organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of C-2-benzo­thia­zole-N-methyl­nitrone

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01033 Kyiv, Ukraine
*Correspondence e-mail: rdoroschuk@ukr.net

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 23 June 2015; accepted 10 July 2015; online 17 July 2015)

The mol­ecule of the title compound {systematic name: N-[(benzo­thia­zol-2-yl)methyl­idene]methyl­amine N-oxide}, C9H8N2OS, is close to planar [maximum deviation from the mean plane = 0.081 (2) Å], its conformation being stabilized by a strong intra­molecular attractive S⋯O inter­action [2.6977 (16) Å]. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of weak C—H⋯O hydrogen bonds.

1. Related literature

For the 1,3-dipolar cyclo­addition reaction of nitro­nes, see: Tufariello (1984[Tufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 83-167. New York: John Wiley and Sons.]); Torssell (1988[Torssell, K. G. (1988). Organic Synthesis, pp. 75-93. New York: VCH Publishers Inc.]). For the properties of benzo­thia­zole derivatives, see: Bradshaw et al. (2002[Bradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). Br. J. Cancer, 86, 1348-1354.]); Paramashivappa et al. (2003[Paramashivappa, R., Kumar, P. P., Rao, S. P. V. & Rao, S. (2003). Bioorg. Med. Chem. Lett. 13, 657-660.]); Jimonet et al. (1999[Jimonet, P., Audiau, F., Barreau, M., Blanchard, J.-C., Boireau, A., Bour, Y., Coléno, M.-A., Doble, A., Doerflinger, G., Do Huu, C., Donat, M.-H., Duchesne, J. M., Ganil, P., Guérémy, C., Honoré, E., Just, B., Kerphirique, R., Gontier, S., Hubert, P., Laduron, P. M., Le Blevec, J., Meunier, M., Miquet, J., Nemecek, C., Pasquet, M., Piot, O., Pratt, J., Rataud, J., Reibaud, M., Stutzmann, J. & Mignani, S. (1999). J. Med. Chem. 42, 2828-2843.]); Ul-Hasan et al. (2002[Ul-Hasan, M., Chohan, Z. H. & Supuran, C. T. (2002). Main Group Met. Chem. 25, 291-296.]); Şener et al. (2000[Şener, E. A., Arpacı, Ö. T., Yalçın, İ. & Altanlar, N. (2000). Farmaco, 55, 397-405.]); Mruthyunjayaswamy & Shanthaveerappa (2000[Mruthyunjayaswamy, B. H. M. & Shanthaveerappa, B. K. (2000). Indian J. Chem. Sect. B, 39, 433-439.]); Arpaci et al. (2002[Arpaci, Ö., Şener, E. A., Yalçin, I. & Altanlar, N. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 283-288.]). For work by our group on nitro­nes, see: Doroschuk et al. (2006[Doroschuk, R. A., Turov, A. V. & Lampeka, R. D. (2006). Ukr. Khim. Zh. 72, 44-48.]); Raspertova et al. (2002[Raspertova, I. V., Domasevich, K. V. & Lampeka, R. D. (2002). Zh. Obshch. Khim. 72, 1854-1857.]); Petkova et al. (2001[Petkova, E. G., Domasevitch, K. V., Gorichko, M. V., Zub, V. Y. & Lampeka, R. D. (2001). Z. Naturforsch. B Chem. Sci. 56, 1264-1270.]). For attractive S—O inter­actions, see: Mokhir et al. (1999[Mokhir, A. A., Domasevich, K. V., Kent Dalley, N., Kou, X., Gerasimchuk, N. N. & Gerasimchuk, O. A. (1999). Inorg. Chim. Acta, 284, 85-98.]). For N—O bond lengths in nitro­nes, see: Ruano et al. (2012[Ruano, J. L. G., Fraile, A., Núñez, A., Martín, M. R. & Alonso, I. (2012). Heterocycles, 84, 913-928.]). For van der Waals radii, see: Wells (1986[Wells, A. F. (1986). In Structural Inorganic Chemistry. Oxford: Clarendon Press.]). For the synthesis, see: Delpierre & Lamchen (1965[Delpierre, G. R. & Lamchen, M. (1965). Q. Rev. Chem. Soc. 19, 329-348.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H8N2OS

  • Mr = 192.23

  • Triclinic, [P \overline 1]

  • a = 5.5253 (14) Å

  • b = 7.4528 (19) Å

  • c = 10.839 (4) Å

  • α = 83.51 (2)°

  • β = 85.79 (3)°

  • γ = 77.39 (3)°

  • V = 432.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 294 K

  • 0.4 × 0.3 × 0.2 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur 3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.423, Tmax = 0.994

  • 3491 measured reflections

  • 1933 independent reflections

  • 1477 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.00

  • 1933 reflections

  • 130 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.53 3.331 (2) 145
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Chemical context top

One of the most important approaches for the symthesis of various five-membered heterocyclic systems is the 1,3-dipolar cyclo­addition reaction. The use as dipoles of compounds such as nitrile oxides and nitro­nes leads to a wide range of N,O-containing heterocyclic systems (isoxazole, isoxazoline, isoxazolidine; Tufariello, 1984), which have biological activity and can be used as starting materials for the synthesis of acyclic compounds (for example, 1,3-amino­alcohols by cleavage of the N–O bond; Torssell, 1988). On the other hand, compounds containing the benzo­thia­zole moiety are of biological and industrial inter­est. In fact, benzo­thia­zole derivatives possess a wide spectrum of biological applications such as anti­tumor (Bradshaw et al., 2002), anti-inflammatory (Paramashivappa et al., 2003), anti­convulsant (Jimonet et al., 1999), and anti­microbial activities (Ul-Hasan et al., 2002; Şener et al., 2000; Mruthyunjayaswamy et al., 2000; Arpaci et al., 2002).

Following our studies on aromatic nitrone (Doroschuk et al., 2006; Raspertova et al., 2002; Petkova et al., 2001) in this paper we describe the structure of C-2-benzo­thia­zole-N-methyl­nitrone.

Structural commentary top

In the molecule of the title compound (Fig. 1), the oxygen atom of the nitrone group exists in syn-conformation with respect to the sulfur atom of the benzo­thia­zole moiety. This conformation is achieved due to a strong electrostatic intra­molecular attractive S···O inter­action. Thus, the S1···O1 distance (2.6977 (16) Å) is significantly shorter than the sum of the van der Waals radii of O and S (1.5 and 1.85 Å, respectively; Wells, 1986). A similar attractive S···O inter­action is characteristic for molecules containing the thia­zole moiety (Mokhir et al., 2002). The value of the N1—C2 bond length (1.298 (2) Å) is typical for a CN bond (1.28 Å; Wells, 1986), while the N1—O1 bond length (1.2763 (17) Å) is slightly shorter than those usually observed for nitrone N—O bonds (Petkova et al., 2001; Ruano et al., 2012). The heterocyclic ring system and the nitrone fragment C1—N1—O1—C2 are almost coplanar (the maximum deviation from the least-squares mean plane is 0.081 (2) Å for atom C1), forming a dihedral angle of 3.40 (9)°. The bond lengths within the benzo­thia­zole ring system are unexceptional.

Supra­molecular features top

In the crystal (Fig. 2), centrosymmetrically-related molecules are linked into dimers via pairs of C—H···O hydrogen bonds (Table 1).

Synthesis and crystallization top

C-2-Benzo­thia­zole-N-methyl­nitrone was synthesized by condensation of the corresponding aldehyde with N-methyl­hydroxyl­amine hydro­chloride in the presence of base (Delpierre & Lamchen, 1965).

2-Benzo­thia­zolecarbaldehyde (0.1632 g, 0.01 mol), CH2CL2 (20 ml), and N-metyl­hydroxyl­amine hydro­chloride (0.9175 g, 0.011 mol) were placed in a 50 mL flask, and the mixture was stirred at room temperature. To the resulting solution was added NaHCO3 (2.7675 g, 0.033 mol). The reaction mixture was reluxed for 3 h. The NaCl precipitate and excess of sodium bicarbonate was removed by filtration, and the filtrate was evaporated to give a solid (1.83g, yield 95%). The solid was recrystallized from an absolute hexane solution.

Refinement top

One aromatic H atom (H6) could be located in a difference Fourier map and was refined freely. All other H atoms were placed geometrically and treated as riding, with C—H = 0.93-0.96 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. A rotating model was used for the methyl H atoms. 36 outliers were omitted in the last cycles of refinement.

Related literature top

For the 1,3-dipolar cycloaddition reaction of nitrones, see: Tufariello (1984); Torssell (1988). For the properties of benzothiazole derivatives, see: Bradshaw et al. (2002); Paramashivappa et al. (2003); Jimonet et al. (1999); Ul-Hasan et al. (2002); Şener et al. (2000); Mruthyunjayaswamy & Shanthaveerappa (2000); Arpaci et al. (2002). For work by our group on nitrones, see: Doroschuk et al. (2006); Raspertova et al. (2002); Petkova et al. (2001). For attractive S—O interactions, see: Mokhir et al. (2002). For N—O bond lengths in nitrones, see: Ruano et al. (2012). For van der Waals radii, see: Wells (1986). For the synthesis, see: Delpierre & Lamchen (1965).

Structure description top

One of the most important approaches for the symthesis of various five-membered heterocyclic systems is the 1,3-dipolar cyclo­addition reaction. The use as dipoles of compounds such as nitrile oxides and nitro­nes leads to a wide range of N,O-containing heterocyclic systems (isoxazole, isoxazoline, isoxazolidine; Tufariello, 1984), which have biological activity and can be used as starting materials for the synthesis of acyclic compounds (for example, 1,3-amino­alcohols by cleavage of the N–O bond; Torssell, 1988). On the other hand, compounds containing the benzo­thia­zole moiety are of biological and industrial inter­est. In fact, benzo­thia­zole derivatives possess a wide spectrum of biological applications such as anti­tumor (Bradshaw et al., 2002), anti-inflammatory (Paramashivappa et al., 2003), anti­convulsant (Jimonet et al., 1999), and anti­microbial activities (Ul-Hasan et al., 2002; Şener et al., 2000; Mruthyunjayaswamy et al., 2000; Arpaci et al., 2002).

Following our studies on aromatic nitrone (Doroschuk et al., 2006; Raspertova et al., 2002; Petkova et al., 2001) in this paper we describe the structure of C-2-benzo­thia­zole-N-methyl­nitrone.

In the molecule of the title compound (Fig. 1), the oxygen atom of the nitrone group exists in syn-conformation with respect to the sulfur atom of the benzo­thia­zole moiety. This conformation is achieved due to a strong electrostatic intra­molecular attractive S···O inter­action. Thus, the S1···O1 distance (2.6977 (16) Å) is significantly shorter than the sum of the van der Waals radii of O and S (1.5 and 1.85 Å, respectively; Wells, 1986). A similar attractive S···O inter­action is characteristic for molecules containing the thia­zole moiety (Mokhir et al., 2002). The value of the N1—C2 bond length (1.298 (2) Å) is typical for a CN bond (1.28 Å; Wells, 1986), while the N1—O1 bond length (1.2763 (17) Å) is slightly shorter than those usually observed for nitrone N—O bonds (Petkova et al., 2001; Ruano et al., 2012). The heterocyclic ring system and the nitrone fragment C1—N1—O1—C2 are almost coplanar (the maximum deviation from the least-squares mean plane is 0.081 (2) Å for atom C1), forming a dihedral angle of 3.40 (9)°. The bond lengths within the benzo­thia­zole ring system are unexceptional.

In the crystal (Fig. 2), centrosymmetrically-related molecules are linked into dimers via pairs of C—H···O hydrogen bonds (Table 1).

For the 1,3-dipolar cycloaddition reaction of nitrones, see: Tufariello (1984); Torssell (1988). For the properties of benzothiazole derivatives, see: Bradshaw et al. (2002); Paramashivappa et al. (2003); Jimonet et al. (1999); Ul-Hasan et al. (2002); Şener et al. (2000); Mruthyunjayaswamy & Shanthaveerappa (2000); Arpaci et al. (2002). For work by our group on nitrones, see: Doroschuk et al. (2006); Raspertova et al. (2002); Petkova et al. (2001). For attractive S—O interactions, see: Mokhir et al. (2002). For N—O bond lengths in nitrones, see: Ruano et al. (2012). For van der Waals radii, see: Wells (1986). For the synthesis, see: Delpierre & Lamchen (1965).

Synthesis and crystallization top

C-2-Benzo­thia­zole-N-methyl­nitrone was synthesized by condensation of the corresponding aldehyde with N-methyl­hydroxyl­amine hydro­chloride in the presence of base (Delpierre & Lamchen, 1965).

2-Benzo­thia­zolecarbaldehyde (0.1632 g, 0.01 mol), CH2CL2 (20 ml), and N-metyl­hydroxyl­amine hydro­chloride (0.9175 g, 0.011 mol) were placed in a 50 mL flask, and the mixture was stirred at room temperature. To the resulting solution was added NaHCO3 (2.7675 g, 0.033 mol). The reaction mixture was reluxed for 3 h. The NaCl precipitate and excess of sodium bicarbonate was removed by filtration, and the filtrate was evaporated to give a solid (1.83g, yield 95%). The solid was recrystallized from an absolute hexane solution.

Refinement details top

One aromatic H atom (H6) could be located in a difference Fourier map and was refined freely. All other H atoms were placed geometrically and treated as riding, with C—H = 0.93-0.96 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. A rotating model was used for the methyl H atoms. 36 outliers were omitted in the last cycles of refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound approximately viewed along [0 1 0], showing the formation of a dimeric unit through a pair of C—H···O hydrogen bonds (dashed lines).
N-[(Benzothiazol-2-yl)methylidene]methylamine N-oxide top
Crystal data top
C9H8N2OSZ = 2
Mr = 192.23F(000) = 200
Triclinic, P1Dx = 1.477 Mg m3
a = 5.5253 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4528 (19) ÅCell parameters from 110 reflections
c = 10.839 (4) Åθ = 18.2–8.2°
α = 83.51 (2)°µ = 0.33 mm1
β = 85.79 (3)°T = 294 K
γ = 77.39 (3)°Block, colourless
V = 432.2 (2) Å30.4 × 0.3 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
1477 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.018
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 77
Tmin = 0.423, Tmax = 0.994k = 99
3491 measured reflectionsl = 1414
1933 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1933 reflectionsΔρmax = 0.24 e Å3
130 parametersΔρmin = 0.19 e Å3
0 restraints
Crystal data top
C9H8N2OSγ = 77.39 (3)°
Mr = 192.23V = 432.2 (2) Å3
Triclinic, P1Z = 2
a = 5.5253 (14) ÅMo Kα radiation
b = 7.4528 (19) ŵ = 0.33 mm1
c = 10.839 (4) ÅT = 294 K
α = 83.51 (2)°0.4 × 0.3 × 0.2 mm
β = 85.79 (3)°
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
1933 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1477 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.994Rint = 0.018
3491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.24 e Å3
1933 reflectionsΔρmin = 0.19 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0619 (2)0.21490 (18)0.72954 (11)0.0573 (3)
S10.22145 (7)0.17869 (5)0.49058 (4)0.04032 (14)
N10.1621 (2)0.29247 (17)0.70659 (12)0.0406 (3)
N20.1774 (2)0.33921 (18)0.37522 (12)0.0415 (3)
C10.3325 (3)0.3346 (3)0.81411 (16)0.0536 (4)
H1A0.29360.43510.85130.091 (8)*
H1B0.31590.22770.87380.078 (7)*
H1C0.50000.36880.78780.100 (8)*
C20.2414 (3)0.3343 (2)0.59501 (14)0.0402 (3)
H20.40660.39380.58610.048 (5)*
C30.0891 (3)0.2941 (2)0.48533 (14)0.0366 (3)
C40.2333 (3)0.1897 (2)0.33030 (14)0.0368 (3)
C50.4328 (3)0.1236 (2)0.25071 (15)0.0423 (4)
H50.58580.06440.28130.049 (5)*
C60.3978 (3)0.1484 (2)0.12546 (16)0.0470 (4)
H60.531 (3)0.098 (2)0.0729 (18)0.058 (5)*
C70.1702 (3)0.2371 (2)0.07882 (15)0.0503 (4)
H70.15160.25130.00650.055 (5)*
C80.0273 (3)0.3040 (2)0.15698 (15)0.0483 (4)
H80.17900.36400.12530.065 (6)*
C90.0036 (3)0.2802 (2)0.28572 (14)0.0385 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (7)0.0711 (8)0.0454 (7)0.0102 (6)0.0084 (5)0.0037 (6)
S10.0344 (2)0.0451 (2)0.0377 (2)0.00088 (15)0.00453 (15)0.00450 (15)
N10.0385 (7)0.0394 (7)0.0402 (7)0.0011 (5)0.0012 (5)0.0029 (5)
N20.0322 (7)0.0500 (7)0.0399 (7)0.0034 (6)0.0031 (5)0.0038 (6)
C10.0562 (11)0.0594 (11)0.0411 (9)0.0060 (8)0.0077 (8)0.0069 (8)
C20.0344 (8)0.0425 (8)0.0415 (8)0.0033 (6)0.0033 (6)0.0032 (7)
C30.0331 (7)0.0355 (8)0.0404 (8)0.0051 (6)0.0043 (6)0.0030 (6)
C40.0367 (8)0.0362 (7)0.0375 (8)0.0072 (6)0.0035 (6)0.0035 (6)
C50.0374 (8)0.0431 (8)0.0443 (8)0.0024 (6)0.0012 (7)0.0082 (7)
C60.0472 (9)0.0492 (9)0.0443 (9)0.0083 (7)0.0086 (7)0.0133 (7)
C70.0555 (10)0.0605 (10)0.0359 (8)0.0128 (8)0.0020 (7)0.0081 (8)
C80.0420 (9)0.0608 (10)0.0402 (9)0.0055 (7)0.0086 (7)0.0030 (8)
C90.0369 (8)0.0410 (8)0.0376 (8)0.0076 (6)0.0024 (6)0.0049 (6)
Geometric parameters (Å, º) top
O1—N11.2763 (17)C2—C31.426 (2)
S1—C31.7456 (16)C4—C51.386 (2)
S1—C41.7269 (17)C4—C91.393 (2)
N1—C11.461 (2)C5—H50.9300
N1—C21.298 (2)C5—C61.371 (2)
N2—C31.303 (2)C6—H60.934 (19)
N2—C91.377 (2)C6—C71.389 (3)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C7—C81.371 (2)
C1—H1C0.9600C8—H80.9300
C2—H20.9300C8—C91.405 (2)
C4—S1—C388.33 (8)C5—C4—C9121.64 (14)
O1—N1—C1116.50 (13)C9—C4—S1109.96 (12)
O1—N1—C2123.49 (13)C4—C5—H5121.0
C2—N1—C1120.01 (13)C6—C5—C4117.98 (15)
C3—N2—C9109.93 (12)C6—C5—H5121.0
N1—C1—H1A109.5C5—C6—H6117.3 (12)
N1—C1—H1B109.5C5—C6—C7121.45 (15)
N1—C1—H1C109.5C7—C6—H6121.2 (12)
H1A—C1—H1B109.5C6—C7—H7119.6
H1A—C1—H1C109.5C8—C7—C6120.85 (15)
H1B—C1—H1C109.5C8—C7—H7119.6
N1—C2—H2118.2C7—C8—H8120.6
N1—C2—C3123.58 (14)C7—C8—C9118.84 (16)
C3—C2—H2118.2C9—C8—H8120.6
N2—C3—S1116.37 (11)N2—C9—C4115.40 (14)
N2—C3—C2121.29 (13)N2—C9—C8125.36 (14)
C2—C3—S1122.33 (11)C4—C9—C8119.24 (15)
C5—C4—S1128.40 (12)
O1—N1—C2—C31.7 (2)C4—S1—C3—C2178.11 (13)
S1—C4—C5—C6179.91 (13)C4—C5—C6—C70.1 (3)
S1—C4—C9—N20.08 (17)C5—C4—C9—N2179.70 (14)
S1—C4—C9—C8179.91 (12)C5—C4—C9—C80.5 (2)
N1—C2—C3—S11.4 (2)C5—C6—C7—C80.4 (3)
N1—C2—C3—N2179.90 (14)C6—C7—C8—C90.4 (3)
C1—N1—C2—C3178.46 (14)C7—C8—C9—N2179.78 (15)
C3—S1—C4—C5179.96 (15)C7—C8—C9—C40.0 (2)
C3—S1—C4—C90.38 (11)C9—N2—C3—S10.71 (17)
C3—N2—C9—C40.39 (19)C9—N2—C3—C2178.07 (13)
C3—N2—C9—C8179.43 (15)C9—C4—C5—C60.5 (2)
C4—S1—C3—N20.65 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.533.331 (2)145
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.533.331 (2)145
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The author is grateful to the STC `Institute for Syngle Crystals', 60 Lenina ave., Khar'kov 61001, Ukraine, for the single-crystal X-ray diffraction data.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArpaci, Ö., Şener, E. A., Yalçin, I. & Altanlar, N. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 283–288.  Google Scholar
First citationBradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). Br. J. Cancer, 86, 1348–1354.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDelpierre, G. R. & Lamchen, M. (1965). Q. Rev. Chem. Soc. 19, 329–348.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoroschuk, R. A., Turov, A. V. & Lampeka, R. D. (2006). Ukr. Khim. Zh. 72, 44–48.  Google Scholar
First citationJimonet, P., Audiau, F., Barreau, M., Blanchard, J.-C., Boireau, A., Bour, Y., Coléno, M.-A., Doble, A., Doerflinger, G., Do Huu, C., Donat, M.-H., Duchesne, J. M., Ganil, P., Guérémy, C., Honoré, E., Just, B., Kerphirique, R., Gontier, S., Hubert, P., Laduron, P. M., Le Blevec, J., Meunier, M., Miquet, J., Nemecek, C., Pasquet, M., Piot, O., Pratt, J., Rataud, J., Reibaud, M., Stutzmann, J. & Mignani, S. (1999). J. Med. Chem. 42, 2828–2843.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuano, J. L. G., Fraile, A., Núñez, A., Martín, M. R. & Alonso, I. (2012). Heterocycles, 84, 913–928.  CAS Google Scholar
First citationMokhir, A. A., Domasevich, K. V., Kent Dalley, N., Kou, X., Gerasimchuk, N. N. & Gerasimchuk, O. A. (1999). Inorg. Chim. Acta, 284, 85–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationMruthyunjayaswamy, B. H. M. & Shanthaveerappa, B. K. (2000). Indian J. Chem. Sect. B, 39, 433–439.  Google Scholar
First citationParamashivappa, R., Kumar, P. P., Rao, S. P. V. & Rao, S. (2003). Bioorg. Med. Chem. Lett. 13, 657–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetkova, E. G., Domasevitch, K. V., Gorichko, M. V., Zub, V. Y. & Lampeka, R. D. (2001). Z. Naturforsch. B Chem. Sci. 56, 1264–1270.  CrossRef CAS Google Scholar
First citationRaspertova, I. V., Domasevich, K. V. & Lampeka, R. D. (2002). Zh. Obshch. Khim. 72, 1854–1857.  Google Scholar
First citationŞener, E. A., Arpacı, Ö. T., Yalçın, İ. & Altanlar, N. (2000). Farmaco, 55, 397–405.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorssell, K. G. (1988). Organic Synthesis, pp. 75–93. New York: VCH Publishers Inc.  Google Scholar
First citationTufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 83–167. New York: John Wiley and Sons.  Google Scholar
First citationUl-Hasan, M., Chohan, Z. H. & Supuran, C. T. (2002). Main Group Met. Chem. 25, 291–296.  Google Scholar
First citationWells, A. F. (1986). In Structural Inorganic Chemistry. Oxford: Clarendon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds