organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-bromo­acetyl-6-chloro-2H-1-benzo­pyran-2-one

aDr Reddys Laboratory, Innovation Plaza, IPDO, Bachupally, Hyderabad 500 090, India, and bGITAM University, Department of Chemistry, College of Science, Vishakapatnam, Andhrapradesh, India
*Correspondence e-mail: sudiisc@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 17 June 2015; accepted 6 July 2015; online 31 July 2015)

In the title compound, C11H6BrClO3, the benzo­pyran ring system is essentially planar, with a maximum deviation of 0.036 (2) Å for the O atom. The Cl and Br atoms are displaced by −0.0526 (8) and 0.6698 (3) Å, respectively, from the mean plane of this ring system. In the crystal, two pairs of weak C—H⋯O hydrogen bonds to the same acceptor O atom link mol­ecules into inversion dimers.

1. Related literature

For applications of coumarins, see: Kale & Patwardhan (2014[Kale, M. & Patwardhan, K. (2014). Curr. Pharm. Res.4, 1150-1158.]); Eid et al. (1994[Eid, A. I., Ragab, F. A., El-Ansary, S. L., El-Gazayerly, S. M. & Mourad, F. E. (1994). Arch. Pharm. Pharm. Med. Chem. 327, 211-213.]); Hsieh (2015[Hsieh, C. (2015). Int. J. Oncol. 46, 2, 555-562.]); Ballazhi et al. (2015[Ballazhi, L., Popovski, E., Jashari, A., Imeri, F., Ibrahimi, I., Mikhova, B. & Mladenovska, K. (2015). Acta Pharm. 65, 53-63.]); Wang (2015[Wang, R. (2015). CN Patent CN 104557831 A.]); Lanoot et al. (2002[Lanoot, B., Vancanneyt, M., Cleenwerck, I., Wang, L., Li, W., Liu, Z. & Swings, J. (2002). Int. J. Syst. Evol. Microbiol. 52, 823-829.]); Morris & Russell (1971[Morris, A. & Russell, A. D. (1971). Prog. Med. Chem. 8, 39-59.]); Hooper et al. (1982[Hooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662-671.]); Khalfan et al. (1987[Khalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.]). For related structures, see: Munshi et al. (2004[Munshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105-1107.]); Munshi & Guru Row (2006[Munshi, P. & Guru Row, T. N. (2006). Cryst. Growth Des. 6, 708-718.]); Chopra et al. (2006[Chopra, D., Venugopal, K. N., Jayashree, B. S. & Row, T. N. G. (2006). Acta Cryst. E62, o2310-o2312.], 2007a[Chopra, D., Venugopala, K. N. & Rao, G. K. (2007a). Acta Cryst. E63, o4872.],b[Chopra, D., Venugopala, K. N., Rao, G. K. & Guru Row, T. N. (2007b). Acta Cryst. E63, o2826.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H6BrClO3

  • Mr = 301.51

  • Monoclinic, P 21 /c

  • a = 12.5770 (2) Å

  • b = 5.7977 (1) Å

  • c = 14.8390 (3) Å

  • β = 94.679 (2)°

  • V = 1078.42 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.05 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.09 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.295, Tmax = 0.712

  • 20627 measured reflections

  • 2113 independent reflections

  • 1532 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 0.95

  • 2113 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.44 3.268 (3) 148
C5—H5⋯O3i 0.93 2.54 3.337 (3) 144
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Window (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Coumarins have wide application in the pharmaceutical industry for their anti­viral activity (Kale et al., 2014) and anti­microbial activity (Eid et al., 1994). Recently anti­bacterial activity of the coumarin derivative chloro-chromen-2-one was studied by Lulzime et al., 2015. The coumarin family can also inhibit breast cancer-mediated osteoclastogenesis and this was recently studied (Hsieh et al., 2015; Ballazhi et al., 2015). Further applications of coumarin derivatives for fever, inflammation and pain has been evaluated (Wang et al., 2015). The well known anti­biotic Novobiocin (Lanoot et al., 2002; Morris et al., 1971) belongs to coumarin family. The title compound belongs to the 3-acetyl coumarin family. This coumarin family has potential application in the pharmaceutical field, dye industry and developing LASER dyes (Hooper et al., 1982; Khalfan et al., 1987). The crystal structure of the title coumarin derivative is reported herein.

There are two polymorphic forms of 3-acetyl coumarin reported (Munshi et al., 2004; Munshi et al., 2006). In both cases the structure directing inter­actions are weak C—H···O hydrogen bonds. In one form (Munshi et al., 2004), a sheet-like structure is formed with two independent molecules in the asymmetric unit and in other form (Munshi et al., 2006) the supra­molecular assembly is formed via inter-penetrating sheets with one molecule in the asymmetric unit and contains inversion dimer units connected through weak C—H···O inter­actions. With the substitution of bromine and chlorine (Chopra et al., 2006;2007a,b) in 3-acetyl coumarin there is no significant differnce in the packing and type of weak inter­actions. In the crystal of the title compound, pairs of bifurcated –(C—H)2···O hydrogen bonds form inversion dimers. The molecular structure of the title compound is shown in Fig. 1.

Synthesis and crystallization top

Synthesis of 3-Bromo­acetyl-6-chloro-2H-1-benzo­pyran-2-one : To a solution of 3-acetyl-6-chloro-2H-1-benzo­pyran-2-one (222mg, 1mmol) in alcohol free chloro­form (5ml), bromine (173.8 mg, 1.1 mmol) in chloro­form (2ml) was added with inter­mittent shaking and warming. The mixture was heated for fifteen minutes on a water bath, cooled and filtered. The solid was washed with ether and crystallized from glacial acetic acid to yield 3-bromo­acetyl-6-chloro-2H-1-benzo­pyran-2-one. Needle shape crystals were obtained by dissolving the title compound in glacial acetic acid and warming for a few minutes in a 10ml beaker. The beaker was covered with paraffin film with few holes in it and left till crystals appeared.

Refinement top

All H atoms were positioned geometrically and refined using a riding-model approximation with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C).

Related literature top

For applications of coumarins, see: Kale & Patwardhan (2014); Eid et al. (1994); Hsieh (2015); Ballazhi et al. (2015); Wang (2015); Lanoot et al. (2002); Morris & Russell (1971); Hooper et al. (1982); Khalfan et al. (1987). For related structures, see: Munshi et al. (2004); Munshi & Guru Row (2006); Chopra et al. (2006, 2007a,b).

Structure description top

Coumarins have wide application in the pharmaceutical industry for their anti­viral activity (Kale et al., 2014) and anti­microbial activity (Eid et al., 1994). Recently anti­bacterial activity of the coumarin derivative chloro-chromen-2-one was studied by Lulzime et al., 2015. The coumarin family can also inhibit breast cancer-mediated osteoclastogenesis and this was recently studied (Hsieh et al., 2015; Ballazhi et al., 2015). Further applications of coumarin derivatives for fever, inflammation and pain has been evaluated (Wang et al., 2015). The well known anti­biotic Novobiocin (Lanoot et al., 2002; Morris et al., 1971) belongs to coumarin family. The title compound belongs to the 3-acetyl coumarin family. This coumarin family has potential application in the pharmaceutical field, dye industry and developing LASER dyes (Hooper et al., 1982; Khalfan et al., 1987). The crystal structure of the title coumarin derivative is reported herein.

There are two polymorphic forms of 3-acetyl coumarin reported (Munshi et al., 2004; Munshi et al., 2006). In both cases the structure directing inter­actions are weak C—H···O hydrogen bonds. In one form (Munshi et al., 2004), a sheet-like structure is formed with two independent molecules in the asymmetric unit and in other form (Munshi et al., 2006) the supra­molecular assembly is formed via inter-penetrating sheets with one molecule in the asymmetric unit and contains inversion dimer units connected through weak C—H···O inter­actions. With the substitution of bromine and chlorine (Chopra et al., 2006;2007a,b) in 3-acetyl coumarin there is no significant differnce in the packing and type of weak inter­actions. In the crystal of the title compound, pairs of bifurcated –(C—H)2···O hydrogen bonds form inversion dimers. The molecular structure of the title compound is shown in Fig. 1.

For applications of coumarins, see: Kale & Patwardhan (2014); Eid et al. (1994); Hsieh (2015); Ballazhi et al. (2015); Wang (2015); Lanoot et al. (2002); Morris & Russell (1971); Hooper et al. (1982); Khalfan et al. (1987). For related structures, see: Munshi et al. (2004); Munshi & Guru Row (2006); Chopra et al. (2006, 2007a,b).

Synthesis and crystallization top

Synthesis of 3-Bromo­acetyl-6-chloro-2H-1-benzo­pyran-2-one : To a solution of 3-acetyl-6-chloro-2H-1-benzo­pyran-2-one (222mg, 1mmol) in alcohol free chloro­form (5ml), bromine (173.8 mg, 1.1 mmol) in chloro­form (2ml) was added with inter­mittent shaking and warming. The mixture was heated for fifteen minutes on a water bath, cooled and filtered. The solid was washed with ether and crystallized from glacial acetic acid to yield 3-bromo­acetyl-6-chloro-2H-1-benzo­pyran-2-one. Needle shape crystals were obtained by dissolving the title compound in glacial acetic acid and warming for a few minutes in a 10ml beaker. The beaker was covered with paraffin film with few holes in it and left till crystals appeared.

Refinement details top

All H atoms were positioned geometrically and refined using a riding-model approximation with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Window (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. The reaction scheme.
3-Bromoacetyl-6-chloro-2H-1-benzopyran-2-one top
Crystal data top
C11H6BrClO3F(000) = 592
Mr = 301.51Dx = 1.857 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2113 reflections
a = 12.5770 (2) Åθ = 3.1–26.0°
b = 5.7977 (1) ŵ = 4.05 mm1
c = 14.8390 (3) ÅT = 293 K
β = 94.679 (2)°Needle, yellow
V = 1078.42 (3) Å30.40 × 0.10 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2113 independent reflections
Radiation source: fine-focus sealed tube1532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.295, Tmax = 0.712k = 77
20627 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3438P]
where P = (Fo2 + 2Fc2)/3
2113 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C11H6BrClO3V = 1078.42 (3) Å3
Mr = 301.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5770 (2) ŵ = 4.05 mm1
b = 5.7977 (1) ÅT = 293 K
c = 14.8390 (3) Å0.40 × 0.10 × 0.09 mm
β = 94.679 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2113 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1532 reflections with I > 2σ(I)
Tmin = 0.295, Tmax = 0.712Rint = 0.031
20627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 0.95Δρmax = 0.43 e Å3
2113 reflectionsΔρmin = 0.60 e Å3
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82908 (2)0.43513 (6)0.08551 (2)0.0724 (1)
Cl10.03785 (6)0.08546 (14)0.11305 (5)0.0667 (3)
O10.36571 (16)0.6170 (3)0.19323 (11)0.0522 (6)
O20.52243 (17)0.7733 (3)0.18198 (12)0.0592 (7)
O30.62089 (15)0.2132 (3)0.03489 (14)0.0665 (7)
C10.4668 (2)0.6090 (4)0.16473 (15)0.0450 (9)
C20.4945 (2)0.4025 (4)0.11494 (14)0.0380 (8)
C30.4205 (2)0.2395 (4)0.09438 (15)0.0396 (8)
C40.3152 (2)0.2556 (4)0.12289 (15)0.0403 (8)
C50.2359 (2)0.0892 (4)0.10347 (16)0.0453 (8)
C60.1383 (2)0.1173 (5)0.13694 (17)0.0507 (9)
C70.1178 (3)0.3055 (6)0.19074 (19)0.0624 (10)
C80.1941 (3)0.4691 (6)0.21009 (19)0.0616 (11)
C90.2920 (2)0.4454 (4)0.17544 (16)0.0476 (8)
C100.6045 (2)0.3676 (4)0.08674 (15)0.0422 (8)
C110.6926 (2)0.5239 (5)0.12365 (18)0.0546 (9)
H30.438480.112420.060540.0475*
H50.249240.038740.068320.0543*
H70.051460.320030.213730.0747*
H80.180330.595060.246160.0741*
H11A0.676830.680510.103790.0655*
H11B0.695820.521910.189180.0655*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0534 (2)0.0854 (3)0.0780 (2)0.0081 (2)0.0030 (2)0.0066 (2)
Cl10.0485 (4)0.0861 (6)0.0667 (4)0.0015 (4)0.0129 (3)0.0141 (4)
O10.0676 (13)0.0426 (10)0.0454 (10)0.0208 (9)0.0008 (9)0.0103 (8)
O20.0855 (15)0.0367 (10)0.0539 (11)0.0024 (10)0.0027 (10)0.0138 (9)
O30.0569 (12)0.0673 (13)0.0782 (13)0.0123 (10)0.0231 (10)0.0361 (12)
C10.0644 (18)0.0372 (15)0.0318 (12)0.0127 (13)0.0050 (12)0.0010 (11)
C20.0543 (15)0.0308 (13)0.0285 (11)0.0060 (11)0.0008 (10)0.0006 (10)
C30.0543 (15)0.0338 (13)0.0313 (12)0.0110 (12)0.0075 (11)0.0007 (10)
C40.0516 (15)0.0379 (14)0.0315 (12)0.0154 (12)0.0049 (10)0.0030 (10)
C50.0509 (15)0.0454 (15)0.0405 (13)0.0126 (13)0.0096 (11)0.0052 (11)
C60.0472 (16)0.0639 (18)0.0411 (14)0.0130 (13)0.0050 (12)0.0120 (13)
C70.0523 (18)0.083 (2)0.0535 (16)0.0289 (17)0.0142 (14)0.0042 (16)
C80.065 (2)0.069 (2)0.0515 (16)0.0325 (17)0.0086 (14)0.0107 (14)
C90.0573 (16)0.0468 (15)0.0383 (12)0.0195 (14)0.0013 (11)0.0005 (12)
C100.0558 (16)0.0361 (13)0.0348 (12)0.0014 (11)0.0036 (11)0.0017 (11)
C110.0595 (18)0.0532 (16)0.0497 (15)0.0032 (13)0.0034 (13)0.0071 (13)
Geometric parameters (Å, º) top
Br1—C111.921 (3)C5—C61.371 (4)
Cl1—C61.741 (3)C6—C71.389 (4)
O1—C11.373 (3)C7—C81.363 (5)
O1—C91.371 (3)C8—C91.379 (4)
O2—C11.197 (3)C10—C111.500 (4)
O3—C101.209 (3)C3—H30.9300
C1—C21.464 (3)C5—H50.9300
C2—C31.344 (3)C7—H70.9300
C2—C101.492 (4)C8—H80.9300
C3—C41.426 (4)C11—H11A0.9700
C4—C51.401 (3)C11—H11B0.9700
C4—C91.393 (3)
Br1···O32.9589 (19)C2···C10viii3.417 (3)
Br1···H8i3.1900C2···O3viii3.389 (3)
Cl1···C8ii3.485 (4)C3···O2i3.343 (3)
Cl1···Cl1iii3.5530 (11)C3···O2ii3.220 (3)
Cl1···H7iv2.9400C3···C10viii3.518 (3)
O1···C5v3.403 (3)C3···O3vii3.268 (3)
O1···O2i2.992 (3)C4···O2i3.406 (3)
O2···C3v3.220 (3)C5···O3vii3.337 (3)
O2···C112.779 (3)C5···O1ii3.403 (3)
O2···C4vi3.406 (3)C8···Cl1v3.485 (4)
O2···C9vi3.180 (3)C9···O2i3.180 (3)
O2···C2vi3.129 (3)C10···C2viii3.417 (3)
O2···O1vi2.992 (3)C10···C3viii3.518 (3)
O2···C1vi2.988 (3)C11···O22.779 (3)
O2···C3vi3.343 (3)C1···H11B2.9200
O3···Br12.9589 (19)C1···H11A2.8900
O3···C5vii3.337 (3)H3···O2ii2.8100
O3···C1viii3.244 (3)H3···O32.4300
O3···C2viii3.389 (3)H3···H52.5500
O3···C3vii3.268 (3)H3···O3vii2.4400
O2···H11A2.4000H5···H32.5500
O2···H11B2.6200H5···O3vii2.5400
O2···H3v2.8100H7···Cl1ix2.9400
O3···H32.4300H8···Br1vi3.1900
O3···H3vii2.4400H11A···O22.4000
O3···H5vii2.5400H11A···C12.8900
C1···O3viii3.244 (3)H11B···O22.6200
C1···O2i2.988 (3)H11B···C12.9200
C2···O2i3.129 (3)
C1—O1—C9123.02 (19)C4—C9—C8121.4 (2)
O1—C1—O2116.6 (2)O3—C10—C2119.3 (2)
O1—C1—C2116.6 (2)O3—C10—C11121.4 (2)
O2—C1—C2126.9 (2)C2—C10—C11119.4 (2)
C1—C2—C3120.1 (2)Br1—C11—C10112.44 (18)
C1—C2—C10121.1 (2)C2—C3—H3119.00
C3—C2—C10118.8 (2)C4—C3—H3119.00
C2—C3—C4122.0 (2)C4—C5—H5120.00
C3—C4—C5123.8 (2)C6—C5—H5120.00
C3—C4—C9117.4 (2)C6—C7—H7120.00
C5—C4—C9118.8 (2)C8—C7—H7120.00
C4—C5—C6119.2 (2)C7—C8—H8120.00
Cl1—C6—C5120.2 (2)C9—C8—H8120.00
Cl1—C6—C7118.8 (2)Br1—C11—H11A109.00
C5—C6—C7121.0 (3)Br1—C11—H11B109.00
C6—C7—C8120.5 (3)C10—C11—H11A109.00
C7—C8—C9119.1 (3)C10—C11—H11B109.00
O1—C9—C4120.8 (2)H11A—C11—H11B108.00
O1—C9—C8117.8 (2)
C9—O1—C1—O2177.6 (2)C3—C4—C5—C6177.6 (2)
C9—O1—C1—C21.3 (3)C9—C4—C5—C60.3 (3)
C1—O1—C9—C43.0 (3)C3—C4—C9—O14.5 (3)
C1—O1—C9—C8177.9 (2)C3—C4—C9—C8176.5 (2)
O1—C1—C2—C34.1 (3)C5—C4—C9—O1177.5 (2)
O1—C1—C2—C10175.44 (19)C5—C4—C9—C81.6 (4)
O2—C1—C2—C3174.6 (2)C4—C5—C6—Cl1179.43 (19)
O2—C1—C2—C105.9 (4)C4—C5—C6—C71.1 (4)
C1—C2—C3—C42.7 (3)Cl1—C6—C7—C8179.3 (2)
C10—C2—C3—C4176.9 (2)C5—C6—C7—C81.2 (4)
C1—C2—C10—O3169.4 (2)C6—C7—C8—C90.1 (4)
C1—C2—C10—C1110.9 (3)C7—C8—C9—O1177.6 (3)
C3—C2—C10—O311.0 (3)C7—C8—C9—C41.4 (4)
C3—C2—C10—C11168.7 (2)O3—C10—C11—Br13.9 (3)
C2—C3—C4—C5179.6 (2)C2—C10—C11—Br1175.83 (17)
C2—C3—C4—C91.6 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y, z; (iv) x, y1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x+1, y+1, z; (ix) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3vii0.93002.44003.268 (3)148.00
C5—H5···O3vii0.93002.54003.337 (3)144.00
Symmetry code: (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.93002.44003.268 (3)148.00
C5—H5···O3i0.93002.54003.337 (3)144.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Indian Institute of Science, Bangalore, for scientific discussions and the data collection.

References

First citationBallazhi, L., Popovski, E., Jashari, A., Imeri, F., Ibrahimi, I., Mikhova, B. & Mladenovska, K. (2015). Acta Pharm. 65, 53–63.  CrossRef CAS PubMed Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Venugopala, K. N. & Rao, G. K. (2007a). Acta Cryst. E63, o4872.  CSD CrossRef IUCr Journals Google Scholar
First citationChopra, D., Venugopala, K. N., Rao, G. K. & Guru Row, T. N. (2007b). Acta Cryst. E63, o2826.  CSD CrossRef IUCr Journals Google Scholar
First citationChopra, D., Venugopal, K. N., Jayashree, B. S. & Row, T. N. G. (2006). Acta Cryst. E62, o2310–o2312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEid, A. I., Ragab, F. A., El-Ansary, S. L., El-Gazayerly, S. M. & Mourad, F. E. (1994). Arch. Pharm. Pharm. Med. Chem. 327, 211–213.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662–671.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHsieh, C. (2015). Int. J. Oncol. 46, 2, 555–562.  Google Scholar
First citationKale, M. & Patwardhan, K. (2014). Curr. Pharm. Res.4, 1150-1158.  Google Scholar
First citationKhalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.  Google Scholar
First citationLanoot, B., Vancanneyt, M., Cleenwerck, I., Wang, L., Li, W., Liu, Z. & Swings, J. (2002). Int. J. Syst. Evol. Microbiol. 52, 823–829.  CrossRef PubMed CAS Google Scholar
First citationMorris, A. & Russell, A. D. (1971). Prog. Med. Chem. 8, 39–59.  CrossRef CAS PubMed Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2006). Cryst. Growth Des. 6, 708–718.  Web of Science CSD CrossRef CAS Google Scholar
First citationMunshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105–1107.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R. (2015). CN Patent CN 104557831 A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds