. & Burgess, K. (2007). Chem. Soc. Rev. 36, 1674–1689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaridas, V., Lal, K., Sharma, Y. K. & Upreti, S. (2008). Org. Lett. 10, 1645–1647.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuisgen, R., Knorr, R., Möbius, L. & Szeimies, G. (1965). Chem. Ber. 98, 4014–4021.  CrossRef CAS Web of Science Google Scholar
First citationJordão, A. K., Ferreira, V. F., Lima, E. S., de Souza, M. C. B. V., Carlos, E. C. L., Castro, H. C., Geraldo, R. B., Rodrigues, C. R., Almeida, M. C. B. & Cunha, A. C. (2009). Bioorg. Med. Chem. 17, 3713–3719.  Web of Science PubMed Google Scholar
First citationKumar, A. & Pandey, P. S. (2008). Org. Lett. 10, 165–168.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPérez-Balderas, F., Ortega-Muñoz, M., Morales-Sanfrutos, J., Hernández-Mateo, F., Calvo-Flores, F. G., Calvo-Asín, J. A., Isac-García, J. & Santoyo-González, F. (2003). Org. Lett. 5, 1951–1954.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoltis, M. J., Yeh, H. J., Cole, K. A., Whittaker, N., Wersto, R. P. & Kohn, E. C. (1996). Drug Metab. Dispos. 24, 799–806.  CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, R. A., Oliver, A. G. & Lokey, R. S. (2007). Org. Lett. 9, 5011–5014.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVijaya Raghava Reddy, L., Venkat Reddy, P., Mishra, N. N., Shukla, P. K., Yadav, G., Srivastava, R. & Shaw, A. K. (2010). Carbohydr. Res. 345, 1515–1521.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, D., Li, N., Zhao, M., Shi, W., Ma, C. & Chen, B. (2010). Green Chem. 12, 2120.  Web of Science CrossRef Google Scholar
First citationWu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Fréchet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928–3932.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613–o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds