organic compounds
H-1,2,3-triazole
of 1-(4-fluorophenyl)-4-(4-methoxyphenyl)-1aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com
In the title compound, C15H12FN3O, the triazole ring forms dihedral angles of 30.57 (8) and 21.81 (9)° with the fluoro-substituted and methoxy-substituted benzene rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. In the crystal, π–π interactions between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010].
Keywords: crystal structure; 1,2,3-triazole; π–π interactions.
CCDC reference: 1408544
1. Related literature
For related literature on 1,2,3-triazoles, see: Aher et al. (2009); Jordao et al. (2009); Vijaya Raghava Reddy et al. (2010); Soltis et al. (1996). For applications of 1,2,3-triazoles, see: Pérez-Balderas et al. (2003); Wu et al. (2004); Kumar & Pandey (2008); Haridas et al. (2008); Turner et al., (2007); Angell & Burgess (2007); For the synthesis of 1,2,3-triazoles, see: Huisgen et al. (1965); Wang et al. (2010). For related structures, see: Abdel-Wahab et al. (2012); Zhang et al. (2004).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
CCDC reference: 1408544
https://doi.org/10.1107/S2056989015012153/lh5772sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015012153/lh5772Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015012153/lh5772Isup3.cml
Synthesis of 1-(4-flourophenyl)-4-(4-methoxyphenyl) -1H-1,2,3-triazole: To 4-fluoroaniline (0.22 g, 2 mmol) in a round bottomed flask maintained at 273-278 K, mixture of conc. HCl: H2O (1.5 ml, 1:1) was added and stirred for 5 min. Then solution of NaNO2 (0.17 g, 2.5 mmol in 1 ml water) was added dropwise over a period of 5 min. After stirring for another 5 min, sodium azide (0.19 g, 3 mmol) was added and the reaction mixture was further stirred for another 10 min. Finally, 4-methoxyphenylacetylene (0.19 g, 1.5 mmol) and catalyst [Cu(0)-Fe3O4@SiO2/NH2Cel] (0.05 g) were added to the reaction mixture followed by stirring at room temperature for 6 h. The reaction was then stopped and the catalyst was separated using an external magnet. The reaction mixture was extracted with EtOAc, washed with water and dried over Na2SO4. Finally, the product was obtained after removal of the solvent under reduced pressure followed by crystallization with EtOAc: pet ether. The product, 1-(4-flourophenyl)-4-(4-methoxyphenyl) -1H-1,2,3-triazole was obtained as shiny white crystals.
All H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.96 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).
1,2,3-Triazoles are an important class of organic compounds which have become prominent in recent years as superbly versatile five membered nitrogen heterocycles. The 1,2,3-triazole family exhibit a broad spectrum of bioactivities such as antifungal (Aher et al., 2009) antiviral (Jordao et al., 2009), antibacterial (Vijaya Raghava Reddy et al., 2010) and anticancer (Soltis et al., 1996) activities. Furthermore 1,4-disubstituted 1,2,3-triazoles have also been used as a ligation tool for the synthesis of neoglyco-conjugates (Perez-Balderas et al., 2003), multivalent dendrimeric
(Wu et al., 2004), ionic receptors (Kumar et al., 2008), triazolophanes (Haridas et al., 2008), cyclic (Turner et al., 2007) and peptidomimetics (Angell et al., 2007). 1,2,3-Triazoles are traditionally obtained using the thermal 1,3-dipolar of organic with (Huisgen et al., 1965) that has been known for nearly five decades. Recently, copper based catalysis was found to dramatically accelerate the reaction under mild conditions while achieving a high regioselectivity towards the 1,4-regioisomer of the triazole product (Wang et al., 2010). This powerful, highly reliable, and selective reaction is the paradigm of a click reaction, which placed it in a class of its own and has enabled many novel applications.The molecular structure of the title compound is shown in Fig. 1. The triazole ring forms dihedral angles of 30.57 (8)° and 21.81 (9)° with the fluoro-substituted and methoxy-substituted benzen rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. All bond lengths and angles are normal and correspond to those observed in the related structures (Zhang et al., 2004; Abdel-Wahab et al., 2012). The C15—F1 bond length [1.357 (4) Å] agrees well with the accepted value of 1.340 Å for the F-Caromatic length and is in good agreement with a structure of this type (Abdel-Wahab et al., 2012). In the crystal, π–π interactions observed between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010] (Fig. 2).
For related literature on 1,2,3-triazoles, see: Aher et al. (2009); Jordao et al. (2009); Vijaya Raghava Reddy et al. (2010); Soltis et al. (1996). For applications of 1,2,3-triazoles, see: Pérez-Balderas et al. (2003); Wu et al. (2004); Kumar & Pandey (2008); Haridas et al. (2008); Turner et al., (2007); Angell & Burgess (2007); For the synthesis of 1,2,3-triazoles, see: Huisgen et al. (1965); Wang et al. (2010). For related structures, see: Abdel-Wahab et al. (2012); Zhang et al. (2004).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C15H12FN3O | Z = 2 |
Mr = 269.28 | F(000) = 280 |
Triclinic, P1 | Dx = 1.420 Mg m−3 Dm = 1.42 Mg m−3 Dm measured by not measured |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6572 (5) Å | Cell parameters from 1205 reflections |
b = 7.3692 (8) Å | θ = 4.0–28.0° |
c = 15.5711 (15) Å | µ = 0.10 mm−1 |
α = 79.202 (9)° | T = 293 K |
β = 81.159 (8)° | Block, white |
γ = 89.442 (8)° | 0.30 × 0.20 × 0.20 mm |
V = 629.95 (11) Å3 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2461 independent reflections |
Radiation source: fine-focus sealed tube | 1575 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.7° |
ω scans | h = −4→6 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −7→9 |
Tmin = 0.806, Tmax = 1.000 | l = −18→19 |
4369 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0744P)2 + 0.0652P] where P = (Fo2 + 2Fc2)/3 |
2461 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C15H12FN3O | γ = 89.442 (8)° |
Mr = 269.28 | V = 629.95 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.6572 (5) Å | Mo Kα radiation |
b = 7.3692 (8) Å | µ = 0.10 mm−1 |
c = 15.5711 (15) Å | T = 293 K |
α = 79.202 (9)° | 0.30 × 0.20 × 0.20 mm |
β = 81.159 (8)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2461 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1575 reflections with I > 2σ(I) |
Tmin = 0.806, Tmax = 1.000 | Rint = 0.034 |
4369 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.26 e Å−3 |
2461 reflections | Δρmin = −0.22 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.2052 (4) | −0.1487 (2) | 0.41281 (12) | 0.0782 (6) | |
N1 | 0.1232 (4) | 0.1852 (3) | 0.07275 (13) | 0.0404 (5) | |
N2 | −0.0970 (4) | 0.1982 (3) | 0.04842 (15) | 0.0505 (6) | |
N3 | −0.0714 (4) | 0.2743 (3) | −0.03467 (15) | 0.0489 (6) | |
C4 | 0.1657 (4) | 0.3132 (3) | −0.06593 (16) | 0.0367 (6) | |
C5 | 0.2893 (4) | 0.2552 (3) | 0.00235 (15) | 0.0395 (6) | |
H5 | 0.4540 | 0.2623 | 0.0009 | 0.047* | |
C6 | 0.2436 (4) | 0.3971 (3) | −0.15737 (16) | 0.0371 (6) | |
C7 | 0.1015 (5) | 0.3849 (3) | −0.22101 (17) | 0.0426 (6) | |
H7 | −0.0454 | 0.3228 | −0.2040 | 0.051* | |
C8 | 0.1707 (5) | 0.4613 (4) | −0.30769 (18) | 0.0483 (7) | |
H8 | 0.0717 | 0.4501 | −0.3490 | 0.058* | |
C9 | 0.3880 (5) | 0.5558 (3) | −0.33479 (17) | 0.0457 (7) | |
O9 | 0.4360 (4) | 0.6328 (3) | −0.42195 (14) | 0.0718 (7) | |
C10 | 0.5341 (5) | 0.5698 (3) | −0.27319 (17) | 0.0452 (6) | |
H10 | 0.6804 | 0.6327 | −0.2906 | 0.054* | |
C11 | 0.4626 (5) | 0.4900 (3) | −0.18530 (16) | 0.0414 (6) | |
H11 | 0.5629 | 0.4987 | −0.1441 | 0.050* | |
C12 | 0.1484 (4) | 0.1035 (3) | 0.16056 (16) | 0.0371 (6) | |
C13 | −0.0340 (5) | 0.1177 (3) | 0.22842 (16) | 0.0430 (6) | |
H13 | −0.1694 | 0.1844 | 0.2166 | 0.052* | |
C14 | −0.0162 (5) | 0.0338 (4) | 0.31322 (18) | 0.0518 (7) | |
H14 | −0.1391 | 0.0417 | 0.3594 | 0.062* | |
C15 | 0.1878 (5) | −0.0630 (3) | 0.32897 (18) | 0.0500 (7) | |
C16 | 0.3719 (5) | −0.0751 (3) | 0.26282 (19) | 0.0503 (7) | |
H16 | 0.5088 | −0.1392 | 0.2752 | 0.060* | |
C17 | 0.3531 (5) | 0.0081 (3) | 0.17797 (17) | 0.0425 (6) | |
H17 | 0.4773 | 0.0007 | 0.1322 | 0.051* | |
C18 | 0.6617 (8) | 0.6997 (5) | −0.4596 (2) | 0.0918 (12) | |
H18A | 0.7031 | 0.7988 | −0.4321 | 0.138* | |
H18B | 0.6648 | 0.7446 | −0.5218 | 0.138* | |
H18C | 0.7749 | 0.6025 | −0.4512 | 0.138* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0830 (15) | 0.0859 (12) | 0.0607 (12) | 0.0042 (11) | −0.0198 (10) | 0.0062 (9) |
N1 | 0.0268 (11) | 0.0459 (12) | 0.0481 (13) | 0.0005 (9) | −0.0039 (9) | −0.0096 (9) |
N2 | 0.0252 (11) | 0.0691 (14) | 0.0558 (15) | −0.0006 (10) | −0.0048 (10) | −0.0098 (11) |
N3 | 0.0260 (12) | 0.0675 (15) | 0.0508 (14) | −0.0006 (11) | −0.0033 (10) | −0.0069 (11) |
C4 | 0.0268 (13) | 0.0389 (12) | 0.0455 (15) | 0.0003 (10) | −0.0056 (10) | −0.0105 (10) |
C5 | 0.0224 (12) | 0.0470 (14) | 0.0483 (15) | −0.0018 (11) | −0.0025 (10) | −0.0090 (11) |
C6 | 0.0279 (13) | 0.0391 (12) | 0.0458 (15) | 0.0054 (10) | −0.0075 (11) | −0.0108 (10) |
C7 | 0.0303 (13) | 0.0450 (13) | 0.0536 (16) | −0.0001 (11) | −0.0086 (11) | −0.0107 (11) |
C8 | 0.0393 (15) | 0.0583 (16) | 0.0513 (17) | 0.0049 (13) | −0.0158 (13) | −0.0136 (12) |
C9 | 0.0450 (16) | 0.0499 (14) | 0.0404 (15) | 0.0101 (13) | −0.0063 (12) | −0.0049 (11) |
O9 | 0.0608 (14) | 0.0911 (15) | 0.0542 (13) | −0.0043 (12) | −0.0021 (11) | 0.0045 (11) |
C10 | 0.0321 (14) | 0.0458 (14) | 0.0553 (17) | −0.0029 (12) | 0.0001 (12) | −0.0083 (12) |
C11 | 0.0331 (14) | 0.0447 (13) | 0.0484 (15) | 0.0003 (11) | −0.0088 (11) | −0.0120 (11) |
C12 | 0.0293 (13) | 0.0358 (12) | 0.0458 (15) | −0.0034 (10) | −0.0048 (11) | −0.0070 (10) |
C13 | 0.0316 (13) | 0.0452 (14) | 0.0497 (16) | 0.0032 (11) | −0.0020 (11) | −0.0063 (11) |
C14 | 0.0441 (16) | 0.0556 (16) | 0.0522 (18) | 0.0000 (14) | 0.0027 (13) | −0.0092 (12) |
C15 | 0.0532 (18) | 0.0471 (15) | 0.0493 (17) | −0.0049 (13) | −0.0165 (14) | −0.0011 (12) |
C16 | 0.0401 (15) | 0.0457 (14) | 0.0657 (19) | 0.0059 (12) | −0.0131 (14) | −0.0079 (13) |
C17 | 0.0317 (13) | 0.0425 (13) | 0.0535 (16) | 0.0001 (11) | −0.0038 (11) | −0.0121 (11) |
C18 | 0.091 (3) | 0.109 (3) | 0.068 (2) | −0.032 (2) | 0.000 (2) | −0.0060 (19) |
F1—C15 | 1.357 (3) | O9—C18 | 1.376 (4) |
N1—C5 | 1.354 (3) | C10—C11 | 1.384 (3) |
N1—N2 | 1.354 (3) | C10—H10 | 0.9300 |
N1—C12 | 1.415 (3) | C11—H11 | 0.9300 |
N2—N3 | 1.297 (3) | C12—C13 | 1.377 (3) |
N3—C4 | 1.368 (3) | C12—C17 | 1.385 (3) |
C4—C5 | 1.362 (3) | C13—C14 | 1.367 (3) |
C4—C6 | 1.444 (3) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C14—C15 | 1.381 (4) |
C6—C7 | 1.384 (3) | C14—H14 | 0.9300 |
C6—C11 | 1.390 (3) | C15—C16 | 1.363 (4) |
C7—C8 | 1.360 (3) | C16—C17 | 1.368 (3) |
C7—H7 | 0.9300 | C16—H16 | 0.9300 |
C8—C9 | 1.387 (4) | C17—H17 | 0.9300 |
C8—H8 | 0.9300 | C18—H18A | 0.9600 |
C9—O9 | 1.356 (3) | C18—H18B | 0.9600 |
C9—C10 | 1.377 (4) | C18—H18C | 0.9600 |
C5—N1—N2 | 109.5 (2) | C10—C11—C6 | 121.3 (2) |
C5—N1—C12 | 130.8 (2) | C10—C11—H11 | 119.4 |
N2—N1—C12 | 119.7 (2) | C6—C11—H11 | 119.4 |
N3—N2—N1 | 107.7 (2) | C13—C12—C17 | 120.3 (2) |
N2—N3—C4 | 109.6 (2) | C13—C12—N1 | 119.3 (2) |
C5—C4—N3 | 107.4 (2) | C17—C12—N1 | 120.4 (2) |
C5—C4—C6 | 131.8 (2) | C14—C13—C12 | 120.1 (2) |
N3—C4—C6 | 120.8 (2) | C14—C13—H13 | 120.0 |
N1—C5—C4 | 105.8 (2) | C12—C13—H13 | 120.0 |
N1—C5—H5 | 127.1 | C13—C14—C15 | 118.7 (2) |
C4—C5—H5 | 127.1 | C13—C14—H14 | 120.7 |
C7—C6—C11 | 117.5 (2) | C15—C14—H14 | 120.7 |
C7—C6—C4 | 120.5 (2) | F1—C15—C16 | 119.1 (2) |
C11—C6—C4 | 122.0 (2) | F1—C15—C14 | 119.0 (3) |
C8—C7—C6 | 121.9 (3) | C16—C15—C14 | 121.9 (3) |
C8—C7—H7 | 119.1 | C15—C16—C17 | 119.2 (2) |
C6—C7—H7 | 119.1 | C15—C16—H16 | 120.4 |
C7—C8—C9 | 120.3 (2) | C17—C16—H16 | 120.4 |
C7—C8—H8 | 119.9 | C16—C17—C12 | 119.7 (2) |
C9—C8—H8 | 119.9 | C16—C17—H17 | 120.1 |
O9—C9—C10 | 125.0 (3) | C12—C17—H17 | 120.1 |
O9—C9—C8 | 115.6 (3) | O9—C18—H18A | 109.5 |
C10—C9—C8 | 119.3 (2) | O9—C18—H18B | 109.5 |
C9—O9—C18 | 120.7 (3) | H18A—C18—H18B | 109.5 |
C9—C10—C11 | 119.8 (3) | O9—C18—H18C | 109.5 |
C9—C10—H10 | 120.1 | H18A—C18—H18C | 109.5 |
C11—C10—H10 | 120.1 | H18B—C18—H18C | 109.5 |
C5—N1—N2—N3 | −0.1 (3) | O9—C9—C10—C11 | 178.0 (2) |
C12—N1—N2—N3 | −178.86 (19) | C8—C9—C10—C11 | −0.1 (4) |
N1—N2—N3—C4 | −0.3 (3) | C9—C10—C11—C6 | −0.7 (4) |
N2—N3—C4—C5 | 0.6 (3) | C7—C6—C11—C10 | 1.0 (3) |
N2—N3—C4—C6 | 179.3 (2) | C4—C6—C11—C10 | −179.9 (2) |
N2—N1—C5—C4 | 0.5 (2) | C5—N1—C12—C13 | 150.9 (2) |
C12—N1—C5—C4 | 179.1 (2) | N2—N1—C12—C13 | −30.7 (3) |
N3—C4—C5—N1 | −0.7 (2) | C5—N1—C12—C17 | −30.0 (3) |
C6—C4—C5—N1 | −179.1 (2) | N2—N1—C12—C17 | 148.5 (2) |
C5—C4—C6—C7 | 156.9 (2) | C17—C12—C13—C14 | −1.6 (4) |
N3—C4—C6—C7 | −21.4 (3) | N1—C12—C13—C14 | 177.6 (2) |
C5—C4—C6—C11 | −22.2 (4) | C12—C13—C14—C15 | 0.6 (4) |
N3—C4—C6—C11 | 159.5 (2) | C13—C14—C15—F1 | −179.1 (2) |
C11—C6—C7—C8 | −0.4 (3) | C13—C14—C15—C16 | 0.8 (4) |
C4—C6—C7—C8 | −179.5 (2) | F1—C15—C16—C17 | 178.8 (2) |
C6—C7—C8—C9 | −0.4 (4) | C14—C15—C16—C17 | −1.2 (4) |
C7—C8—C9—O9 | −177.6 (2) | C15—C16—C17—C12 | 0.1 (4) |
C7—C8—C9—C10 | 0.7 (4) | C13—C12—C17—C16 | 1.2 (4) |
C10—C9—O9—C18 | 14.0 (4) | N1—C12—C17—C16 | −177.9 (2) |
C8—C9—O9—C18 | −167.9 (3) |
Experimental details
Crystal data | |
Chemical formula | C15H12FN3O |
Mr | 269.28 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.6572 (5), 7.3692 (8), 15.5711 (15) |
α, β, γ (°) | 79.202 (9), 81.159 (8), 89.442 (8) |
V (Å3) | 629.95 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.806, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4369, 2461, 1575 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.179, 1.04 |
No. of reflections | 2461 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.22 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).
Acknowledgements
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.
References
Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1956–o1957. CSD CrossRef IUCr Journals Google Scholar
Aher, N. G., Pore, V. S., Mishra, N. N., Kumar, A., Shukla, P. K., Sharma, A. & Bhat, M. K. (2009). Bioorg. Med. Chem. Lett. 19, 759–763. Web of Science CrossRef PubMed CAS Google Scholar
Angell, Y. & Burgess, K. (2007). Chem. Soc. Rev. 36, 1674–1689. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Haridas, V., Lal, K., Sharma, Y. K. & Upreti, S. (2008). Org. Lett. 10, 1645–1647. Web of Science CSD CrossRef PubMed CAS Google Scholar
Huisgen, R., Knorr, R., Möbius, L. & Szeimies, G. (1965). Chem. Ber. 98, 4014–4021. CrossRef CAS Web of Science Google Scholar
Jordão, A. K., Ferreira, V. F., Lima, E. S., de Souza, M. C. B. V., Carlos, E. C. L., Castro, H. C., Geraldo, R. B., Rodrigues, C. R., Almeida, M. C. B. & Cunha, A. C. (2009). Bioorg. Med. Chem. 17, 3713–3719. Web of Science PubMed Google Scholar
Kumar, A. & Pandey, P. S. (2008). Org. Lett. 10, 165–168. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pérez-Balderas, F., Ortega-Muñoz, M., Morales-Sanfrutos, J., Hernández-Mateo, F., Calvo-Flores, F. G., Calvo-Asín, J. A., Isac-García, J. & Santoyo-González, F. (2003). Org. Lett. 5, 1951–1954. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soltis, M. J., Yeh, H. J., Cole, K. A., Whittaker, N., Wersto, R. P. & Kohn, E. C. (1996). Drug Metab. Dispos. 24, 799–806. CAS PubMed Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, R. A., Oliver, A. G. & Lokey, R. S. (2007). Org. Lett. 9, 5011–5014. Web of Science CSD CrossRef PubMed CAS Google Scholar
Vijaya Raghava Reddy, L., Venkat Reddy, P., Mishra, N. N., Shukla, P. K., Yadav, G., Srivastava, R. & Shaw, A. K. (2010). Carbohydr. Res. 345, 1515–1521. Web of Science CrossRef CAS PubMed Google Scholar
Wang, D., Li, N., Zhao, M., Shi, W., Ma, C. & Chen, B. (2010). Green Chem. 12, 2120. Web of Science CrossRef Google Scholar
Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Fréchet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928–3932. Web of Science CrossRef CAS Google Scholar
Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613–o615. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,3-Triazoles are an important class of organic compounds which have become prominent in recent years as superbly versatile five membered nitrogen heterocycles. The 1,2,3-triazole family exhibit a broad spectrum of bioactivities such as antifungal (Aher et al., 2009) antiviral (Jordao et al., 2009), antibacterial (Vijaya Raghava Reddy et al., 2010) and anticancer (Soltis et al., 1996) activities. Furthermore 1,4-disubstituted 1,2,3-triazoles have also been used as a ligation tool for the synthesis of neoglyco-conjugates (Perez-Balderas et al., 2003), multivalent dendrimeric peptides (Wu et al., 2004), ionic receptors (Kumar et al., 2008), triazolophanes (Haridas et al., 2008), cyclic peptides (Turner et al., 2007) and peptidomimetics (Angell et al., 2007). 1,2,3-Triazoles are traditionally obtained using the thermal 1,3-dipolar cycloaddition of organic azides with alkynes (Huisgen et al., 1965) that has been known for nearly five decades. Recently, copper based catalysis was found to dramatically accelerate the reaction under mild conditions while achieving a high regioselectivity towards the 1,4-regioisomer of the triazole product (Wang et al., 2010). This powerful, highly reliable, and selective reaction is the paradigm of a click reaction, which placed it in a class of its own and has enabled many novel applications.
The molecular structure of the title compound is shown in Fig. 1. The triazole ring forms dihedral angles of 30.57 (8)° and 21.81 (9)° with the fluoro-substituted and methoxy-substituted benzen rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. All bond lengths and angles are normal and correspond to those observed in the related structures (Zhang et al., 2004; Abdel-Wahab et al., 2012). The C15—F1 bond length [1.357 (4) Å] agrees well with the accepted value of 1.340 Å for the F-Caromatic length and is in good agreement with a structure of this type (Abdel-Wahab et al., 2012). In the crystal, π–π interactions observed between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010] (Fig. 2).