research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of a dinuclear cadmium complex with 2,2′-bi­pyridine, monodentate nitrate and 3-carb­­oxy-6-methyl­pyridine-2-carboxyl­ate ligands: intra­molecular carbon­yl(lone pair)⋯π(ring) and nitrate(π)⋯π(ring) inter­actions

aDepartamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile, bDepartamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, and cGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: juan.granifo@ufrontera.cl, baggio@cnea.gov.ar

Edited by J. Simpson, University of Otago, New Zealand (Received 23 June 2015; accepted 27 June 2015; online 8 July 2015)

The centrosymmetric dinuclear complex bis­(μ-3-carb­oxy-6-methyl­pyridine-2-carboxyl­ato)-κ3N,O2:O2;κ3O2:N,O2-bis­[(2,2′-bi­pyridine-κ2N,N′)(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methyl­pyridine-2,3-di­carb­oxy­lic acid (mepydcH2) and 2,2′-bi­pyridine in methanol. The asymmetric unit consists of a CdII cation bound to a μ-κ3N,O2:O2-mepydcH anion, an N,N′-bidentate 2,2′-bi­pyridine group and an O-mono­dentate nitrate anion, and is completed with a methanol solvent mol­ecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH carboxyl­ate O atom to complete the dinuclear complex mol­ecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octa­hedral coordination geometry about the CdII atom, the Cd—O and Cd—N distances in this complex are surprisingly similar. The crystal structure consists of O—H⋯O hydrogen-bonded chains parallel to a, further bound by C—H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form inter­stitial columnar voids that are filled by the methanol solvent mol­ecules. These in turn inter­act with the complex mol­ecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ3 coordination mode found in the title compound.

1. Chemical context

Pyridinedi­carboxyl­ate ligands derived from pyridine-2,3-di­carb­oxy­lic acid (pydcH2) have been extensively used in the construction of a large variety of structural motifs. The two deprotonated forms pydcH and pydc2− have been shown to adopt a wide range of coordination modes through their carboxyl­ate oxygen and pyridyl nitro­gen atoms (Wang et al., 2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). CrystEngComm, 11, 292-297.]). A search in the CSD (Version 5.3; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) disclosed ca 200 complexes displaying diverse topologies, viz. monomers (Gao et al., 2010[Gao, E.-J., Zhu, M.-C., Huang, Y., Liu, L., Liu, H.-Y., Liu, F.-C., Ma, S. & Shi, C.-Y. (2010). Eur. J. Med. Chem. 45, 1034-1041.]; Drew et al., 1971[Drew, M. G. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959-2962.]), dimers (Shankar et al., 2013[Shankar, K., Das, B. & Baruah, J. B. (2013). Eur. J. Inorg. Chem. pp. 6147-6155.]), oligomers (Yu et al., 2003[Yu, Z.-T., Li, G.-H., Jiang, Y.-S., Xu, J.-J. & Chen, J.-S. (2003). Dalton Trans. pp. 4219-4220.]) as well as one-dimensional (Semerci et al., 2014[Semerci, F., Yeşilel, O. Z., Ölmez, H. & Büyükgüngör, O. (2014). Inorg. Chim. Acta, 409, 407-417.]), two-dimensional (Çolak et al., 2011[Çolak, A. T., Pamuk, G., Yeşilel, O. K. & Yüksel, F. (2011). Solid State Sci. 13, 2100-2104.]) and three-dimensional (Kanoo et al., 2012[Kanoo, P., Matsuda, R., Kitaura, R., Kitagawa, S. & Maji, T. K. (2012). Inorg. Chem. 51, 9141-9143.]) polymers. In the vast majority of cases the ligand adopts an N,O-chelating mode, although there are a few exceptions to this where the binding sites attach to different metal atoms (e.g. Wang et al., 2014[Wang, D.-F., Wang, Z.-H., Zhang, T., Huang, R.-B. & Zheng, L.-S. (2014). J. Mol. Struct. 1068, 210-215.]). By contrast, when complexes containing similar ligands but with methyl substituents in the 6-position were sought, namely those generated from 6-methyl­pyridine-2,3-di­carb­oxy­lic acid (mepydcH2), only a single structure was found involving the monoanionic mepydcH ligand similar to that reported here (Gurunatha & Maji, 2009[Gurunatha, K. L. & Maji, T. K. (2009). Inorg. Chim. Acta, 362, 1541-1545.]). This unique structural motif appears in the form of three isostructural, monomeric MII (M = Fe, Co, Ni) complexes [M(bpee)2(mepydcH)2] (bpee = 1,2-bis­(4-pyrid­yl)ethyl­ene) with octa­hedral geometry around MII. Both mepydcH fragments act in a simple κ2N,O2-chelating mode binding to a single nucleus while the two N-bound bpee ligands are trans-monodentate. The formation of these mononuclear complexes is unusual considering the obvious bridging potential of the bpee ligands. Mixed-ligand complexes based on non-methyl­ated 2,3-pyridinedi­carboxyl­ate and 4,4′-bi­pyridine-like ligands usually generate stable polymeric structures with the exo-bidentate ligands adopting a bridging role (Kanoo et al., 2012[Kanoo, P., Matsuda, R., Kitaura, R., Kitagawa, S. & Maji, T. K. (2012). Inorg. Chem. 51, 9141-9143.]; Wang et al., 2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). CrystEngComm, 11, 292-297.]; Maji et al., 2005[Maji, T. K., Mostafa, G., Matsuda, R. & Kitagawa, S. (2005). J. Am. Chem. Soc. 127, 17152-17153.]).

[Scheme 1]

In an attempt to understand the coordination behaviour of this unusual monoanionic mepydcH ligand better, we report the structure of the dinuclear complex [Cd2(2,2′-bi­pyridine)2(mepydcH)2(NO3)2]·MeOH (I)[link]. The uncommon bridging-chelating μ2-(κ3N,O2:O2) coordination behaviour and the fact that the ligand is only singly deprotonated has no counterpart in complexes of the non-methyl­ated ligands and makes this a genuinely novel structure. The closest relatives with 2,2′-bi­pyridine as the auxiliary ligand are found with di-anionic pydc2− ligands, but these are either mononuclear (Wang & Okabe, 2005[Wang, Y. & Okabe, N. (2005). Chem. Pharm. Bull. 53, 366-373.]) or form coordination polymers (Li et al., 2013[Li, W., Li, C.-H., Li, H.-F., Xu, J.-S. & Li, L. (2013). Jiegou Huaxue, 32, 1567-1571.]; Yin & Liu, 2009[Yin, H. & Liu, S.-X. (2009). J. Mol. Struct. 918, 165-173.]; Zhang et al. 2013[Zhang, C., Zhang, L.-Y., Wang, S.-L. & Huang, Q. (2013). Z. Kristallogr. New Cryst. Struct. 228, 265-266.]).

2. Structural commentary

The complex consists of a CdII cation to which a singly protonated 3-carb­oxy-6-methyl­pyridine-2-carboxyl­ate ion (mepydcH) chelates through the pyridine N and carboxyl­ate O atoms. A chelating 2,2′-bi­pyridine that binds through both nitro­gen atoms and a unidentate nitrate anion complete the coordination sphere; the asymmetric unit also contains a non-coordinating half-occupancy methanol solvate. This five coordinate CdII unit, in turn, binds to its centrosymmetric image through the carboxyl­ate oxygen atom of the mepydcH ligand, forming a pair of Cd–O–Cd bridges. As a result, a dimeric unit forms (Fig. 1[link]) with each CdII atom in a six-coordinate N3O3 ligand environment. The Cd—X (X = N or O) distances are reasonable, spanning the range 2.304 (2)–2.332 (3) Å. However, the coordination angles vary widely [X–Cd–X ranges: cis 71.15 (10)–115.79 (9)°; trans 142.36 (8)–159.48 (9)°]; the result is a rather distorted octa­hedral geometry around Cd1. Selected geometric parameters are shown in Table 1[link]; the bridging Cd—O distances are the shortest in the coordination sphere, 2.304 (2) and 2.310 (2) Å, resulting in a Cd⋯Cd separation of 3.700 (3) Å. This value is slightly larger than the mean for similar environments found in the CSD (3.61 Å for 885 cases), though well within the sample standard deviation (0.22 Å).

Table 1
Selected bond lengths (Å)

Cd1—O1Bi 2.304 (2) Cd1—N1A 2.323 (3)
Cd1—O1B 2.310 (2) Cd1—O1C 2.329 (2)
Cd1—N2A 2.310 (3) Cd1—N1B 2.332 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Displacement ellipsoid plot of (I)[link] (with 40% probability ellipsoids), showing the dimeric unit with atom and ring labelling. Inter­actions within the dimeric unit are also shown, C—H⋯O as dashed lines, C—O⋯π(ring) as double-dashed lines. For symmetry codes see Tables 2[link] and 3[link]; additional symmetry code: (i) 1 − x, 1 − y, 1 − z.

3. Supra­molecular features

The crystal structure, made up of isolated dimers, is sustained by three different types of non-covalent inter­action, viz., hydrogen bonds (Table 2[link]), C=O⋯π and nitrate(π)⋯π contacts (Table 3[link]). These inter­actions can be clearly differentiated according to the substructure that they support:

Table 2
Hydrogen-bonding inter­actions (Å, °) in (I)

Cg1 is the centroid of the N1A/C1A–C5A ring.

Int.# D—H⋯A D—H H⋯A D⋯A D—H⋯A
#1 C10A—H10A⋯O1C 0.93 2.52 3.143 (5) 124
#2 O4B—H4BO⋯O3Cii 0.84 (3) 1.83 (3) 2.670 (5) 176 (6)
#3 C7A—H7A⋯O2Biii 0.93 2.42 3.339 (4) 168
#4 C8A—H8A⋯O2Ciii 0.93 2.59 3.51 (4) 167
#5 C9A—H9A⋯O4Biv 0.93 2.53 3.186 (5) 127
#6 C8B—H8BC⋯O1M 0.960 2.54 3.361 (8) 144
#7 O1M—H1M⋯O3Biii 0.85 (5) 2.42 (9) 2.951 (9) 121 (9)
#8 C1M—H1M3⋯Cg1 0.96 2.78 3.640 149
Symmetry codes: (ii) 1 + x, y, z; (iii) x, 1 + y, z; (iv) −1 + x, 1 + y, z.

Table 3
X—O⋯π inter­actions (Å, °)in (I)

Cg1 is the centroid of the N1A/C1A–C5A ring and Cg2 is the centroid of the N2A/C6A–C10A ring.

Int.# X—O⋯Cg O⋯Cg X—O⋯Cg
#9 C6B—O2BCg2i 3.637 (3) 126.6 (2)
#10 N1C—O2CCg1i 3.442 (4) 104.2 (2)
Symmetry code: (i) 1 − x, 1 − y, 1 − z.

a) Contacts #1 (Table 2[link]) and #9, #10 (Table 3[link]) are inter­nal to the dinuclear motif, as shown in Fig. 1[link]. The first one links the bi­pyridine C10A—H10A group with the coordinating nitrate oxygen O1C. Contact #9 is a typical lone pair–π inter­action with a dihedral angle of 72.19° between the carboxyl­ate and the ring plane, and a C—O⋯Cg2 angle of 126.63°. These values are close to those for the ideal geometry (90° and 120°, respectively) when a lone pair provided by a carbonyl oxygen points toward the centroid of an aromatic ring (Egli & Sarkhel, 2007[Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197-205.]). By contrast, in contact #10 the orientation of the nitrate plane is more or less parallel to the ring plane (6.84°), suggesting a ππ inter­action with the π-orbitals of the nitrate fragment inter­acting with those of the aromatic ring. A similar argument has already been applied by Frontera et al. (2011[Frontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. & Reedijk, J. (2011). Angew. Chem. Int. Ed. 50, 9564-9583.]) and García-Raso et al. (2009[García-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., Estarellas, C., Frontera, A., Quiñonero, D. & Deyà, P. M. (2009). Cryst. Growth Des. 9, 2363-2376.]) when nitrate anions inter­act with pyrimidinium rings. These carbon­yl(lone pair)⋯π(ring) (#9) and nitrate(π)⋯π(ring) (#10) inter­actions in (I)[link] fulfill a relevant function, serving to strengthen the dimeric unit (Fig. 1[link]).

b) Strong inter­molecular O—H⋯O contacts #2 (Table 2[link]) involving the hydrogen atom of the free carb­oxy­lic acid group of the mepydcH ligand with a non-bonded oxygen atom of a nitrate ligand, has the pivotal action of linking the dimers along a, forming chains parallel to [100] (Fig. 2[link]).

[Figure 2]
Figure 2
The [100] chain defined by O—H⋯O inter­action #2 (Table 2[link]).

c) C—H⋯O inter­actions #3, #4 and #5 (Table 2[link]), in turn, serve to link the above chains laterally along b, to form 2D substructures parallel to (001) (Fig. 3[link]a). These planes juxtapose along [001] with rather weak direct inter­actions. In the process, however, significant columnar voids parallel to the chains are formed (with a volume 13% of the total cell volume, Fig. 3[link]b) in which the partial occupancy methanol solvate mol­ecules reside. These are not free, but enter instead into a number of weak C—H⋯O, O—H⋯O and C—H⋯π interactions (#6, #7 and #8 in Table 2[link]) linking them to a framework of complex mol­ecules, further stabilizing the structure.

[Figure 3]
Figure 3
Two projections along [100], presenting (within square brakets) views of the two-dimensional substructures parallel to (001), formed by the [100] columns linked along b. (a) Showing a single plane, with inter­action details. (b) Displaying the columnar voids (coloured) generated by juxtaposition of the planes.

4. ATR (attenuated total reflectance) FT–IR spectroscopy

The IR spectra of mepydcH2, 2.2′-bi­pyridine and (I)[link] were recorded on an Agilent Cary 630 FT–IR spectrometer with Varian Resolutions Pro software, using a Diamond ATR accessory. The FT–IR spectrum of (I)[link] (Fig. 4[link]) was recorded in the 4000–600 cm−1 range, and confirms the structural data indicating the presence of the coordinating nitrate and mepydcH anions. Bands due to the unidentate NO3 group were found at 1478 and 1298 cm−1 and appear due to the νasym(ONO) and νsym(ONO) vibrations, with a shoulder at 1010 cm−1 due to the ν(NO) stretching modes of nitrate groups (Nakamoto, 1997[Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed. New York: Wiley & Sons.]). The carb­oxy­lic acid group (COOH) of the mepydcH ligand in complex (I)[link] is identified by a weak band at 3083 cm−1, ν(OH) stretching for a hydrogen-bonded system (Alisir et al., 2013[Alisir, S. H., Sariboga, B., Topcu, Y. & Yang, S.-Y. (2013). J. Inorg. Organomet. Polym. 23, 1061-1067.]), and a very strong band at 1738 cm−1, ν(C=O) stretch. The deprotonated carboxyl­ate (COO) is characterized by the asymmetric and symmetric stretching modes νas at 1593 cm−1 and νs at 1322 cm−1. This confirms the unidentate coordination of the carboxyl­ate O atom, with the difference between these frequencies being > 200 cm−1(Δ = νasνs = 271 cm−1) (Deacon & Phillips, 1980[Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227-250.]). Finally, around 1400 cm−1, a set of three bands appears (1412, 1391 and 1369 cm−1) of almost equal intensity due to the ν(C=C) + ν(C=N) vibrations from the coordinating 2,2′-bi­pyridine ligand (Yan et al., 2011[Yan, B., Hodsdon, S. A., Li, Y.-F., Carmichael, C. N., Cao, Y. & Pan, W.-P. (2011). J. Solid State Chem. 184, 3179-3184.]).

[Figure 4]
Figure 4
FT–IR spectrum of (I)

5. Synthesis and crystallization

Solid 2,2′-bi­pyridine (0.031 g, 0.20 mmol) was added to a solution prepared by disolving Cd(NO3)·4H2O (0.062 g, 0.20 mmol) and mepydcH2 (0.036 g, 0.20 mmol) in MeOH (4.0 mL). The mixture was stirred to dissolve the 2,2′-bi­pyridine and was then allowed to stand undisturbed at room temperature in an uncovered 10 mL beaker. Colourless single crystals of compound (I)[link] suitable for X-ray diffraction were obtained within 8 h. The crystals were separated by filtration, washed with MeOH (2 x 2 mL) and diethyl ether (2 x 3 mL) (yield: 0.045 g, 44%).

6. Refinement

Relevant crystallographic data for (I)[link] as well as pertinent experimental details are provided in Table 4[link]. H atoms bonded to C were found in a difference Fourier map, but were then idealized and refined as riding atoms; C—Harom: 0.93 Å, Ueq(H) = 1.2Ueq(C); C—Hmeth­yl: 0.97 Å, Ueq(H) = 1.5Ueq(C). The O—H hydrogen atom was refined with a restrained O—H distance [0.85 (1)Å], and with U(H) = 1.2Ueq(O). The methanol solvate was refined at half occupancy.

Table 4
Experimental details

Crystal data
Chemical formula [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH4O
Mr 1053.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 8.4096 (5), 10.9626 (6), 11.5056 (4)
α, β, γ (°) 71.241 (4), 86.537 (4), 86.803 (5)
V3) 1001.79 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.14
Crystal size (mm) 0.36 × 0.14 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Gemini CCD S Ultra
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
No. of measured, independent and observed [I > 2σ(I)] reflections 21744, 4819, 4155
Rint 0.057
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.01
No. of reflections 4819
No. of parameters 298
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.07, −0.74
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Bis(µ-3-carboxy-6-methylpyridine-2-carboxylato)-κ3N,O2:O2;κ3O2:N,O2-bis[(2,2'-bipyridine-κ2N,N'))(nitrato-κO)cadmium] methanol monosolvate top
Crystal data top
[Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH4OZ = 1
Mr = 1053.50F(000) = 526
Triclinic, P1Dx = 1.746 Mg m3
a = 8.4096 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9626 (6) ÅCell parameters from 2675 reflections
c = 11.5056 (4) Åθ = 3.8–28.8°
α = 71.241 (4)°µ = 1.14 mm1
β = 86.537 (4)°T = 295 K
γ = 86.803 (5)°Block, colourless
V = 1001.79 (9) Å30.36 × 0.14 × 0.10 mm
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
4155 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
ω scans, thick slicesθmax = 29.1°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1111
k = 1414
21744 measured reflectionsl = 1515
4819 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.5425P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4819 reflectionsΔρmax = 1.07 e Å3
298 parametersΔρmin = 0.74 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.47993 (3)0.63548 (2)0.35527 (2)0.01961 (9)
N1A0.6981 (3)0.7364 (3)0.3922 (3)0.0229 (6)
N2A0.4198 (3)0.8540 (3)0.3047 (2)0.0223 (6)
C1A0.8378 (4)0.6740 (4)0.4272 (3)0.0279 (7)
H1A0.85160.58820.43060.033*
C2A0.9614 (4)0.7331 (4)0.4581 (3)0.0292 (8)
H2A1.05750.68830.48210.035*
C3A0.9393 (4)0.8601 (4)0.4526 (3)0.0312 (8)
H3A1.02040.90200.47400.037*
C4A0.7968 (4)0.9252 (4)0.4152 (3)0.0286 (7)
H4A0.78121.01140.41040.034*
C5A0.6771 (4)0.8603 (3)0.3851 (3)0.0196 (6)
C6A0.5211 (4)0.9244 (3)0.3409 (3)0.0201 (6)
C7A0.4801 (4)1.0501 (3)0.3369 (3)0.0263 (7)
H7A0.55041.09760.36290.032*
C8A0.3343 (4)1.1041 (3)0.2940 (3)0.0286 (8)
H8A0.30481.18770.29200.034*
C9A0.2327 (4)1.0328 (3)0.2540 (3)0.0303 (8)
H9A0.13481.06790.22300.036*
C10A0.2801 (4)0.9084 (3)0.2614 (3)0.0280 (7)
H10A0.21160.85990.23510.034*
O1B0.6097 (3)0.4384 (2)0.44192 (19)0.0216 (5)
O2B0.7028 (3)0.2598 (2)0.4031 (2)0.0256 (5)
O3B0.8147 (3)0.1816 (3)0.1644 (3)0.0390 (6)
O4B0.9923 (3)0.2717 (3)0.2400 (3)0.0340 (6)
H4BO1.004 (6)0.344 (2)0.248 (4)0.051 (14)*
N1B0.5964 (3)0.5661 (3)0.1972 (2)0.0200 (5)
C1B0.6745 (4)0.4503 (3)0.2349 (3)0.0185 (6)
C2B0.7605 (4)0.3994 (3)0.1523 (3)0.0226 (7)
C3B0.7607 (5)0.4714 (4)0.0288 (3)0.0316 (8)
H3B0.81640.44020.02880.038*
C4B0.6796 (5)0.5880 (4)0.0090 (3)0.0343 (9)
H4B0.67990.63610.09190.041*
C5B0.5963 (4)0.6345 (3)0.0780 (3)0.0255 (7)
C6B0.6608 (4)0.3736 (3)0.3714 (3)0.0185 (6)
C7B0.8543 (4)0.2739 (3)0.1893 (3)0.0265 (7)
C8B0.5036 (5)0.7606 (4)0.0418 (3)0.0376 (9)
H8BA0.51310.79990.04570.056*
H8BB0.39340.74620.06690.056*
H8BC0.54480.81660.08110.056*
N1C0.1872 (3)0.5118 (3)0.2872 (2)0.0248 (6)
O1C0.2228 (3)0.6168 (3)0.3000 (3)0.0350 (6)
O2C0.2871 (3)0.4227 (3)0.2993 (3)0.0341 (6)
O3C0.0460 (3)0.5009 (3)0.2619 (3)0.0374 (6)
O1M0.7710 (10)0.9624 (9)0.0748 (8)0.072 (2)0.5
H1M0.816 (4)1.0346 (13)0.046 (17)0.18 (9)*0.5
C1M0.8993 (11)0.8676 (10)0.0932 (8)0.060 (3)0.5
H1M10.99360.90680.04900.090*0.5
H1M20.87130.79940.06370.090*0.5
H1M30.91890.83310.17920.090*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02114 (13)0.01596 (13)0.02201 (13)0.00148 (9)0.00289 (9)0.00650 (9)
N1A0.0207 (14)0.0214 (14)0.0274 (14)0.0001 (11)0.0030 (11)0.0087 (11)
N2A0.0226 (14)0.0178 (14)0.0259 (14)0.0016 (11)0.0031 (11)0.0062 (11)
C1A0.0255 (17)0.0252 (18)0.0331 (18)0.0027 (14)0.0037 (14)0.0095 (15)
C2A0.0201 (16)0.038 (2)0.0293 (18)0.0008 (15)0.0038 (14)0.0105 (16)
C3A0.0261 (18)0.040 (2)0.0324 (19)0.0088 (16)0.0041 (15)0.0166 (16)
C4A0.0336 (19)0.0228 (18)0.0327 (18)0.0046 (15)0.0020 (15)0.0129 (15)
C5A0.0216 (15)0.0188 (16)0.0192 (14)0.0028 (12)0.0002 (12)0.0069 (12)
C6A0.0231 (16)0.0182 (16)0.0181 (14)0.0022 (13)0.0004 (12)0.0048 (12)
C7A0.0312 (18)0.0193 (17)0.0279 (17)0.0039 (14)0.0003 (14)0.0069 (14)
C8A0.036 (2)0.0169 (17)0.0293 (18)0.0031 (14)0.0055 (15)0.0043 (14)
C9A0.0277 (18)0.0239 (18)0.0374 (19)0.0089 (15)0.0044 (15)0.0083 (15)
C10A0.0248 (17)0.0228 (18)0.0363 (19)0.0030 (14)0.0067 (14)0.0089 (15)
O1B0.0278 (12)0.0180 (11)0.0185 (11)0.0049 (9)0.0004 (9)0.0062 (9)
O2B0.0328 (13)0.0168 (12)0.0271 (12)0.0025 (10)0.0033 (10)0.0073 (10)
O3B0.0471 (17)0.0307 (15)0.0461 (16)0.0020 (12)0.0037 (13)0.0221 (13)
O4B0.0265 (13)0.0314 (15)0.0481 (16)0.0076 (11)0.0078 (11)0.0182 (13)
N1B0.0196 (13)0.0185 (14)0.0216 (13)0.0010 (11)0.0033 (10)0.0055 (11)
C1B0.0173 (14)0.0193 (16)0.0208 (15)0.0016 (12)0.0047 (12)0.0082 (12)
C2B0.0197 (16)0.0245 (17)0.0259 (16)0.0017 (13)0.0012 (13)0.0110 (14)
C3B0.038 (2)0.035 (2)0.0234 (17)0.0039 (16)0.0038 (15)0.0126 (15)
C4B0.047 (2)0.032 (2)0.0203 (16)0.0064 (17)0.0004 (15)0.0051 (15)
C5B0.0295 (18)0.0226 (17)0.0234 (16)0.0013 (14)0.0052 (13)0.0055 (13)
C6B0.0156 (14)0.0181 (16)0.0237 (15)0.0006 (12)0.0029 (12)0.0088 (12)
C7B0.0265 (17)0.0270 (19)0.0283 (17)0.0012 (14)0.0046 (14)0.0135 (15)
C8B0.051 (2)0.032 (2)0.0256 (18)0.0103 (18)0.0058 (17)0.0053 (16)
N1C0.0250 (15)0.0292 (16)0.0218 (13)0.0013 (12)0.0019 (11)0.0104 (12)
O1C0.0264 (13)0.0315 (15)0.0561 (17)0.0001 (11)0.0092 (12)0.0254 (13)
O2C0.0268 (13)0.0282 (14)0.0484 (16)0.0019 (11)0.0004 (11)0.0143 (12)
O3C0.0253 (13)0.0381 (16)0.0555 (17)0.0034 (11)0.0108 (12)0.0224 (14)
O1M0.078 (6)0.075 (6)0.077 (5)0.016 (5)0.010 (4)0.039 (5)
C1M0.052 (6)0.097 (9)0.036 (5)0.018 (6)0.010 (4)0.023 (5)
Geometric parameters (Å, º) top
Cd1—O1Bi2.304 (2)O1B—C6B1.281 (4)
Cd1—O1B2.310 (2)O2B—C6B1.220 (4)
Cd1—N2A2.310 (3)O3B—C7B1.205 (4)
Cd1—N1A2.323 (3)O4B—C7B1.326 (4)
Cd1—O1C2.329 (2)O4B—H4BO0.845 (10)
Cd1—N1B2.332 (3)N1B—C5B1.336 (4)
N1A—C5A1.336 (4)N1B—C1B1.348 (4)
N1A—C1A1.342 (4)C1B—C2B1.397 (4)
N2A—C10A1.336 (4)C1B—C6B1.525 (4)
N2A—C6A1.349 (4)C2B—C3B1.386 (5)
C1A—C2A1.377 (5)C2B—C7B1.496 (5)
C1A—H1A0.9300C3B—C4B1.367 (5)
C2A—C3A1.375 (5)C3B—H3B0.9300
C2A—H2A0.9300C4B—C5B1.398 (5)
C3A—C4A1.378 (5)C4B—H4B0.9300
C3A—H3A0.9300C5B—C8B1.497 (5)
C4A—C5A1.387 (5)C8B—H8BA0.9600
C4A—H4A0.9300C8B—H8BB0.9600
C5A—C6A1.490 (4)C8B—H8BC0.9600
C6A—C7A1.389 (5)N1C—O2C1.230 (4)
C7A—C8A1.379 (5)N1C—O3C1.260 (4)
C7A—H7A0.9300N1C—O1C1.261 (4)
C8A—C9A1.380 (5)O1M—C1M1.431 (8)
C8A—H8A0.9300O1M—H1M0.855 (10)
C9A—C10A1.377 (5)C1M—H1M10.9600
C9A—H9A0.9300C1M—H1M20.9600
C10A—H10A0.9300C1M—H1M30.9600
O1Bi—Cd1—O1B73.38 (8)N2A—C10A—C9A123.1 (3)
O1Bi—Cd1—N2A101.83 (9)N2A—C10A—H10A118.4
O1B—Cd1—N2A159.48 (9)C9A—C10A—H10A118.4
O1Bi—Cd1—N1A94.90 (9)C6B—O1B—Cd1i128.9 (2)
O1B—Cd1—N1A89.17 (9)C6B—O1B—Cd1118.42 (19)
N2A—Cd1—N1A71.15 (10)Cd1i—O1B—Cd1106.62 (8)
O1Bi—Cd1—O1C88.36 (9)C7B—O4B—H4BO109 (3)
O1B—Cd1—O1C112.97 (9)C5B—N1B—C1B120.4 (3)
N2A—Cd1—O1C86.44 (9)C5B—N1B—Cd1124.9 (2)
N1A—Cd1—O1C157.56 (10)C1B—N1B—Cd1114.7 (2)
O1Bi—Cd1—N1B142.36 (8)N1B—C1B—C2B121.7 (3)
O1B—Cd1—N1B71.66 (8)N1B—C1B—C6B117.5 (3)
N2A—Cd1—N1B115.79 (9)C2B—C1B—C6B120.7 (3)
N1A—Cd1—N1B98.09 (9)C3B—C2B—C1B117.6 (3)
O1C—Cd1—N1B92.65 (9)C3B—C2B—C7B118.4 (3)
C5A—N1A—C1A119.8 (3)C1B—C2B—C7B124.1 (3)
C5A—N1A—Cd1117.1 (2)C4B—C3B—C2B120.4 (3)
C1A—N1A—Cd1123.0 (2)C4B—C3B—H3B119.8
C10A—N2A—C6A118.9 (3)C2B—C3B—H3B119.8
C10A—N2A—Cd1123.4 (2)C3B—C4B—C5B119.6 (3)
C6A—N2A—Cd1116.7 (2)C3B—C4B—H4B120.2
N1A—C1A—C2A122.1 (3)C5B—C4B—H4B120.2
N1A—C1A—H1A119.0N1B—C5B—C4B120.4 (3)
C2A—C1A—H1A119.0N1B—C5B—C8B117.7 (3)
C3A—C2A—C1A118.3 (3)C4B—C5B—C8B121.9 (3)
C3A—C2A—H2A120.9O2B—C6B—O1B126.7 (3)
C1A—C2A—H2A120.9O2B—C6B—C1B118.0 (3)
C2A—C3A—C4A119.9 (3)O1B—C6B—C1B115.3 (3)
C2A—C3A—H3A120.0O3B—C7B—O4B120.6 (3)
C4A—C3A—H3A120.0O3B—C7B—C2B122.0 (3)
C3A—C4A—C5A118.9 (3)O4B—C7B—C2B117.1 (3)
C3A—C4A—H4A120.5C5B—C8B—H8BA109.5
C5A—C4A—H4A120.5C5B—C8B—H8BB109.5
N1A—C5A—C4A121.0 (3)H8BA—C8B—H8BB109.5
N1A—C5A—C6A116.7 (3)C5B—C8B—H8BC109.5
C4A—C5A—C6A122.3 (3)H8BA—C8B—H8BC109.5
N2A—C6A—C7A121.0 (3)H8BB—C8B—H8BC109.5
N2A—C6A—C5A116.6 (3)O2C—N1C—O3C121.1 (3)
C7A—C6A—C5A122.4 (3)O2C—N1C—O1C121.0 (3)
C8A—C7A—C6A119.4 (3)O3C—N1C—O1C117.9 (3)
C8A—C7A—H7A120.3N1C—O1C—Cd1118.4 (2)
C6A—C7A—H7A120.3C1M—O1M—H1M104.7 (13)
C7A—C8A—C9A119.4 (3)O1M—C1M—H1M1109.5
C7A—C8A—H8A120.3O1M—C1M—H1M2109.5
C9A—C8A—H8A120.3H1M1—C1M—H1M2109.5
C10A—C9A—C8A118.2 (3)O1M—C1M—H1M3109.5
C10A—C9A—H9A120.9H1M1—C1M—H1M3109.5
C8A—C9A—H9A120.9H1M2—C1M—H1M3109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bonding interactions (Å, °) in (I) top
Cg1 is the centroid of the N1A/C1A–C5A ring.
Int.#D—H···AD—HH···AD···AD—H···A
#1C10A—H10A···O1C0.932.523.143 (5)124
#2O4B—H4BO···O3Cii0.84 (3)1.83 (3)2.670 (5)176 (6)
#3C7A—H7A···O2Biii0.932.423.339 (4)168
#4C8A—H8A···O2Ciii0.932.593.51 (4)167
#5C9A—H9A···O4Biv0.932.533.186 (5)127
#6C8B—H8BC···O1M0.9602.543.361 (8)144
#7O1M—H1M···O3Biii0.85 (5)2.42 (9)2.951 (9)121 (9)
#8C1M—H1M3···Cg10.962.783.640149
Symmetry codes: (ii) 1 + x, y, z; (iii) x, 1 + y, z; (iv) -1 + x, 1 + y, z.
X—O···π interactions (Å, °)in (I) top
Cg1 is the centroid of the N1A/C1A–C5A ring and Cg2 is the centroid of the N2A/C6A–C10A ring.
Int.#X—O···CgO···CgX—O···Cg
#9C6B-O2B···Cg2i3.637 (3)126.6 (2)
#10N1C-O2C···Cg1i3.442 (4)104.2 (2)
Symmetry code: (i) 1 - x, 1 - y, 1 - z.
 

Acknowledgements

The authors acknowledge the Universidad de La Frontera (Proyecto DIUFRO DI15–0027) and ANPCyT (project No. PME 2006–01113) for the purchase of the Oxford Gemini CCD diffractometer.

References

First citationAlisir, S. H., Sariboga, B., Topcu, Y. & Yang, S.-Y. (2013). J. Inorg. Organomet. Polym. 23, 1061–1067.  Web of Science CSD CrossRef CAS Google Scholar
First citationÇolak, A. T., Pamuk, G., Yeşilel, O. K. & Yüksel, F. (2011). Solid State Sci. 13, 2100–2104.  Google Scholar
First citationDeacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250.  CrossRef CAS Web of Science Google Scholar
First citationDrew, M. G. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959–2962.  CSD CrossRef Web of Science Google Scholar
First citationEgli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. & Reedijk, J. (2011). Angew. Chem. Int. Ed. 50, 9564–9583.  Web of Science CrossRef CAS Google Scholar
First citationGao, E.-J., Zhu, M.-C., Huang, Y., Liu, L., Liu, H.-Y., Liu, F.-C., Ma, S. & Shi, C.-Y. (2010). Eur. J. Med. Chem. 45, 1034–1041.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGarcía-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., Estarellas, C., Frontera, A., Quiñonero, D. & Deyà, P. M. (2009). Cryst. Growth Des. 9, 2363–2376.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurunatha, K. L. & Maji, T. K. (2009). Inorg. Chim. Acta, 362, 1541–1545.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanoo, P., Matsuda, R., Kitaura, R., Kitagawa, S. & Maji, T. K. (2012). Inorg. Chem. 51, 9141–9143.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, W., Li, C.-H., Li, H.-F., Xu, J.-S. & Li, L. (2013). Jiegou Huaxue, 32, 1567–1571.  CAS Google Scholar
First citationMaji, T. K., Mostafa, G., Matsuda, R. & Kitagawa, S. (2005). J. Am. Chem. Soc. 127, 17152–17153.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed. New York: Wiley & Sons.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSemerci, F., Yeşilel, O. Z., Ölmez, H. & Büyükgüngör, O. (2014). Inorg. Chim. Acta, 409, 407–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationShankar, K., Das, B. & Baruah, J. B. (2013). Eur. J. Inorg. Chem. pp. 6147–6155.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). CrystEngComm, 11, 292–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y. & Okabe, N. (2005). Chem. Pharm. Bull. 53, 366–373.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, D.-F., Wang, Z.-H., Zhang, T., Huang, R.-B. & Zheng, L.-S. (2014). J. Mol. Struct. 1068, 210–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, B., Hodsdon, S. A., Li, Y.-F., Carmichael, C. N., Cao, Y. & Pan, W.-P. (2011). J. Solid State Chem. 184, 3179–3184.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, H. & Liu, S.-X. (2009). J. Mol. Struct. 918, 165–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, Z.-T., Li, G.-H., Jiang, Y.-S., Xu, J.-J. & Chen, J.-S. (2003). Dalton Trans. pp. 4219–4220.  Web of Science CSD CrossRef Google Scholar
First citationZhang, C., Zhang, L.-Y., Wang, S.-L. & Huang, Q. (2013). Z. Kristallogr. New Cryst. Struct. 228, 265–266.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds