metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[hemi[1,3-bis­­(2,6-diisoprop­ylphenyl)imidazolium] [[μ3-acetato-κ3O:O:O′-tri-μ2-acetato-κ6O:O′-dicopper(II)(CuCu)]-μ-chlorido] di­chloro­methane sesqui­solvate]

aSchool of Chemistry, University of Manchester, Manchester M13 9PL, UK, and bPakistan Institute of Nuclear Science and Technology, PO Box Nilore, Islamabad, Pakistan
*Correspondence e-mail: miqbal7862003@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 June 2015; accepted 18 July 2015; online 25 July 2015)

The title copper(II) complex, {(C27H37N2)[Cu4(CH3COO)8Cl]·3CH2Cl2}n, is a one-dimensional coordination polymer. The asymmetric unit is composed of a copper(II) tetra­acetate paddle-wheel complex, a Cl anion situated on a twofold rotation axis, half a 1,3-bis­(2,6-diisoprop­ylphenyl)imidazolium cation (the whole mol­ecule being generated by twofold rotation symmetry) and one and a half of a di­chloro­methane solvent mol­ecule (one being located about a twofold rotation axis). The central metal-organic framework comprises of a tetra­nuclear copper(II) acetate `paddle-wheel' complex which arises from the dimerization of the copper(II) tetra­acetate core comprising of three μ2-bidentate acetate and one μ3-tridentate acetate ligands per binuclear paddle-wheel complex. Both CuII atoms of the binuclear component adopt a distorted square-pyramidal coordination geometry (τ = 0.04), with a Cu⋯Cu separation of 2.6016 (2) Å. The apical coordination site of one CuII atom is occupied by an O atom of a neighbouring acetate bridge [Cu—O = 2.200 (2) Å], while that of the second CuII atom is occupied by a bridging chloride ligand [Cu⋯Cl = 2.4364 (4) Å]. The chloride bridge is slightly bent with respect to the Cu⋯Cu inter­nuclear axis [Cu—Cl—Cu = 167.06 (6)°] and the tetra­nuclear units are located about a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]. Charge neutrality is maintained by the inclusion of the 1,3-bis­(2,6-diisoprop­ylphenyl)imidazolium cation within the crystal lattice. In the crystal, the cation and di­chloro­methane solvent mol­ecules are linked to the coordin­ation polymer by various C—H⋯O and C—H⋯Cl hydrogen bonds. There are no other significant inter­molecular inter­actions present.

1. Related literature

For the use of N-heterocyclic carbenes (NHCs) as ancillary ligands for the preparation of transition-metal-based catalysts, see: Hopkinson et al. (2014[Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485-496.]). For their use in organic transformations, see: Faulkner et al. (2005[Faulkner, J., Edlin, C. D., Fengas, D., Preece, I., Quayle, P. & Richards, S. N. (2005). Tetrahedron Lett. 46, 2381-2385.]); Bull et al. (2008[Bull, J. A., Hutchings, M. G., Luján, C. & Quayle, P. (2008). Tetrahedron Lett. 49, 1352-1356.]). For details of the magnetic properties of binuclear CuII carboxyl­ate compounds, see: Kato et al. (1964[Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99-128.]); Zhang et al. (2005[Zhang, J., Hubert-Pfalzgraf, L. G. & Luneau, D. (2005). Polyhedron, 24, 1185-1195.]); Cotton et al. (2000[Cotton, F. A., Dikarev, E. V. & Petrukhina, M. A. (2000). Inorg. Chem. 39, 6072-6079.]), and for their electrochemical behaviour, see: Paschke et al. (2003[Paschke, R., Liebsch, S., Tschierske, C., Oakley, M. A. & Sinn, E. (2003). Inorg. Chem. 42, 8230-8240.]). For examples of copper(II) paddle-wheel structures, see: de Meester et al. (1973[Meester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575-2578.]); Ackermann et al. (2000[Ackermann, H., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 1712-1714.]). For chloride-bridged binuclear systems, see: Chen et al. (2015[Chen, D.-M., Ma, J.-G. & Cheng, P. (2015). Dalton Trans. 44, 8926-8931.]). For imidazolium-functionalized acetate ligands, see: Suresh et al. (2015[Suresh, P., Babu, C. N. & Prabusankar, G. (2015). Polyhedron, 89, 322-329.]). For the description of the fivefold coordination symmetry parameter, τ, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C27H37N2)[Cu4(C2H3O2)8Cl]·3CH2Cl2

  • Mr = 1406.32

  • Monoclinic, C 2/c

  • a = 22.097 (2) Å

  • b = 13.146 (2) Å

  • c = 23.607 (3) Å

  • β = 117.122 (4)°

  • V = 6103.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 100 K

  • 0.22 × 0.13 × 0.05 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 0.918

  • 26111 measured reflections

  • 7274 independent reflections

  • 5215 reflections with I > 2σ(I)

  • Rint = 0.079

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.098

  • S = 0.98

  • 7274 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2i 0.98 2.43 3.368 (4) 161
C21—H21⋯O1ii 0.95 2.54 3.344 (4) 142
C22—H22⋯Cl4iii 0.95 2.78 3.626 (5) 149
C22—H22⋯Cl4iv 0.95 2.78 3.626 (5) 149
C23—H23A⋯O5v 0.99 2.42 3.316 (5) 151
C23—H23B⋯O7 0.99 2.42 3.413 (5) 177
C24—H24B⋯O5 0.99 2.42 3.303 (4) 148
C24—H24B⋯O7 0.99 2.52 3.378 (4) 145
C24—H24A⋯O5v 0.99 2.42 3.303 (4) 148
C24—H24A⋯O7v 0.99 2.52 3.378 (4) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON.

Supporting information


Synthesis and crystallization top

To a solution of 1,3-bis­(2,6-di-iso­propyl­phenyl)­imidazol-2-ylidine(0.22 g, 0.55 mmol) in dry toluene, at room temperature under nitro­gen, was added anhydrous copper(II)acetate (0.09g, 0.5 mmol). The reaction mixture was stirred at room temperature for 12 h and the blue coloured precipitate, identified as 1,3-bis­(2,6-di-iso­propyl­phenyl)­imidazolium copper(II) acetate, was removed by filtration. The filtrate was left to stand at 248 K in an enclosed vessel for 1 week and the precipitate was collected at the pump. Recrystallization of this solid (vapour diffusion from CH2Cl2/petrol) afforded an admixture of two crystalline products; one colourless (which proved to be 1,3-bis­(2,6-di-iso­propyl­phenyl)­imidazolium chloride) and the other, small blue block-like crystals of the title compound. Physical separation of these two crystalline compounds and further recrystallization of the blue-coloured crystals from CH2Cl2/petrol afforded crystals suitable for X-ray diffraction analysis.

Refinement top

The H atoms were included in calculated positions and refined as riding atoms: C—H = 0.95 - 98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structural commentary top

N-heterocyclic carbenes (NHCs) have been used as ancillary ligands for the preparation of transition metal based catalysts (Hopkinson et al., 2014), which are very useful in organic transformations (Faulkner et al., 2005; Bull et al., 2008). Binuclear CuII carboxyl­ate compounds are inter­esting because of their magnetic properties (Kato et al., 1964, Zhang et al., 2005; Cotton et al., 2000) and electrochemical behaviour (Paschke et al., 2003). Herein, we report on the synthesis and crystal structure of the title copper(II) acetate coordination polymer. Here, acetate acts as a bridging bidentate chelating ligand, giving a typical paddle-wheel structure.

The asymmetric unit of the title compound, Fig. 1, is composed of a copper(II) acetate paddle-wheel complex [Cu1···Cu2 = 2.6016 Å], with atom Cu1 coordinated in the apical position by a Cl- anion [Cu1—Cl1 = 2.4364 (6) Å] situated on a twofold rotation axis. Both copper(II) atoms have distorted square pyramidal co-ordination geometry with τ values of 0.04 (Addison et al., 1984).

The copper(II) acetate paddle-wheel units are linked by inversion symmetry, with the apical position of the second CuII atom, Cu2, being occupied by an acetate O atom; Cu2···Cu2i = 3.1944 (8) Å and Cu2···O6i = 2.200 (2) Å [symmetry code: (i) - x + 1/2, - y + 1/2, - z + 1], as shown in Fig. 2. These tetra­nuclear units are bridged by the Cl atom, Cl1, coordinated to atom Cu1 and located on a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]; see Fig. 2.

In the crystal, the cation and di­chloro­methane solvent molecules are linked to the coordination polymer by various C—H···O and C—H···Cl hydrogen bonds (Table 1 and Fig. 3). There are no other significant inter­molecular inter­actions present.

This structure is unique in that it possesses a halide bridge linking tetra­nuclear copper paddle-wheel units (for chloride-bridged binuclear systems, see: Chen et al., 2015) and imidazolium salts inter­spersed within the crystal lattice (for imidazolium-functionalised acetate ligands, see: Suresh et al., 2015).

Related literature top

For the use of N-heterocyclic carbenes (NHCs) as ancillary ligands for the preparation of transition-metal-based catalysts, see: Hopkinson et al. (2014). For their use in organic transformations, see: Faulkner et al. (2005); Bull et al. (2008). For details of the magnetic properties of binuclear CuII carboxylate compounds, see: Kato et al. (1964); Zhang et al. (2005); Cotton et al. (2000), and for their electrochemical behaviour, see: Paschke et al. (2003). For examples of copper(II) paddle-wheel structures, see: de Meester et al. (1973); Ackermann et al. (2000). For chloride-bridged binuclear systems, see: Chen et al. (2015). For imidazolium-functionalized acetate ligands, see: Suresh et al. (2015). For the description of the fivefold coordination symmetry parameter, τ, see: Addison et al. (1984).

Structure description top

N-heterocyclic carbenes (NHCs) have been used as ancillary ligands for the preparation of transition metal based catalysts (Hopkinson et al., 2014), which are very useful in organic transformations (Faulkner et al., 2005; Bull et al., 2008). Binuclear CuII carboxyl­ate compounds are inter­esting because of their magnetic properties (Kato et al., 1964, Zhang et al., 2005; Cotton et al., 2000) and electrochemical behaviour (Paschke et al., 2003). Herein, we report on the synthesis and crystal structure of the title copper(II) acetate coordination polymer. Here, acetate acts as a bridging bidentate chelating ligand, giving a typical paddle-wheel structure.

The asymmetric unit of the title compound, Fig. 1, is composed of a copper(II) acetate paddle-wheel complex [Cu1···Cu2 = 2.6016 Å], with atom Cu1 coordinated in the apical position by a Cl- anion [Cu1—Cl1 = 2.4364 (6) Å] situated on a twofold rotation axis. Both copper(II) atoms have distorted square pyramidal co-ordination geometry with τ values of 0.04 (Addison et al., 1984).

The copper(II) acetate paddle-wheel units are linked by inversion symmetry, with the apical position of the second CuII atom, Cu2, being occupied by an acetate O atom; Cu2···Cu2i = 3.1944 (8) Å and Cu2···O6i = 2.200 (2) Å [symmetry code: (i) - x + 1/2, - y + 1/2, - z + 1], as shown in Fig. 2. These tetra­nuclear units are bridged by the Cl atom, Cl1, coordinated to atom Cu1 and located on a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]; see Fig. 2.

In the crystal, the cation and di­chloro­methane solvent molecules are linked to the coordination polymer by various C—H···O and C—H···Cl hydrogen bonds (Table 1 and Fig. 3). There are no other significant inter­molecular inter­actions present.

This structure is unique in that it possesses a halide bridge linking tetra­nuclear copper paddle-wheel units (for chloride-bridged binuclear systems, see: Chen et al., 2015) and imidazolium salts inter­spersed within the crystal lattice (for imidazolium-functionalised acetate ligands, see: Suresh et al., 2015).

For the use of N-heterocyclic carbenes (NHCs) as ancillary ligands for the preparation of transition-metal-based catalysts, see: Hopkinson et al. (2014). For their use in organic transformations, see: Faulkner et al. (2005); Bull et al. (2008). For details of the magnetic properties of binuclear CuII carboxylate compounds, see: Kato et al. (1964); Zhang et al. (2005); Cotton et al. (2000), and for their electrochemical behaviour, see: Paschke et al. (2003). For examples of copper(II) paddle-wheel structures, see: de Meester et al. (1973); Ackermann et al. (2000). For chloride-bridged binuclear systems, see: Chen et al. (2015). For imidazolium-functionalized acetate ligands, see: Suresh et al. (2015). For the description of the fivefold coordination symmetry parameter, τ, see: Addison et al. (1984).

Synthesis and crystallization top

To a solution of 1,3-bis­(2,6-di-iso­propyl­phenyl)­imidazol-2-ylidine(0.22 g, 0.55 mmol) in dry toluene, at room temperature under nitro­gen, was added anhydrous copper(II)acetate (0.09g, 0.5 mmol). The reaction mixture was stirred at room temperature for 12 h and the blue coloured precipitate, identified as 1,3-bis­(2,6-di-iso­propyl­phenyl)­imidazolium copper(II) acetate, was removed by filtration. The filtrate was left to stand at 248 K in an enclosed vessel for 1 week and the precipitate was collected at the pump. Recrystallization of this solid (vapour diffusion from CH2Cl2/petrol) afforded an admixture of two crystalline products; one colourless (which proved to be 1,3-bis­(2,6-di-iso­propyl­phenyl)­imidazolium chloride) and the other, small blue block-like crystals of the title compound. Physical separation of these two crystalline compounds and further recrystallization of the blue-coloured crystals from CH2Cl2/petrol afforded crystals suitable for X-ray diffraction analysis.

Refinement details top

The H atoms were included in calculated positions and refined as riding atoms: C—H = 0.95 - 98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the tetranuclear paddle-wheel unit of the title polymeric compound [symmetry codes: (a) -x, y, -z + 1/2; (b) -x + 1/2, -y + 1/2, -z + 1; (c) x + 1/2, -y + 1/2, z + 1/2; (d) -x, y, -z + 1/2; (e) -x + 1, y, -z + 1/2].
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of title compound. Colour code: coordination polymer black, organic cation red; CH2Cl2 solvent molecules green and blue.
catena-Poly[hemi(1,3-bis(2,6-diisopropylphenyl)imidazolium) [[µ3-acetato-κ3O:O:O'- tri-µ2-acetato-κ6O:O'-dicopper(II)(CuCu)]-µ-chlorido] dichloromethane sesquisolvate] top
Crystal data top
(C27H37N2)[Cu4(C2H3O2)8Cl]·3CH2Cl2F(000) = 2880
Mr = 1406.32Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.097 (2) ÅCell parameters from 3370 reflections
b = 13.146 (2) Åθ = 2.3–24.3°
c = 23.607 (3) ŵ = 1.74 mm1
β = 117.122 (4)°T = 100 K
V = 6103.5 (13) Å3Block, blue
Z = 40.22 × 0.13 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7274 independent reflections
Radiation source: fine-focus sealed tube5215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
phi and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2929
Tmin = 0.700, Tmax = 0.918k = 1717
26111 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
7274 reflections(Δ/σ)max < 0.001
348 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
(C27H37N2)[Cu4(C2H3O2)8Cl]·3CH2Cl2V = 6103.5 (13) Å3
Mr = 1406.32Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.097 (2) ŵ = 1.74 mm1
b = 13.146 (2) ÅT = 100 K
c = 23.607 (3) Å0.22 × 0.13 × 0.05 mm
β = 117.122 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5215 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.918Rint = 0.079
26111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.98Δρmax = 0.70 e Å3
7274 reflectionsΔρmin = 0.46 e Å3
348 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.11018 (2)0.34481 (3)0.34274 (2)0.01543 (11)
Cu20.22901 (2)0.32446 (3)0.44052 (2)0.01720 (12)
Cl10.00000.36569 (9)0.25000.0197 (3)
O10.15907 (12)0.45167 (19)0.32111 (12)0.0215 (6)
O20.26294 (13)0.4197 (2)0.39901 (12)0.0276 (7)
O30.09345 (12)0.4383 (2)0.39834 (12)0.0257 (6)
O40.19967 (13)0.43484 (19)0.47704 (12)0.0242 (6)
O50.08495 (12)0.23045 (19)0.38354 (12)0.0244 (6)
O60.18267 (11)0.22502 (18)0.47165 (11)0.0170 (6)
O70.14402 (13)0.24162 (19)0.30413 (12)0.0233 (6)
O80.24153 (12)0.2136 (2)0.39190 (12)0.0243 (6)
C10.2223 (2)0.4655 (3)0.34956 (18)0.0206 (8)
C20.2526 (2)0.5414 (3)0.32215 (19)0.0287 (10)
H2A0.21610.57730.28660.043*
H2B0.28130.50590.30680.043*
H2C0.28020.59050.35510.043*
C30.1390 (2)0.4647 (3)0.45198 (18)0.0214 (9)
C40.1181 (2)0.5375 (3)0.4893 (2)0.0336 (11)
H4A0.09650.59740.46320.050*
H4B0.15830.55860.52800.050*
H4C0.08590.50370.50110.050*
C50.12274 (18)0.1946 (3)0.43727 (17)0.0182 (8)
C60.09553 (18)0.1106 (3)0.46205 (17)0.0231 (9)
H6A0.05570.13510.46600.035*
H6B0.13070.08890.50390.035*
H6C0.08230.05300.43250.035*
C70.19844 (19)0.1934 (3)0.33588 (18)0.0204 (8)
C80.2120 (2)0.1034 (3)0.30460 (19)0.0309 (10)
H8A0.26080.08840.32540.046*
H8B0.19710.11830.25950.046*
H8C0.18690.04440.30840.046*
N10.45188 (14)0.2152 (2)0.25127 (13)0.0154 (6)
C90.38905 (18)0.2530 (3)0.24934 (18)0.0181 (8)
C100.33835 (18)0.2839 (3)0.19043 (18)0.0202 (8)
C110.27799 (19)0.3182 (3)0.18894 (18)0.0239 (9)
H110.24170.33960.14970.029*
C120.27022 (19)0.3217 (3)0.24336 (19)0.0251 (9)
H120.22840.34470.24120.030*
C130.32230 (19)0.2922 (3)0.30130 (19)0.0253 (9)
H130.31620.29660.33850.030*
C140.38368 (18)0.2560 (3)0.30584 (18)0.0204 (8)
C150.34523 (19)0.2799 (3)0.12880 (18)0.0261 (9)
H150.39230.25590.14000.031*
C160.3369 (2)0.3836 (3)0.09913 (19)0.0349 (11)
H16A0.29010.40730.08490.052*
H16B0.34660.37980.06260.052*
H16C0.36850.43130.13060.052*
C170.2957 (2)0.2034 (3)0.0823 (2)0.0406 (12)
H17A0.30100.20230.04330.061*
H17B0.24910.22300.07200.061*
H17C0.30520.13560.10170.061*
C180.44195 (19)0.2267 (3)0.36975 (18)0.0252 (9)
H180.46910.17250.36210.030*
C190.4890 (2)0.3180 (3)0.4002 (2)0.0407 (12)
H19A0.46290.37370.40600.061*
H19B0.50840.34060.37240.061*
H19C0.52570.29800.44160.061*
C200.4180 (2)0.1848 (3)0.41638 (19)0.0339 (10)
H20A0.38660.12810.39650.051*
H20B0.39470.23860.42770.051*
H20C0.45730.16080.45490.051*
C210.46971 (17)0.1151 (3)0.25048 (16)0.0163 (8)
H210.44420.05700.25060.020*
C220.50000.2738 (4)0.25000.0167 (11)
H220.50000.34600.25000.020*
Cl20.08838 (7)0.23037 (12)0.10086 (7)0.0627 (4)
Cl30.09648 (6)0.43818 (10)0.14520 (6)0.0528 (4)
C230.0688 (2)0.3145 (4)0.1482 (2)0.0410 (12)
H23A0.01900.31500.13320.049*
H23B0.09070.29030.19290.049*
Cl40.03361 (6)0.02638 (9)0.20944 (6)0.0455 (3)
C240.00000.1022 (4)0.25000.0365 (16)
H24A0.03630.14650.21910.044*0.5
H24B0.03630.14650.28090.044*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0147 (2)0.0170 (2)0.0125 (2)0.00113 (18)0.00437 (19)0.00052 (18)
Cu20.0138 (2)0.0222 (3)0.0141 (2)0.00123 (19)0.00498 (19)0.00456 (19)
Cl10.0180 (7)0.0168 (6)0.0156 (7)0.0000.0001 (5)0.000
O10.0182 (14)0.0239 (15)0.0205 (15)0.0014 (11)0.0069 (12)0.0041 (11)
O20.0180 (14)0.0377 (17)0.0235 (15)0.0006 (12)0.0064 (12)0.0130 (13)
O30.0171 (14)0.0358 (17)0.0235 (15)0.0020 (12)0.0085 (12)0.0096 (13)
O40.0223 (15)0.0239 (15)0.0197 (15)0.0014 (12)0.0038 (12)0.0010 (12)
O50.0165 (14)0.0302 (16)0.0201 (15)0.0023 (12)0.0027 (12)0.0105 (12)
O60.0098 (12)0.0241 (14)0.0154 (13)0.0002 (10)0.0041 (11)0.0042 (11)
O70.0235 (15)0.0236 (15)0.0196 (15)0.0048 (12)0.0070 (12)0.0040 (11)
O80.0207 (14)0.0329 (16)0.0187 (15)0.0097 (12)0.0085 (12)0.0027 (12)
C10.026 (2)0.019 (2)0.024 (2)0.0001 (17)0.0176 (19)0.0020 (16)
C20.029 (2)0.028 (2)0.034 (3)0.0015 (18)0.019 (2)0.0067 (19)
C30.030 (2)0.020 (2)0.021 (2)0.0035 (17)0.0181 (19)0.0010 (16)
C40.038 (3)0.037 (3)0.033 (3)0.003 (2)0.022 (2)0.011 (2)
C50.0188 (19)0.022 (2)0.016 (2)0.0017 (16)0.0097 (17)0.0008 (16)
C60.021 (2)0.026 (2)0.019 (2)0.0046 (17)0.0058 (17)0.0037 (17)
C70.027 (2)0.020 (2)0.024 (2)0.0019 (17)0.0195 (19)0.0021 (17)
C80.034 (3)0.029 (2)0.037 (3)0.0050 (19)0.023 (2)0.0033 (19)
N10.0135 (15)0.0192 (16)0.0143 (16)0.0014 (12)0.0072 (13)0.0009 (13)
C90.0156 (19)0.0173 (19)0.024 (2)0.0016 (15)0.0115 (17)0.0029 (16)
C100.020 (2)0.0168 (19)0.023 (2)0.0001 (16)0.0092 (17)0.0008 (16)
C110.020 (2)0.026 (2)0.024 (2)0.0014 (17)0.0077 (17)0.0007 (17)
C120.017 (2)0.026 (2)0.035 (2)0.0037 (17)0.0142 (18)0.0014 (19)
C130.025 (2)0.029 (2)0.031 (2)0.0007 (18)0.0198 (19)0.0046 (18)
C140.021 (2)0.0150 (19)0.027 (2)0.0003 (15)0.0134 (18)0.0002 (16)
C150.020 (2)0.038 (3)0.019 (2)0.0082 (18)0.0080 (17)0.0059 (18)
C160.044 (3)0.039 (3)0.026 (2)0.008 (2)0.020 (2)0.001 (2)
C170.065 (3)0.035 (3)0.026 (2)0.005 (2)0.024 (2)0.002 (2)
C180.022 (2)0.039 (2)0.020 (2)0.0024 (18)0.0133 (18)0.0001 (18)
C190.040 (3)0.052 (3)0.028 (3)0.008 (2)0.013 (2)0.001 (2)
C200.037 (3)0.038 (3)0.027 (2)0.001 (2)0.015 (2)0.004 (2)
C210.020 (2)0.0148 (18)0.0162 (19)0.0042 (15)0.0096 (16)0.0017 (15)
C220.019 (3)0.016 (3)0.017 (3)0.0000.010 (2)0.000
Cl20.0452 (8)0.0907 (11)0.0573 (9)0.0103 (7)0.0279 (7)0.0248 (8)
Cl30.0508 (8)0.0583 (9)0.0599 (9)0.0080 (6)0.0344 (7)0.0196 (7)
C230.030 (2)0.065 (3)0.030 (3)0.007 (2)0.015 (2)0.004 (2)
Cl40.0564 (8)0.0313 (6)0.0472 (8)0.0066 (6)0.0223 (6)0.0007 (5)
C240.041 (4)0.018 (3)0.036 (4)0.0000.006 (3)0.000
Geometric parameters (Å, º) top
Cu1—O31.952 (3)C9—C141.393 (5)
Cu1—O71.963 (2)C10—C111.394 (5)
Cu1—O11.976 (2)C10—C151.531 (5)
Cu1—O51.997 (2)C11—C121.372 (5)
Cu1—Cl12.4365 (5)C11—H110.9500
Cu1—Cu22.6015 (6)C12—C131.382 (5)
Cu2—O21.939 (3)C12—H120.9500
Cu2—O41.944 (3)C13—C141.394 (5)
Cu2—O81.951 (3)C13—H130.9500
Cu2—O61.996 (2)C14—C181.520 (5)
Cu2—O6i2.200 (2)C15—C161.506 (5)
Cl1—Cu1ii2.4365 (5)C15—C171.523 (5)
O1—C11.257 (4)C15—H151.0000
O2—C11.255 (4)C16—H16A0.9800
O3—C31.255 (4)C16—H16B0.9800
O4—C31.257 (4)C16—H16C0.9800
O5—C51.250 (4)C17—H17A0.9800
O6—C51.262 (4)C17—H17B0.9800
O6—Cu2i2.200 (2)C17—H17C0.9800
O7—C71.260 (4)C18—C201.525 (5)
O8—C71.256 (4)C18—C191.535 (5)
C1—C21.503 (5)C18—H181.0000
C2—H2A0.9800C19—H19A0.9800
C2—H2B0.9800C19—H19B0.9800
C2—H2C0.9800C19—H19C0.9800
C3—C41.509 (5)C20—H20A0.9800
C4—H4A0.9800C20—H20B0.9800
C4—H4B0.9800C20—H20C0.9800
C4—H4C0.9800C21—C21iii1.349 (6)
C5—C61.497 (5)C21—H210.9500
C6—H6A0.9800C22—N1iii1.324 (4)
C6—H6B0.9800C22—H220.9500
C6—H6C0.9800Cl2—C231.762 (4)
C7—C81.496 (5)Cl3—C231.750 (5)
C8—H8A0.9800C23—H23A0.9900
C8—H8B0.9800C23—H23B0.9900
C8—H8C0.9800Cl4—C241.764 (3)
N1—C221.324 (4)C24—Cl4ii1.764 (3)
N1—C211.376 (4)C24—H24A0.9900
N1—C91.455 (4)C24—H24B0.9900
C9—C101.390 (5)
O3—Cu1—O7167.50 (11)H8B—C8—H8C109.5
O3—Cu1—O191.12 (11)C22—N1—C21108.5 (3)
O7—Cu1—O190.14 (11)C22—N1—C9124.4 (3)
O3—Cu1—O588.26 (11)C21—N1—C9126.9 (3)
O7—Cu1—O587.30 (11)C10—C9—C14124.6 (3)
O1—Cu1—O5164.93 (10)C10—C9—N1116.9 (3)
O3—Cu1—Cl196.62 (8)C14—C9—N1118.5 (3)
O7—Cu1—Cl195.55 (8)C9—C10—C11116.5 (3)
O1—Cu1—Cl197.34 (8)C9—C10—C15123.8 (3)
O5—Cu1—Cl197.69 (7)C11—C10—C15119.7 (3)
O3—Cu1—Cu283.81 (8)C12—C11—C10120.9 (4)
O7—Cu1—Cu284.08 (7)C12—C11—H11119.5
O1—Cu1—Cu281.54 (7)C10—C11—H11119.5
O5—Cu1—Cu283.42 (7)C11—C12—C13120.9 (4)
Cl1—Cu1—Cu2178.81 (3)C11—C12—H12119.5
O2—Cu2—O491.50 (11)C13—C12—H12119.5
O2—Cu2—O889.64 (11)C12—C13—C14120.9 (4)
O4—Cu2—O8169.67 (11)C12—C13—H13119.5
O2—Cu2—O6172.08 (10)C14—C13—H13119.5
O4—Cu2—O689.70 (10)C9—C14—C13116.2 (4)
O8—Cu2—O687.79 (10)C9—C14—C18122.7 (3)
O2—Cu2—O6i106.62 (10)C13—C14—C18121.1 (3)
O4—Cu2—O6i97.74 (10)C16—C15—C17111.6 (3)
O8—Cu2—O6i91.76 (10)C16—C15—C10111.5 (3)
O6—Cu2—O6i80.96 (10)C17—C15—C10111.0 (3)
O2—Cu2—Cu187.23 (8)C16—C15—H15107.5
O4—Cu2—Cu184.89 (7)C17—C15—H15107.5
O8—Cu2—Cu184.91 (7)C10—C15—H15107.5
O6—Cu2—Cu185.09 (7)C15—C16—H16A109.5
O6i—Cu2—Cu1165.77 (6)C15—C16—H16B109.5
Cu1—Cl1—Cu1ii167.06 (6)H16A—C16—H16B109.5
C1—O1—Cu1124.7 (2)C15—C16—H16C109.5
C1—O2—Cu2120.1 (2)H16A—C16—H16C109.5
C3—O3—Cu1122.8 (2)H16B—C16—H16C109.5
C3—O4—Cu2121.6 (2)C15—C17—H17A109.5
C5—O5—Cu1124.7 (2)C15—C17—H17B109.5
C5—O6—Cu2122.3 (2)H17A—C17—H17B109.5
C5—O6—Cu2i137.1 (2)C15—C17—H17C109.5
Cu2—O6—Cu2i99.04 (9)H17A—C17—H17C109.5
C7—O7—Cu1122.3 (2)H17B—C17—H17C109.5
C7—O8—Cu2122.3 (2)C14—C18—C20113.1 (3)
O2—C1—O1125.3 (3)C14—C18—C19110.7 (3)
O2—C1—C2116.6 (3)C20—C18—C19109.2 (3)
O1—C1—C2118.1 (3)C14—C18—H18107.9
C1—C2—H2A109.5C20—C18—H18107.9
C1—C2—H2B109.5C19—C18—H18107.9
H2A—C2—H2B109.5C18—C19—H19A109.5
C1—C2—H2C109.5C18—C19—H19B109.5
H2A—C2—H2C109.5H19A—C19—H19B109.5
H2B—C2—H2C109.5C18—C19—H19C109.5
O3—C3—O4125.5 (4)H19A—C19—H19C109.5
O3—C3—C4116.6 (3)H19B—C19—H19C109.5
O4—C3—C4117.9 (3)C18—C20—H20A109.5
C3—C4—H4A109.5C18—C20—H20B109.5
C3—C4—H4B109.5H20A—C20—H20B109.5
H4A—C4—H4B109.5C18—C20—H20C109.5
C3—C4—H4C109.5H20A—C20—H20C109.5
H4A—C4—H4C109.5H20B—C20—H20C109.5
H4B—C4—H4C109.5C21iii—C21—N1107.02 (18)
O5—C5—O6123.5 (3)C21iii—C21—H21126.5
O5—C5—C6118.2 (3)N1—C21—H21126.5
O6—C5—C6118.2 (3)N1iii—C22—N1108.9 (4)
C5—C6—H6A109.5N1iii—C22—H22125.6
C5—C6—H6B109.5N1—C22—H22125.6
H6A—C6—H6B109.5Cl3—C23—Cl2111.4 (2)
C5—C6—H6C109.5Cl3—C23—H23A109.3
H6A—C6—H6C109.5Cl2—C23—H23A109.3
H6B—C6—H6C109.5Cl3—C23—H23B109.3
O8—C7—O7125.5 (3)Cl2—C23—H23B109.3
O8—C7—C8117.4 (3)H23A—C23—H23B108.0
O7—C7—C8117.1 (3)Cl4—C24—Cl4ii111.2 (3)
C7—C8—H8A109.5Cl4—C24—H24A109.4
C7—C8—H8B109.5Cl4ii—C24—H24A109.4
H8A—C8—H8B109.5Cl4—C24—H24B109.4
C7—C8—H8C109.5Cl4ii—C24—H24B109.4
H8A—C8—H8C109.5H24A—C24—H24B108.0
Cu2—O2—C1—O13.8 (5)C14—C9—C10—C15180.0 (4)
Cu2—O2—C1—C2177.3 (2)N1—C9—C10—C150.2 (5)
Cu1—O1—C1—O26.5 (5)C9—C10—C11—C120.5 (6)
Cu1—O1—C1—C2172.4 (2)C15—C10—C11—C12179.4 (4)
Cu1—O3—C3—O40.9 (5)C10—C11—C12—C130.7 (6)
Cu1—O3—C3—C4180.0 (3)C11—C12—C13—C141.4 (6)
Cu2—O4—C3—O39.7 (5)C10—C9—C14—C130.5 (6)
Cu2—O4—C3—C4169.4 (3)N1—C9—C14—C13179.6 (3)
Cu1—O5—C5—O62.0 (5)C10—C9—C14—C18176.6 (3)
Cu1—O5—C5—C6178.2 (2)N1—C9—C14—C183.3 (5)
Cu2—O6—C5—O57.1 (5)C12—C13—C14—C90.8 (5)
Cu2i—O6—C5—O5169.6 (2)C12—C13—C14—C18178.0 (3)
Cu2—O6—C5—C6172.7 (2)C9—C10—C15—C16120.9 (4)
Cu2i—O6—C5—C610.2 (5)C11—C10—C15—C1660.3 (5)
Cu2—O8—C7—O71.6 (5)C9—C10—C15—C17114.0 (4)
Cu2—O8—C7—C8177.0 (2)C11—C10—C15—C1764.7 (5)
Cu1—O7—C7—O810.2 (5)C9—C14—C18—C20151.1 (4)
Cu1—O7—C7—C8168.4 (2)C13—C14—C18—C2031.8 (5)
C22—N1—C9—C1077.5 (4)C9—C14—C18—C1986.0 (4)
C21—N1—C9—C1098.0 (4)C13—C14—C18—C1991.0 (4)
C22—N1—C9—C14102.4 (4)C22—N1—C21—C21iii0.8 (5)
C21—N1—C9—C1482.2 (5)C9—N1—C21—C21iii176.8 (4)
C14—C9—C10—C111.2 (6)C21—N1—C22—N1iii0.29 (17)
N1—C9—C10—C11178.9 (3)C9—N1—C22—N1iii176.4 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2i0.982.433.368 (4)161
C21—H21···O1iv0.952.543.344 (4)142
C22—H22···Cl4v0.952.783.626 (5)149
C22—H22···Cl4vi0.952.783.626 (5)149
C23—H23A···O5ii0.992.423.316 (5)151
C23—H23B···O70.992.423.413 (5)177
C24—H24B···O50.992.423.303 (4)148
C24—H24B···O70.992.523.378 (4)145
C24—H24A···O5ii0.992.423.303 (4)148
C24—H24A···O7ii0.992.523.378 (4)145
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2i0.982.433.368 (4)161
C21—H21···O1ii0.952.543.344 (4)142
C22—H22···Cl4iii0.952.783.626 (5)149
C22—H22···Cl4iv0.952.783.626 (5)149
C23—H23A···O5v0.992.423.316 (5)151
C23—H23B···O70.992.423.413 (5)177
C24—H24B···O50.992.423.303 (4)148
C24—H24B···O70.992.523.378 (4)145
C24—H24A···O5v0.992.423.303 (4)148
C24—H24A···O7v0.992.523.378 (4)145
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1/2.
 

Acknowledgements

Financial support from the Higher Education Commission of the Government of Pakistan is gratefully acknowledged. We also thank the University of Manchester for research facilities.

References

First citationAckermann, H., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 1712–1714.  Web of Science CSD CrossRef CAS Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBull, J. A., Hutchings, M. G., Luján, C. & Quayle, P. (2008). Tetrahedron Lett. 49, 1352–1356.  CrossRef CAS Google Scholar
First citationChen, D.-M., Ma, J.-G. & Cheng, P. (2015). Dalton Trans. 44, 8926–8931.  CSD CrossRef CAS PubMed Google Scholar
First citationCotton, F. A., Dikarev, E. V. & Petrukhina, M. A. (2000). Inorg. Chem. 39, 6072–6079.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFaulkner, J., Edlin, C. D., Fengas, D., Preece, I., Quayle, P. & Richards, S. N. (2005). Tetrahedron Lett. 46, 2381–2385.  CrossRef CAS Google Scholar
First citationHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99–128.  CrossRef CAS Web of Science Google Scholar
First citationMeester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575–2578.  Google Scholar
First citationPaschke, R., Liebsch, S., Tschierske, C., Oakley, M. A. & Sinn, E. (2003). Inorg. Chem. 42, 8230–8240.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, P., Babu, C. N. & Prabusankar, G. (2015). Polyhedron, 89, 322–329.  CSD CrossRef CAS Google Scholar
First citationZhang, J., Hubert-Pfalzgraf, L. G. & Luneau, D. (2005). Polyhedron, 24, 1185–1195.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds