research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of potassium (1S)-D-lyxit-1-yl­sulfonate monohydrate

aSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
*Correspondence e-mail: a.haines@uea.ac.uk, d.l.hughes@uea.ac.uk

Edited by A. J. Lough, University of Toronto, Canada (Received 30 June 2015; accepted 27 July 2015; online 31 July 2015)

The title compound, K+·C5H11O8S·H2O [systematic name: potassium (1S,2S,3S,4R)-1,2,3,4,5-penta­hydroxy­pentane-1-sulfonate monohydrate], formed by reaction of D-lyxose with potassium hydrogen sulfite in water, crystallizes as colourless square prisms. The anion has an open-chain structure in which the S atom, the C atoms of the sugar chain and the oxygen atom of the hy­droxy­methyl group form an essentially all-trans chain with the corresponding torsion angles lying between 178.61 (12) and 157.75 (10)°. A three-dimensional bonding network exists in the crystal structure involving coordination of two crystallographically independent potassium ions by O atoms (one cation being hexa- and the other octa-coordinate, with each lying on a twofold rotation axis), and extensive inter­molecular O—H⋯O hydrogen bonding.

1. Chemical context

In aqueous solution, the bis­ulfite anion HSO3 exists in a complex, pH-dependent equilibrium with sulfurous acid H2SO3 and the sulfite anion SO32−. These sulfur compounds are widely used in the preservation of foodstuffs because of their anti-oxidant and anti­microbial properties. Dissolution of sodium or potassium metabisulfite (Na2S2O5 or K2S2O5, respectively) in water affords a mixture of such compounds, along with sulfur dioxide, and they are widely used (e.g. as food additive E223) for their anti-oxidant, bactericidal and preservative properties. The reaction of the bis­ulfite ion with carbonyl compounds to give hy­droxy­sulfonic acids has long been known as a method of aldehyde purification; less well recognized generally is that reaction of an aldehydo-sugar, which exists predominantly in a cyclic, hemi-acetal form, with a bis­ulfite anion affords the open-chain form of the carbohydrate in which the carbonyl group has undergone addition of the sulfur nucleophile. A possible role in the stabilization of food stuffs led to early studies (Gehman & Osman, 1954[Gehman, H. & Osman, E. M. (1954). Adv. Food Res. 5, 53-96.]) and evidence for the acyclic nature of such compounds was first provided by Ingles (1959[Ingles, D. L. (1959). Aust. J. Chem. 12, 97-101.]), who reported on such adducts from D-glucose, D-galactose, D-mannose, L-arabinose and L-rhamnose. However, conclusive proof of the acyclic nature of these bis­ulfite adducts was first given through the X-ray studies of Cole et al. (2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]) who reported the crystal structures of D-glucose- and D-mannose-derived potassium sulfonates. Later studies by X-ray crystallography on the sodium sulfon­ate derived from D-glucose (Haines & Hughes, 2012[Haines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377-m378.]) and the potassium sulfonates from D-galactose (Haines & Hughes, 2010[Haines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705-2708.]) and D-ribose (Haines & Hughes, 2014[Haines, A. H. & Hughes, D. L. (2014). Acta Cryst. E70, 406-409.]) proved their acyclic nature and allowed, in each case, the configuration at the newly formed chiral centre to be determined.

The crystallization of the bis­ulfite adducts of aldoses requires reactions to be conducted in concentrated solution, and success can be dependent on the particular aldose and the choice of the alkali metal ion. Thus, we have prepared the potassium adduct from L-arabinose as described by Ingles (1959[Ingles, D. L. (1959). Aust. J. Chem. 12, 97-101.]), having properties in agreement with those reported, but despite prolonged efforts have not succeeded in obtaining suitable crystals for X-ray determination. Our attempts to make a crystalline potassium sulfonate from D-xylose have not been successful. In contrast, D-ribose readily afforded suitable crystals (Haines & Hughes, 2014[Haines, A. H. & Hughes, D. L. (2014). Acta Cryst. E70, 406-409.]) and we were therefore prompted to investigate the reaction of the remaining pentose, D-lyxose, with the bis­ulfite ion, from which we isolated the nicely crystalline title product (see Scheme). We report here its crystal structure.

[Scheme 1]

2. Structural commentary

The systematic name for the salt is potassium (1S,2S,3S,4R)-1,2,3,4,5-penta­hydroxy­pentane-1-sulfonate monohydrate. The anion has an open-chain structure in which the S atom, the C atoms of the sugar chain and the O atom of the hy­droxy­methyl group form an essentially all-trans chain with the corresponding torsion angles lying between absolute values of 178.61 (12) (for C2—C3—C4—C5) and 157.75 (10)° (for S1—C1—C2—C3). The newly formed chiral centre at C1 has the S configuration (Fig. 1[link]). For each lyxose residue, all hy­droxy groups act as hydrogen-bond donors (Table 1[link]). Atom H2O is involved in a bifurcated hydrogen bond to O11 in the same mol­ecule and to O1 in a neighbouring mol­ecule (at x, y, z − 1). Atom H1O is involved in hydrogen bonding to atom O9 of a water mol­ecule, the H atoms of which are hydrogen-bonded to O5 and O12 of adjoining mol­ecules. Two crystallographically independent potassium ions are present, each one lying on a twofold rotation axis, with one cation possessing a coordination sphere of six O atoms (assuming a cut-off distance of 3 Å), four coming from two different sulfonate residues and two from O atoms of hy­droxy­methyl groups. The other cation is octa­coordinate with oxygen atoms arising from two water mol­ecules, two O atoms at new chiral centres at C1, and from two pairs of O atoms from different sulfonate residues. The range of cation–oxygen bond lengths in the coordination spheres lie in the range 2.7787 (12) to 2.9855 (12) Å, but it should be noted that the designated hexa­coordinate potassium ion does have two further neighbouring O atoms at 3.1131 (12) and 3.3824 (13) Å. Variability in the coordination spheres of potassium ions in related coordination environments was observed in the D-galactose bis­ulfite (Haines & Hughes, 2010[Haines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705-2708.]), D-glucose bis­ulfite (Cole et al. 2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]; Haines & Hughes, 2012[Haines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377-m378.]) and de­hydro-L-ascorbic acid bis­ulfite (Haines & Hughes, 2013[Haines, A. H. & Hughes, D. L. (2013). Acta Cryst. E69, m7-m8.]) adducts, where the potassium ion is, respectively, six-, seven- and eight-coordinate.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O9i 0.80 (3) 1.90 (3) 2.6716 (19) 160 (2)
O2—H2O⋯O1i 0.77 (3) 2.35 (3) 2.9810 (17) 141 (2)
O2—H2O⋯O11 0.77 (3) 2.41 (2) 2.9935 (16) 134 (2)
O3—H3O⋯O4ii 0.85 (3) 1.91 (3) 2.7609 (17) 173 (3)
O4—H4O⋯O2iii 0.76 (3) 2.17 (3) 2.8586 (17) 151 (3)
O5—H5O⋯O13iv 0.78 (3) 2.03 (3) 2.7152 (17) 146 (2)
O9—H9A⋯O5v 0.81 (3) 1.95 (3) 2.7426 (18) 167 (3)
O9—H9B⋯O12vi 0.84 (3) 1.90 (3) 2.7289 (17) 170 (3)
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (vi) -x+1, -y+1, z+1.
[Figure 1]
Figure 1
View of a mol­ecule of a D-lyxose-KHSO3 adduct and water mol­ecule, indicating the atom-numbering scheme. The coordination spheres of the two potassium ions (both lying on twofold rotation axes), and the hydrogen bonds (dashed lines) on the lyxose unit, are shown. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (1) −x + 1, −y + 2, z; (2) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (3) −x + [{1\over 2}], y + [{1\over 2}], −z + 1; (4) −x + 1, −y + 2, z + 1; (5) x, y, z + 1; (6) −x + 1, −y + 1, z; (7) −x + 1, −y + 1, z + 1; (8) x, y − 1, z; (9) x, y, z − 1; (10) −x + [{1\over 2}], y − [{1\over 2}], −z + 1; (11) −x + [{1\over 2}], y + [{1\over 2}], −z; (12) −x + [{1\over 2}], y − [{1\over 2}], −z.]

A view along the c axis (Fig. 2[link]) indicates the approximately parallel but alternating alignment of the D-lyxose chains between sheets of potassium ions and water mol­ecules, with hydrogen bonds shown as dashed bonds except for the bifurcated hydrogen bonds which are denoted by fine line bonds. Cation coordination with D-lyxose sulfite anions and water mol­ecules is depicted in Fig. 3[link] and a view along the a axis (Fig. 4[link]) shows the approximately parallel alignment of the D-lyxose chains.

[Figure 2]
Figure 2
Packing diagram, viewed along the c axis, showing the approximately parallel alignment of the D-lyxose chains between sheets of potassium ions and water mol­ecules. Hydrogen bonds are shown as dashed lines; the fine line bonds are of bifurcated hydrogen bonds. Please note that the atoms labelled O2, O4 and O11 are eclipsing the real atoms of those names.
[Figure 3]
Figure 3
View (slightly offset from along the c axis) of the sheets of potassium ions which are linked through coordinating D-lyxose-sulfite anions and water mol­ecules. Symmetry codes are as in Fig. 1[link].
[Figure 4]
Figure 4
View along the a axis, showing the approximately parallel alignment of the D-lyxose chains.

3. Supra­molecular features

A three-dimensional network exists in the crystal structure through coordination of (i) a hexa­coordinate potassium ion with O atoms from four different D-lyxose bis­ulfite residues, (ii) an octa­coordinate potassium ion with O atoms from four different D-lyxose bis­ulfite residues and two different water mol­ecules, (iii) inter­molecular hydrogen bonding between hy­droxy groups of the D-lyxose moieties, and (iv) hydrogen bonding between a water mol­ecule and two different lyxose residues. Despite spectroscopic evidence for a diastereoisomeric adduct in solution, only the 1S stereoisomer crystallized from the reaction mixture.

4. Spectroscopic findings

High-resolution mass spectrometry in negative-ion mode showed no significant peak for ([C5H11O8S1]) at the calculated m/z of 231.0180, but a significant peak was observed at 213.0073 ([C5H11O8S – H2O] ). A similar loss of water from the parent anion was observed in the case of the D-ribose adduct (Haines & Hughes, 2014[Haines, A. H. & Hughes, D. L. (2014). Acta Cryst. E70, 406-409.]). A peak at 149.0457 ([C5H9O5]) arose from the parent sugar and the base peak was at 299.0979 ([C10H19O10]). The latter corresponds to the ion of the product formed by reaction between the bis­ulfite adduct and D-lyxose with displacement of potassium bis­ulfite.

The 1H NMR spectrum of the adduct in D2O showed the presence the α- and β-pyran­ose forms of D-lyxose and the major and minor forms of the acyclic sulfonate in the % ratios of 35.48 : 11.29 : 48.39 : 4.84. The adduct undergoes partial hydrolysis in aqueous media; notably, it is present in a larger proportion in the more concentrated solution used for 13C NMR spectroscopy (see below). A large J2,3 coupling of 9.4 Hz suggests the conformation about the C2—C3 bond is similar in solution and the crystalline state.

In the 13C NMR spectrum, signals for C1 nuclei allow identification of the α- and β-pyran­ose forms of D-lyxose and the major (δC 82.20) and minor (δC 84.26) adducts in the ratios of 17.05 : 5.43 : 71.32 : 6.20, respectively.

5. Synthesis and crystallization

Water (0.5 ml) was added to potassium metabisulfite (0.37 g) which did not completely dissolve even on warming but which appeared to change its crystalline form as it underwent hydrolysis to yield potassium hydrogen sulfite. To this suspension was added a solution of D-lyxose (0.5 g) in water (0.35 ml), leading to immediate and complete solution of the reaction mixture. Seed crystals were obtained by evaporation of a small proportion of the solution, and these were added to the bulk of the solution which was then stored at 277 K, leading to the formation of large, well separated crystals. The mother liquor was removed with a Pasteur pipette, and the crystals were dried by pressing between filter papers to give, as a monohydrate, potassium (1S)-D-lyxit-1-yl­sulfonate (0.396 g, 41%), m.p. 392–400 K (with decomposition); [α]D 7.1 (30 min.) (c, 0.75 in 9:1 H2O:HOAc). 1H NMR (D2O, 400 MHz, reference Me3COH at δH 1.24): δH 4.93 (d, J1,2 = 4.5 Hz, H-1 of α-pyran­ose), 4.86 (d, J1,2 = 1.5 Hz, H-1 of β-pyran­ose); signals for the major acyclic sulfonate: δH 4.70 (d, J1,2 = 1 Hz, H-1), 4.19 (dd, J2,3 = 9.4 Hz, H-2), 3.99 (td, J3,4 = 6.5, J4,5b = 6.5, J4,5a = 1.5 Hz, H-4), 3.62 (dd, J5a,5b = −9.4, H-5a); for the minor acyclic sulfonate: δH 4.62 (d, J1,2 = 5.5 Hz, H-1); ratio of major to minor sulfonate = 10:1. 13C NMR (D2O, 100 MHz, reference Me3COH at δC 30.29): δC 94.86 (C1, β-pyran­ose), 94.70 (C1, α-pyran­ose); signals for the major acyclic sulfonate: δC 82.20 (C1), 70.45, 69.88, 69.35 (C2, C3, C4), 63.80 (C5); the minor acyclic sulfonate showed a peak at δC 84.26 (C1).

Integration of the various signals for H-1 in the 1H NMR spectrum, five minutes after sample dissolution, indicated the species α-pyran­ose, β-pyran­ose, major acyclic sulfonate and minor acyclic sulfonate were present in the % ratios of 35.48: 11.29: 48.39: 4.84. In the more concentrated solution prepared for 13C NMR the corresponding ratios were 17.05:5.43:71.32:6.20.

HRESMS (negative ion mode, measured in H2O/MeOH, solution) gave a peak at m/z 149.0457 ([C5H9O5]), a significant peak at 213.0073 ([C5H11O8S – H2O] ), and the base peak at 299.0979 ([C10H19O10]). The latter corresponds to the ion of the product formed by reaction between the bis­ulfite adduct and D-lyxose with displacement of potassium bis­ulfite. No significant peak was observed for ([C5H11O8S1]) at the calculated m/z of 231.0180.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were located in difference maps and were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula K+·C5H11O8S·H2O
Mr 288.31
Crystal system, space group Orthorhombic, P21212
Temperature (K) 140
a, b, c (Å) 23.3536 (5), 9.0434 (2), 4.9939 (1)
V3) 1054.69 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.28 × 0.26 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.914, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20712, 3062, 3008
Rint 0.023
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.048, 1.12
No. of reflections 3062
No. of parameters 198
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.34
Absolute structure Flack x determined using 1229 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.023 (11)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) ORTEP (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012).

Potassium (1S,2S,3S,4R)-1,2,3,4,5-pentahydroxypentane-1-sulfonate monohydrate top
Crystal data top
K+·C5H11O8S·H2ODx = 1.816 Mg m3
Mr = 288.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 10753 reflections
a = 23.3536 (5) Åθ = 3.5–32.6°
b = 9.0434 (2) ŵ = 0.74 mm1
c = 4.9939 (1) ÅT = 140 K
V = 1054.69 (4) Å3Square prism, colourless
Z = 40.28 × 0.26 × 0.11 mm
F(000) = 600
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
3062 independent reflections
Radiation source: Enhance (Mo) X-ray Source3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0050 pixels mm-1θmax = 30.0°, θmin = 3.5°
Thin slice φ and ω scansh = 3232
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1212
Tmin = 0.914, Tmax = 1.000l = 77
20712 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.2102P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.30 e Å3
3062 reflectionsΔρmin = 0.34 e Å3
198 parametersAbsolute structure: Flack x determined using 1229 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.023 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50001.00000.67598 (9)0.01296 (9)
K20.50000.50000.70830 (10)0.01438 (9)
C10.37190 (6)0.69370 (16)0.3668 (3)0.0102 (3)
C20.32071 (6)0.69562 (16)0.1730 (3)0.0099 (2)
C30.26543 (6)0.67837 (15)0.3346 (3)0.0104 (3)
C40.21277 (6)0.65562 (16)0.1567 (3)0.0112 (3)
C50.15984 (6)0.63560 (19)0.3308 (3)0.0150 (3)
O10.38531 (5)0.55224 (13)0.4618 (2)0.0142 (2)
O20.32388 (5)0.57866 (13)0.0172 (2)0.0129 (2)
O30.26007 (5)0.81265 (13)0.4827 (3)0.0138 (2)
O40.20578 (5)0.77316 (14)0.0315 (2)0.0136 (2)
O50.10823 (5)0.62153 (13)0.1783 (3)0.0156 (2)
S10.43316 (2)0.78331 (4)0.21337 (7)0.00910 (8)
O110.43680 (5)0.73320 (13)0.0636 (2)0.0145 (2)
O120.48337 (4)0.74113 (13)0.3723 (2)0.0132 (2)
O130.42133 (5)0.94196 (12)0.2349 (3)0.0153 (2)
O90.42697 (5)0.37107 (14)1.0868 (3)0.0188 (2)
H10.3619 (8)0.756 (2)0.520 (4)0.008 (4)*
H20.3170 (9)0.786 (2)0.088 (4)0.014 (5)*
H30.2694 (9)0.598 (2)0.456 (5)0.015 (5)*
H40.2190 (9)0.573 (2)0.044 (5)0.017 (5)*
H5A0.1557 (9)0.718 (3)0.447 (5)0.019 (5)*
H5B0.1647 (9)0.553 (3)0.444 (5)0.019 (6)*
H1O0.3898 (10)0.496 (3)0.338 (5)0.029 (6)*
H2O0.3515 (10)0.585 (3)0.100 (5)0.021 (6)*
H3O0.2443 (11)0.793 (3)0.633 (5)0.029 (7)*
H4O0.2011 (12)0.848 (3)0.035 (6)0.037 (8)*
H5O0.1126 (10)0.557 (3)0.075 (5)0.023 (6)*
H9A0.4115 (12)0.304 (3)1.008 (7)0.042 (8)*
H9B0.4524 (13)0.326 (3)1.175 (7)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01062 (18)0.01409 (18)0.0142 (2)0.00037 (15)0.0000.000
K20.0152 (2)0.01494 (19)0.01297 (19)0.00403 (16)0.0000.000
C10.0088 (6)0.0117 (6)0.0101 (6)0.0001 (5)0.0004 (5)0.0014 (5)
C20.0087 (6)0.0110 (6)0.0100 (6)0.0001 (5)0.0000 (5)0.0008 (5)
C30.0092 (6)0.0104 (6)0.0117 (7)0.0003 (5)0.0008 (5)0.0005 (5)
C40.0090 (6)0.0116 (6)0.0129 (7)0.0005 (5)0.0004 (5)0.0010 (6)
C50.0096 (6)0.0205 (7)0.0151 (7)0.0016 (5)0.0001 (6)0.0022 (6)
O10.0163 (5)0.0135 (5)0.0128 (5)0.0002 (4)0.0024 (4)0.0041 (4)
O20.0099 (5)0.0172 (5)0.0118 (5)0.0010 (4)0.0020 (4)0.0032 (4)
O30.0140 (5)0.0139 (5)0.0133 (5)0.0014 (4)0.0028 (4)0.0036 (4)
O40.0147 (5)0.0146 (5)0.0116 (5)0.0015 (4)0.0002 (4)0.0012 (4)
O50.0083 (5)0.0201 (5)0.0184 (6)0.0014 (4)0.0008 (4)0.0038 (5)
S10.00803 (14)0.01074 (14)0.00852 (15)0.00035 (11)0.00023 (12)0.00024 (12)
O110.0150 (5)0.0200 (5)0.0084 (5)0.0009 (5)0.0011 (4)0.0014 (4)
O120.0091 (4)0.0182 (5)0.0124 (5)0.0006 (4)0.0011 (4)0.0013 (4)
O130.0160 (5)0.0107 (4)0.0191 (6)0.0006 (4)0.0015 (4)0.0003 (4)
O90.0141 (5)0.0159 (6)0.0263 (6)0.0020 (5)0.0060 (5)0.0015 (5)
Geometric parameters (Å, º) top
K1—O12i2.8161 (12)C2—O21.4233 (18)
K1—O122.8162 (12)C2—C31.530 (2)
K1—O5ii2.8505 (11)C2—H20.93 (2)
K1—O5iii2.8505 (11)C3—O31.4274 (18)
K1—O132.9160 (12)C3—C41.531 (2)
K1—O13i2.9160 (12)C3—H30.95 (2)
K1—O11iv3.1131 (12)C4—O41.4281 (18)
K1—O11v3.1131 (12)C4—C51.522 (2)
K1—O13iv3.3824 (13)C4—H40.95 (2)
K1—O13v3.3824 (13)C5—O51.4313 (18)
K1—S1i3.4078 (5)C5—H5A0.95 (2)
K1—S13.4079 (5)C5—H5B0.94 (2)
K2—O122.7787 (12)O1—H1O0.80 (3)
K2—O12vi2.7787 (12)O2—H2O0.77 (3)
K2—O92.8002 (14)O3—H3O0.85 (3)
K2—O9vi2.8003 (14)O4—H4O0.76 (3)
K2—O11v2.8149 (12)O5—K1x2.8505 (11)
K2—O11vii2.8149 (12)O5—H5O0.78 (3)
K2—O12.9854 (12)S1—O111.4579 (11)
K2—O1vi2.9855 (12)S1—O131.4650 (11)
K2—K1viii4.5246 (1)S1—O121.4665 (11)
K2—K2v4.9939 (1)S1—K1ix3.6713 (5)
K2—K2ix4.9939 (1)O11—K2ix2.8149 (12)
K2—H9B3.02 (3)O11—K1ix3.1131 (12)
C1—O11.3998 (18)O13—K1ix3.3824 (13)
C1—C21.538 (2)O9—H9A0.81 (3)
C1—S11.8141 (15)O9—H9B0.84 (3)
C1—H10.98 (2)
O12i—K1—O12114.84 (5)O9vi—K2—K1viii116.12 (3)
O12i—K1—O5ii109.61 (3)O11v—K2—K1viii139.74 (2)
O12—K1—O5ii86.51 (3)O11vii—K2—K1viii42.75 (2)
O12i—K1—O5iii86.51 (3)O1—K2—K1viii98.25 (2)
O12—K1—O5iii109.61 (3)O1vi—K2—K1viii80.05 (2)
O5ii—K1—O5iii150.43 (6)K1—K2—K1viii175.911 (17)
O12i—K1—O1380.20 (3)O12—K2—K2v127.14 (3)
O12—K1—O1349.96 (3)O12vi—K2—K2v127.14 (3)
O5ii—K1—O13133.00 (4)O9—K2—K2v47.55 (3)
O5iii—K1—O1372.75 (3)O9vi—K2—K2v47.55 (3)
O12i—K1—O13i49.96 (3)O11v—K2—K2v66.13 (2)
O12—K1—O13i80.20 (3)O11vii—K2—K2v66.13 (2)
O5ii—K1—O13i72.76 (3)O1—K2—K2v114.35 (3)
O5iii—K1—O13i133.00 (4)O1vi—K2—K2v114.35 (3)
O13—K1—O13i81.87 (5)K1—K2—K2v92.044 (9)
O12i—K1—O11iv61.01 (3)K1viii—K2—K2v92.044 (9)
O12—K1—O11iv159.17 (3)O12—K2—K2ix52.86 (3)
O5ii—K1—O11iv76.81 (3)O12vi—K2—K2ix52.86 (3)
O5iii—K1—O11iv90.86 (3)O9—K2—K2ix132.45 (3)
O13—K1—O11iv138.92 (3)O9vi—K2—K2ix132.45 (3)
O13i—K1—O11iv82.96 (3)O11v—K2—K2ix113.87 (2)
O12i—K1—O11v159.16 (3)O11vii—K2—K2ix113.87 (2)
O12—K1—O11v61.01 (3)O1—K2—K2ix65.65 (3)
O5ii—K1—O11v90.86 (3)O1vi—K2—K2ix65.65 (3)
O5iii—K1—O11v76.81 (3)K1—K2—K2ix87.956 (9)
O13—K1—O11v82.96 (3)K1viii—K2—K2ix87.956 (9)
O13i—K1—O11v138.92 (3)K2v—K2—K2ix180.0
O11iv—K1—O11v130.61 (4)O12—K2—H9B145.3 (6)
O12i—K1—O13iv103.91 (3)O12vi—K2—H9B96.3 (6)
O12—K1—O13iv130.41 (3)O9—K2—H9B16.1 (6)
O5ii—K1—O13iv50.78 (3)O9vi—K2—H9B85.4 (6)
O5iii—K1—O13iv102.19 (3)O11v—K2—H9B83.3 (6)
O13—K1—O13iv173.46 (3)O11vii—K2—H9B59.4 (6)
O13i—K1—O13iv104.67 (3)O1—K2—H9B94.0 (6)
O11iv—K1—O13iv43.74 (3)O1vi—K2—H9B124.5 (6)
O11v—K1—O13iv91.89 (3)K1—K2—H9B123.1 (6)
O12i—K1—O13v130.41 (3)K1viii—K2—H9B60.6 (6)
O12—K1—O13v103.91 (3)K2v—K2—H9B39.5 (6)
O5ii—K1—O13v102.19 (3)K2ix—K2—H9B140.5 (6)
O5iii—K1—O13v50.78 (3)O1—C1—C2113.41 (12)
O13—K1—O13v104.67 (3)O1—C1—S1112.02 (10)
O13i—K1—O13v173.46 (3)C2—C1—S1110.00 (10)
O11iv—K1—O13v91.89 (3)O1—C1—H1108.2 (12)
O11v—K1—O13v43.74 (3)C2—C1—H1107.6 (11)
O13iv—K1—O13v68.79 (4)S1—C1—H1105.2 (11)
O12i—K1—S1i25.01 (2)O2—C2—C3108.66 (11)
O12—K1—S1i100.14 (3)O2—C2—C1111.77 (11)
O5ii—K1—S1i89.35 (3)C3—C2—C1108.82 (12)
O5iii—K1—S1i110.94 (3)O2—C2—H2110.9 (13)
O13—K1—S1i83.10 (3)C3—C2—H2104.6 (13)
O13i—K1—S1i25.29 (2)C1—C2—H2111.7 (13)
O11iv—K1—S1i67.69 (2)O3—C3—C2105.10 (11)
O11v—K1—S1i161.09 (2)O3—C3—C4110.15 (12)
O13iv—K1—S1i102.79 (2)C2—C3—C4112.67 (12)
O13v—K1—S1i153.82 (2)O3—C3—H3109.2 (14)
O12i—K1—S1100.14 (3)C2—C3—H3109.4 (14)
O12—K1—S125.01 (2)C4—C3—H3110.2 (13)
O5ii—K1—S1110.94 (3)O4—C4—C5111.81 (12)
O5iii—K1—S189.34 (3)O4—C4—C3111.94 (12)
O13—K1—S125.29 (2)C5—C4—C3109.69 (12)
O13i—K1—S183.11 (3)O4—C4—H4102.4 (14)
O11iv—K1—S1161.09 (2)C5—C4—H4111.7 (14)
O11v—K1—S167.69 (2)C3—C4—H4109.1 (13)
O13iv—K1—S1153.82 (2)O5—C5—C4113.00 (13)
O13v—K1—S1102.79 (2)O5—C5—H5A108.0 (13)
S1i—K1—S194.639 (16)C4—C5—H5A109.8 (13)
O12—K2—O12vi105.71 (5)O5—C5—H5B110.5 (13)
O12—K2—O9130.48 (3)C4—C5—H5B109.7 (13)
O12vi—K2—O999.55 (3)H5A—C5—H5B105.5 (19)
O12—K2—O9vi99.55 (3)C1—O1—K2119.01 (9)
O12vi—K2—O9vi130.48 (3)C1—O1—H1O110.1 (19)
O9—K2—O9vi95.09 (6)K2—O1—H1O95.8 (18)
O12—K2—O11v65.36 (3)C2—O2—H2O110.5 (18)
O12vi—K2—O11v154.90 (3)C3—O3—H3O108.4 (18)
O9—K2—O11v73.70 (4)C4—O4—H4O113 (2)
O9vi—K2—O11v74.59 (4)C5—O5—K1x130.19 (10)
O12—K2—O11vii154.90 (3)C5—O5—H5O107.9 (17)
O12vi—K2—O11vii65.36 (3)K1x—O5—H5O89.8 (17)
O9—K2—O11vii74.59 (4)O11—S1—O13112.64 (7)
O9vi—K2—O11vii73.70 (4)O11—S1—O12112.71 (7)
O11v—K2—O11vii132.26 (5)O13—S1—O12111.46 (7)
O12—K2—O160.09 (3)O11—S1—C1107.93 (7)
O12vi—K2—O190.03 (3)O13—S1—C1104.94 (7)
O9—K2—O178.33 (4)O12—S1—C1106.60 (7)
O9vi—K2—O1139.37 (4)O11—S1—K1142.67 (5)
O11v—K2—O165.03 (3)O13—S1—K158.23 (5)
O11vii—K2—O1139.10 (3)O12—S1—K154.30 (5)
O12—K2—O1vi90.03 (3)C1—S1—K1109.38 (5)
O12vi—K2—O1vi60.10 (3)O11—S1—K1ix56.47 (5)
O9—K2—O1vi139.37 (4)O13—S1—K1ix67.11 (5)
O9vi—K2—O1vi78.33 (4)O12—S1—K1ix101.22 (5)
O11v—K2—O1vi139.10 (3)C1—S1—K1ix151.95 (5)
O11vii—K2—O1vi65.03 (3)K1—S1—K1ix89.650 (8)
O1—K2—O1vi131.29 (5)S1—O11—K2ix130.34 (7)
O12—K2—K136.31 (2)S1—O11—K1ix100.55 (6)
O12vi—K2—K1139.71 (3)K2ix—O11—K1ix99.38 (3)
O9—K2—K1116.12 (3)S1—O12—K2130.00 (6)
O9vi—K2—K166.92 (3)S1—O12—K1100.69 (6)
O11v—K2—K142.75 (2)K2—O12—K1107.94 (4)
O11vii—K2—K1139.74 (2)S1—O13—K196.48 (6)
O1—K2—K180.05 (2)S1—O13—K1ix89.37 (5)
O1vi—K2—K198.25 (2)K1—O13—K1ix104.67 (3)
O12—K2—K1viii139.71 (3)K2—O9—H9A105 (2)
O12vi—K2—K1viii36.31 (2)K2—O9—H9B97 (2)
O9—K2—K1viii66.92 (3)H9A—O9—H9B102 (3)
O1—C1—C2—O244.09 (16)O13—S1—O11—K2ix150.63 (7)
S1—C1—C2—O282.24 (13)O12—S1—O11—K2ix23.46 (10)
O1—C1—C2—C375.92 (15)C1—S1—O11—K2ix93.99 (9)
S1—C1—C2—C3157.75 (10)K1—S1—O11—K2ix83.82 (10)
O2—C2—C3—O3169.41 (11)K1ix—S1—O11—K2ix112.07 (8)
C1—C2—C3—O368.67 (14)O13—S1—O11—K1ix38.57 (7)
O2—C2—C3—C449.45 (15)O12—S1—O11—K1ix88.61 (6)
C1—C2—C3—C4171.36 (11)C1—S1—O11—K1ix153.94 (5)
O3—C3—C4—O460.33 (15)K1—S1—O11—K1ix28.25 (9)
C2—C3—C4—O456.67 (16)O11—S1—O12—K295.90 (9)
O3—C3—C4—C564.38 (15)O13—S1—O12—K2136.30 (8)
C2—C3—C4—C5178.61 (12)C1—S1—O12—K222.33 (10)
O4—C4—C5—O552.08 (17)K1—S1—O12—K2124.57 (9)
C3—C4—C5—O5176.87 (12)K1ix—S1—O12—K2154.07 (6)
C2—C1—O1—K2162.60 (8)O11—S1—O12—K1139.53 (6)
S1—C1—O1—K237.34 (13)O13—S1—O12—K111.73 (7)
C4—C5—O5—K1x159.72 (9)C1—S1—O12—K1102.24 (6)
O1—C1—S1—O1184.07 (12)K1ix—S1—O12—K181.36 (3)
C2—C1—S1—O1143.04 (11)O11—S1—O13—K1139.03 (6)
O1—C1—S1—O13155.59 (11)O12—S1—O13—K111.20 (7)
C2—C1—S1—O1377.30 (11)C1—S1—O13—K1103.80 (6)
O1—C1—S1—O1237.26 (12)K1ix—S1—O13—K1104.69 (4)
C2—C1—S1—O12164.36 (10)O11—S1—O13—K1ix34.34 (6)
O1—C1—S1—K194.52 (10)O12—S1—O13—K1ix93.50 (6)
C2—C1—S1—K1138.37 (8)C1—S1—O13—K1ix151.50 (5)
O1—C1—S1—K1ix135.22 (9)K1—S1—O13—K1ix104.69 (4)
C2—C1—S1—K1ix8.11 (18)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y+2, z+1; (v) x, y, z+1; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1; (viii) x, y1, z; (ix) x, y, z1; (x) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O9ix0.80 (3)1.90 (3)2.6716 (19)160 (2)
O2—H2O···O1ix0.77 (3)2.35 (3)2.9810 (17)141 (2)
O2—H2O···O110.77 (3)2.41 (2)2.9935 (16)134 (2)
O3—H3O···O4v0.85 (3)1.91 (3)2.7609 (17)173 (3)
O4—H4O···O2xi0.76 (3)2.17 (3)2.8586 (17)151 (3)
O5—H5O···O13xii0.78 (3)2.03 (3)2.7152 (17)146 (2)
O9—H9A···O5x0.81 (3)1.95 (3)2.7426 (18)167 (3)
O9—H9B···O12vii0.84 (3)1.90 (3)2.7289 (17)170 (3)
Symmetry codes: (v) x, y, z+1; (vii) x+1, y+1, z+1; (ix) x, y, z1; (x) x+1/2, y1/2, z+1; (xi) x+1/2, y+1/2, z; (xii) x+1/2, y1/2, z.
 

Acknowledgements

We thank the EPSRC National Mass Spectrometry Facility (NMSF), Swansea, for determination of the low- and high-resolution mass spectra and Dr Sergey Nepogodiev for measurement of the NMR spectra.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1–10.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGehman, H. & Osman, E. M. (1954). Adv. Food Res. 5, 53–96.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705–2708.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377–m378.  CSD CrossRef IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2013). Acta Cryst. E69, m7–m8.  CSD CrossRef IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2014). Acta Cryst. E70, 406–409.  CSD CrossRef IUCr Journals Google Scholar
First citationIngles, D. L. (1959). Aust. J. Chem. 12, 97–101.  CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds