metal-organic compounds
catena-poly[hemi[1,3-bis(2,6-diisopropylphenyl)imidazolium] [[μ3-acetato-κ3O:O:O′-tri-μ2-acetato-κ6O:O′-dicopper(II)(Cu—Cu)]-μ-chlorido] dichloromethane sesquisolvate]
ofaSchool of Chemistry, University of Manchester, Manchester M13 9PL, UK, and bPakistan Institute of Nuclear Science and Technology, PO Box Nilore, Islamabad, Pakistan
*Correspondence e-mail: miqbal7862003@yahoo.com
The title copper(II) complex, {(C27H37N2)[Cu4(CH3COO)8Cl]·3CH2Cl2}n, is a one-dimensional coordination polymer. The is composed of a copper(II) tetraacetate paddle-wheel complex, a Cl− anion situated on a twofold rotation axis, half a 1,3-bis(2,6-diisopropylphenyl)imidazolium cation (the whole molecule being generated by twofold rotation symmetry) and one and a half of a dichloromethane solvent molecule (one being located about a twofold rotation axis). The central metal-organic framework comprises of a tetranuclear copper(II) acetate `paddle-wheel' complex which arises from the dimerization of the copper(II) tetraacetate core comprising of three μ2-bidentate acetate and one μ3-tridentate acetate ligands per binuclear paddle-wheel complex. Both CuII atoms of the binuclear component adopt a distorted square-pyramidal coordination geometry (τ = 0.04), with a Cu⋯Cu separation of 2.6016 (2) Å. The apical coordination site of one CuII atom is occupied by an O atom of a neighbouring acetate bridge [Cu—O = 2.200 (2) Å], while that of the second CuII atom is occupied by a bridging chloride ligand [Cu⋯Cl = 2.4364 (4) Å]. The chloride bridge is slightly bent with respect to the Cu⋯Cu internuclear axis [Cu—Cl—Cu = 167.06 (6)°] and the tetranuclear units are located about a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]. Charge neutrality is maintained by the inclusion of the 1,3-bis(2,6-diisopropylphenyl)imidazolium cation within the In the crystal, the cation and dichloromethane solvent molecules are linked to the coordination polymer by various C—H⋯O and C—H⋯Cl hydrogen bonds. There are no other significant intermolecular interactions present.
Keywords: crystal structure; coordination polymer; copper(II) tetraacetate; paddle-wheel; imidazolium; paramagnetism.
CCDC reference: 999046
1. Related literature
For the use of N-heterocyclic et al. (2014). For their use in organic transformations, see: Faulkner et al. (2005); Bull et al. (2008). For details of the magnetic properties of binuclear CuII carboxylate compounds, see: Kato et al. (1964); Zhang et al. (2005); Cotton et al. (2000), and for their electrochemical behaviour, see: Paschke et al. (2003). For examples of copper(II) paddle-wheel structures, see: de Meester et al. (1973); Ackermann et al. (2000). For chloride-bridged binuclear systems, see: Chen et al. (2015). For imidazolium-functionalized acetate ligands, see: Suresh et al. (2015). For the description of the fivefold coordination symmetry parameter, τ, see: Addison et al. (1984).
(NHCs) as ancillary ligands for the preparation of transition-metal-based catalysts, see: Hopkinson2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON.
Supporting information
CCDC reference: 999046
https://doi.org/10.1107/S2056989015013675/su5152sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013675/su5152Isup2.hkl
To a solution of 1,3-bis(2,6-di-isopropylphenyl)imidazol-2-ylidine(0.22 g, 0.55 mmol) in dry toluene, at room temperature under nitrogen, was added anhydrous copper(II)acetate (0.09g, 0.5 mmol). The reaction mixture was stirred at room temperature for 12 h and the blue coloured precipitate, identified as 1,3-bis(2,6-di-isopropylphenyl)imidazolium copper(II) acetate, was removed by filtration. The filtrate was left to stand at 248 K in an enclosed vessel for 1 week and the precipitate was collected at the pump. Recrystallization of this solid (vapour diffusion from CH2Cl2/petrol) afforded an admixture of two crystalline products; one colourless (which proved to be 1,3-bis(2,6-di-isopropylphenyl)imidazolium chloride) and the other, small blue block-like crystals of the title compound. Physical separation of these two crystalline compounds and further recrystallization of the blue-coloured crystals from CH2Cl2/petrol afforded crystals suitable for X-ray diffraction analysis.
The H atoms were included in calculated positions and refined as riding atoms: C—H = 0.95 - 98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
N-heterocyclic
(NHCs) have been used as ancillary ligands for the preparation of transition metal based catalysts (Hopkinson et al., 2014), which are very useful in organic transformations (Faulkner et al., 2005; Bull et al., 2008). Binuclear CuII carboxylate compounds are interesting because of their magnetic properties (Kato et al., 1964, Zhang et al., 2005; Cotton et al., 2000) and electrochemical behaviour (Paschke et al., 2003). Herein, we report on the synthesis and of the title copper(II) acetate coordination polymer. Here, acetate acts as a bridging bidentate chelating ligand, giving a typical paddle-wheel structure.The τ values of 0.04 (Addison et al., 1984).
of the title compound, Fig. 1, is composed of a copper(II) acetate paddle-wheel complex [Cu1···Cu2 = 2.6016 Å], with atom Cu1 coordinated in the apical position by a Cl- anion [Cu1—Cl1 = 2.4364 (6) Å] situated on a twofold rotation axis. Both copper(II) atoms have distorted square pyramidal co-ordination geometry withThe copper(II) acetate paddle-wheel units are linked by inversion symmetry, with the apical position of the second CuII atom, Cu2, being occupied by an acetate O atom; Cu2···Cu2i = 3.1944 (8) Å and Cu2···O6i = 2.200 (2) Å [symmetry code: (i) - x + 1/2, - y + 1/2, - z + 1], as shown in Fig. 2. These tetranuclear units are bridged by the Cl atom, Cl1, coordinated to atom Cu1 and located on a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]; see Fig. 2.
In the crystal, the cation and dichloromethane solvent molecules are linked to the coordination polymer by various C—H···O and C—H···Cl hydrogen bonds (Table 1 and Fig. 3). There are no other significant intermolecular interactions present.
This structure is unique in that it possesses a halide bridge linking tetranuclear copper paddle-wheel units (for chloride-bridged binuclear systems, see: Chen et al., 2015) and imidazolium salts interspersed within the
(for imidazolium-functionalised acetate ligands, see: Suresh et al., 2015).N-heterocyclic
(NHCs) have been used as ancillary ligands for the preparation of transition metal based catalysts (Hopkinson et al., 2014), which are very useful in organic transformations (Faulkner et al., 2005; Bull et al., 2008). Binuclear CuII carboxylate compounds are interesting because of their magnetic properties (Kato et al., 1964, Zhang et al., 2005; Cotton et al., 2000) and electrochemical behaviour (Paschke et al., 2003). Herein, we report on the synthesis and of the title copper(II) acetate coordination polymer. Here, acetate acts as a bridging bidentate chelating ligand, giving a typical paddle-wheel structure.The τ values of 0.04 (Addison et al., 1984).
of the title compound, Fig. 1, is composed of a copper(II) acetate paddle-wheel complex [Cu1···Cu2 = 2.6016 Å], with atom Cu1 coordinated in the apical position by a Cl- anion [Cu1—Cl1 = 2.4364 (6) Å] situated on a twofold rotation axis. Both copper(II) atoms have distorted square pyramidal co-ordination geometry withThe copper(II) acetate paddle-wheel units are linked by inversion symmetry, with the apical position of the second CuII atom, Cu2, being occupied by an acetate O atom; Cu2···Cu2i = 3.1944 (8) Å and Cu2···O6i = 2.200 (2) Å [symmetry code: (i) - x + 1/2, - y + 1/2, - z + 1], as shown in Fig. 2. These tetranuclear units are bridged by the Cl atom, Cl1, coordinated to atom Cu1 and located on a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]; see Fig. 2.
In the crystal, the cation and dichloromethane solvent molecules are linked to the coordination polymer by various C—H···O and C—H···Cl hydrogen bonds (Table 1 and Fig. 3). There are no other significant intermolecular interactions present.
This structure is unique in that it possesses a halide bridge linking tetranuclear copper paddle-wheel units (for chloride-bridged binuclear systems, see: Chen et al., 2015) and imidazolium salts interspersed within the
(for imidazolium-functionalised acetate ligands, see: Suresh et al., 2015).For the use of N-heterocyclic τ, see: Addison et al. (1984).
(NHCs) as ancillary ligands for the preparation of transition-metal-based catalysts, see: Hopkinson et al. (2014). For their use in organic transformations, see: Faulkner et al. (2005); Bull et al. (2008). For details of the magnetic properties of binuclear CuII carboxylate compounds, see: Kato et al. (1964); Zhang et al. (2005); Cotton et al. (2000), and for their electrochemical behaviour, see: Paschke et al. (2003). For examples of copper(II) paddle-wheel structures, see: de Meester et al. (1973); Ackermann et al. (2000). For chloride-bridged binuclear systems, see: Chen et al. (2015). For imidazolium-functionalized acetate ligands, see: Suresh et al. (2015). For the description of the fivefold coordination symmetry parameter,To a solution of 1,3-bis(2,6-di-isopropylphenyl)imidazol-2-ylidine(0.22 g, 0.55 mmol) in dry toluene, at room temperature under nitrogen, was added anhydrous copper(II)acetate (0.09g, 0.5 mmol). The reaction mixture was stirred at room temperature for 12 h and the blue coloured precipitate, identified as 1,3-bis(2,6-di-isopropylphenyl)imidazolium copper(II) acetate, was removed by filtration. The filtrate was left to stand at 248 K in an enclosed vessel for 1 week and the precipitate was collected at the pump. Recrystallization of this solid (vapour diffusion from CH2Cl2/petrol) afforded an admixture of two crystalline products; one colourless (which proved to be 1,3-bis(2,6-di-isopropylphenyl)imidazolium chloride) and the other, small blue block-like crystals of the title compound. Physical separation of these two crystalline compounds and further recrystallization of the blue-coloured crystals from CH2Cl2/petrol afforded crystals suitable for X-ray diffraction analysis.
detailsThe H atoms were included in calculated positions and refined as riding atoms: C—H = 0.95 - 98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).Fig. 1. A view of the molecular structure of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view of the tetranuclear paddle-wheel unit of the title polymeric compound [symmetry codes: (a) -x, y, -z + 1/2; (b) -x + 1/2, -y + 1/2, -z + 1; (c) x + 1/2, -y + 1/2, z + 1/2; (d) -x, y, -z + 1/2; (e) -x + 1, y, -z + 1/2]. | |
Fig. 3. A view along the b axis of the crystal packing of title compound. Colour code: coordination polymer black, organic cation red; CH2Cl2 solvent molecules green and blue. |
(C27H37N2)[Cu4(C2H3O2)8Cl]·3CH2Cl2 | F(000) = 2880 |
Mr = 1406.32 | Dx = 1.530 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.097 (2) Å | Cell parameters from 3370 reflections |
b = 13.146 (2) Å | θ = 2.3–24.3° |
c = 23.607 (3) Å | µ = 1.74 mm−1 |
β = 117.122 (4)° | T = 100 K |
V = 6103.5 (13) Å3 | Block, blue |
Z = 4 | 0.22 × 0.13 × 0.05 mm |
Bruker SMART CCD area-detector diffractometer | 7274 independent reflections |
Radiation source: fine-focus sealed tube | 5215 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
phi and ω scans | θmax = 28.3°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −29→29 |
Tmin = 0.700, Tmax = 0.918 | k = −17→17 |
26111 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0252P)2] where P = (Fo2 + 2Fc2)/3 |
7274 reflections | (Δ/σ)max < 0.001 |
348 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
(C27H37N2)[Cu4(C2H3O2)8Cl]·3CH2Cl2 | V = 6103.5 (13) Å3 |
Mr = 1406.32 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.097 (2) Å | µ = 1.74 mm−1 |
b = 13.146 (2) Å | T = 100 K |
c = 23.607 (3) Å | 0.22 × 0.13 × 0.05 mm |
β = 117.122 (4)° |
Bruker SMART CCD area-detector diffractometer | 7274 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 5215 reflections with I > 2σ(I) |
Tmin = 0.700, Tmax = 0.918 | Rint = 0.079 |
26111 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.70 e Å−3 |
7274 reflections | Δρmin = −0.46 e Å−3 |
348 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.11018 (2) | 0.34481 (3) | 0.34274 (2) | 0.01543 (11) | |
Cu2 | 0.22901 (2) | 0.32446 (3) | 0.44052 (2) | 0.01720 (12) | |
Cl1 | 0.0000 | 0.36569 (9) | 0.2500 | 0.0197 (3) | |
O1 | 0.15907 (12) | 0.45167 (19) | 0.32111 (12) | 0.0215 (6) | |
O2 | 0.26294 (13) | 0.4197 (2) | 0.39901 (12) | 0.0276 (7) | |
O3 | 0.09345 (12) | 0.4383 (2) | 0.39834 (12) | 0.0257 (6) | |
O4 | 0.19967 (13) | 0.43484 (19) | 0.47704 (12) | 0.0242 (6) | |
O5 | 0.08495 (12) | 0.23045 (19) | 0.38354 (12) | 0.0244 (6) | |
O6 | 0.18267 (11) | 0.22502 (18) | 0.47165 (11) | 0.0170 (6) | |
O7 | 0.14402 (13) | 0.24162 (19) | 0.30413 (12) | 0.0233 (6) | |
O8 | 0.24153 (12) | 0.2136 (2) | 0.39190 (12) | 0.0243 (6) | |
C1 | 0.2223 (2) | 0.4655 (3) | 0.34956 (18) | 0.0206 (8) | |
C2 | 0.2526 (2) | 0.5414 (3) | 0.32215 (19) | 0.0287 (10) | |
H2A | 0.2161 | 0.5773 | 0.2866 | 0.043* | |
H2B | 0.2813 | 0.5059 | 0.3068 | 0.043* | |
H2C | 0.2802 | 0.5905 | 0.3551 | 0.043* | |
C3 | 0.1390 (2) | 0.4647 (3) | 0.45198 (18) | 0.0214 (9) | |
C4 | 0.1181 (2) | 0.5375 (3) | 0.4893 (2) | 0.0336 (11) | |
H4A | 0.0965 | 0.5974 | 0.4632 | 0.050* | |
H4B | 0.1583 | 0.5586 | 0.5280 | 0.050* | |
H4C | 0.0859 | 0.5037 | 0.5011 | 0.050* | |
C5 | 0.12274 (18) | 0.1946 (3) | 0.43727 (17) | 0.0182 (8) | |
C6 | 0.09553 (18) | 0.1106 (3) | 0.46205 (17) | 0.0231 (9) | |
H6A | 0.0557 | 0.1351 | 0.4660 | 0.035* | |
H6B | 0.1307 | 0.0889 | 0.5039 | 0.035* | |
H6C | 0.0823 | 0.0530 | 0.4325 | 0.035* | |
C7 | 0.19844 (19) | 0.1934 (3) | 0.33588 (18) | 0.0204 (8) | |
C8 | 0.2120 (2) | 0.1034 (3) | 0.30460 (19) | 0.0309 (10) | |
H8A | 0.2608 | 0.0884 | 0.3254 | 0.046* | |
H8B | 0.1971 | 0.1183 | 0.2595 | 0.046* | |
H8C | 0.1869 | 0.0444 | 0.3084 | 0.046* | |
N1 | 0.45188 (14) | 0.2152 (2) | 0.25127 (13) | 0.0154 (6) | |
C9 | 0.38905 (18) | 0.2530 (3) | 0.24934 (18) | 0.0181 (8) | |
C10 | 0.33835 (18) | 0.2839 (3) | 0.19043 (18) | 0.0202 (8) | |
C11 | 0.27799 (19) | 0.3182 (3) | 0.18894 (18) | 0.0239 (9) | |
H11 | 0.2417 | 0.3396 | 0.1497 | 0.029* | |
C12 | 0.27022 (19) | 0.3217 (3) | 0.24336 (19) | 0.0251 (9) | |
H12 | 0.2284 | 0.3447 | 0.2412 | 0.030* | |
C13 | 0.32230 (19) | 0.2922 (3) | 0.30130 (19) | 0.0253 (9) | |
H13 | 0.3162 | 0.2966 | 0.3385 | 0.030* | |
C14 | 0.38368 (18) | 0.2560 (3) | 0.30584 (18) | 0.0204 (8) | |
C15 | 0.34523 (19) | 0.2799 (3) | 0.12880 (18) | 0.0261 (9) | |
H15 | 0.3923 | 0.2559 | 0.1400 | 0.031* | |
C16 | 0.3369 (2) | 0.3836 (3) | 0.09913 (19) | 0.0349 (11) | |
H16A | 0.2901 | 0.4073 | 0.0849 | 0.052* | |
H16B | 0.3466 | 0.3798 | 0.0626 | 0.052* | |
H16C | 0.3685 | 0.4313 | 0.1306 | 0.052* | |
C17 | 0.2957 (2) | 0.2034 (3) | 0.0823 (2) | 0.0406 (12) | |
H17A | 0.3010 | 0.2023 | 0.0433 | 0.061* | |
H17B | 0.2491 | 0.2230 | 0.0720 | 0.061* | |
H17C | 0.3052 | 0.1356 | 0.1017 | 0.061* | |
C18 | 0.44195 (19) | 0.2267 (3) | 0.36975 (18) | 0.0252 (9) | |
H18 | 0.4691 | 0.1725 | 0.3621 | 0.030* | |
C19 | 0.4890 (2) | 0.3180 (3) | 0.4002 (2) | 0.0407 (12) | |
H19A | 0.4629 | 0.3737 | 0.4060 | 0.061* | |
H19B | 0.5084 | 0.3406 | 0.3724 | 0.061* | |
H19C | 0.5257 | 0.2980 | 0.4416 | 0.061* | |
C20 | 0.4180 (2) | 0.1848 (3) | 0.41638 (19) | 0.0339 (10) | |
H20A | 0.3866 | 0.1281 | 0.3965 | 0.051* | |
H20B | 0.3947 | 0.2386 | 0.4277 | 0.051* | |
H20C | 0.4573 | 0.1608 | 0.4549 | 0.051* | |
C21 | 0.46971 (17) | 0.1151 (3) | 0.25048 (16) | 0.0163 (8) | |
H21 | 0.4442 | 0.0570 | 0.2506 | 0.020* | |
C22 | 0.5000 | 0.2738 (4) | 0.2500 | 0.0167 (11) | |
H22 | 0.5000 | 0.3460 | 0.2500 | 0.020* | |
Cl2 | 0.08838 (7) | 0.23037 (12) | 0.10086 (7) | 0.0627 (4) | |
Cl3 | 0.09648 (6) | 0.43818 (10) | 0.14520 (6) | 0.0528 (4) | |
C23 | 0.0688 (2) | 0.3145 (4) | 0.1482 (2) | 0.0410 (12) | |
H23A | 0.0190 | 0.3150 | 0.1332 | 0.049* | |
H23B | 0.0907 | 0.2903 | 0.1929 | 0.049* | |
Cl4 | 0.03361 (6) | 0.02638 (9) | 0.20944 (6) | 0.0455 (3) | |
C24 | 0.0000 | 0.1022 (4) | 0.2500 | 0.0365 (16) | |
H24A | −0.0363 | 0.1465 | 0.2191 | 0.044* | 0.5 |
H24B | 0.0363 | 0.1465 | 0.2809 | 0.044* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0147 (2) | 0.0170 (2) | 0.0125 (2) | 0.00113 (18) | 0.00437 (19) | 0.00052 (18) |
Cu2 | 0.0138 (2) | 0.0222 (3) | 0.0141 (2) | 0.00123 (19) | 0.00498 (19) | 0.00456 (19) |
Cl1 | 0.0180 (7) | 0.0168 (6) | 0.0156 (7) | 0.000 | 0.0001 (5) | 0.000 |
O1 | 0.0182 (14) | 0.0239 (15) | 0.0205 (15) | −0.0014 (11) | 0.0069 (12) | 0.0041 (11) |
O2 | 0.0180 (14) | 0.0377 (17) | 0.0235 (15) | −0.0006 (12) | 0.0064 (12) | 0.0130 (13) |
O3 | 0.0171 (14) | 0.0358 (17) | 0.0235 (15) | 0.0020 (12) | 0.0085 (12) | −0.0096 (13) |
O4 | 0.0223 (15) | 0.0239 (15) | 0.0197 (15) | 0.0014 (12) | 0.0038 (12) | −0.0010 (12) |
O5 | 0.0165 (14) | 0.0302 (16) | 0.0201 (15) | −0.0023 (12) | 0.0027 (12) | 0.0105 (12) |
O6 | 0.0098 (12) | 0.0241 (14) | 0.0154 (13) | 0.0002 (10) | 0.0041 (11) | 0.0042 (11) |
O7 | 0.0235 (15) | 0.0236 (15) | 0.0196 (15) | 0.0048 (12) | 0.0070 (12) | −0.0040 (11) |
O8 | 0.0207 (14) | 0.0329 (16) | 0.0187 (15) | 0.0097 (12) | 0.0085 (12) | 0.0027 (12) |
C1 | 0.026 (2) | 0.019 (2) | 0.024 (2) | 0.0001 (17) | 0.0176 (19) | −0.0020 (16) |
C2 | 0.029 (2) | 0.028 (2) | 0.034 (3) | 0.0015 (18) | 0.019 (2) | 0.0067 (19) |
C3 | 0.030 (2) | 0.020 (2) | 0.021 (2) | −0.0035 (17) | 0.0181 (19) | −0.0010 (16) |
C4 | 0.038 (3) | 0.037 (3) | 0.033 (3) | −0.003 (2) | 0.022 (2) | −0.011 (2) |
C5 | 0.0188 (19) | 0.022 (2) | 0.016 (2) | 0.0017 (16) | 0.0097 (17) | −0.0008 (16) |
C6 | 0.021 (2) | 0.026 (2) | 0.019 (2) | −0.0046 (17) | 0.0058 (17) | 0.0037 (17) |
C7 | 0.027 (2) | 0.020 (2) | 0.024 (2) | −0.0019 (17) | 0.0195 (19) | 0.0021 (17) |
C8 | 0.034 (3) | 0.029 (2) | 0.037 (3) | 0.0050 (19) | 0.023 (2) | −0.0033 (19) |
N1 | 0.0135 (15) | 0.0192 (16) | 0.0143 (16) | 0.0014 (12) | 0.0072 (13) | −0.0009 (13) |
C9 | 0.0156 (19) | 0.0173 (19) | 0.024 (2) | −0.0016 (15) | 0.0115 (17) | −0.0029 (16) |
C10 | 0.020 (2) | 0.0168 (19) | 0.023 (2) | 0.0001 (16) | 0.0092 (17) | 0.0008 (16) |
C11 | 0.020 (2) | 0.026 (2) | 0.024 (2) | −0.0014 (17) | 0.0077 (17) | 0.0007 (17) |
C12 | 0.017 (2) | 0.026 (2) | 0.035 (2) | 0.0037 (17) | 0.0142 (18) | 0.0014 (19) |
C13 | 0.025 (2) | 0.029 (2) | 0.031 (2) | −0.0007 (18) | 0.0198 (19) | −0.0046 (18) |
C14 | 0.021 (2) | 0.0150 (19) | 0.027 (2) | −0.0003 (15) | 0.0134 (18) | 0.0002 (16) |
C15 | 0.020 (2) | 0.038 (3) | 0.019 (2) | 0.0082 (18) | 0.0080 (17) | 0.0059 (18) |
C16 | 0.044 (3) | 0.039 (3) | 0.026 (2) | −0.008 (2) | 0.020 (2) | 0.001 (2) |
C17 | 0.065 (3) | 0.035 (3) | 0.026 (2) | −0.005 (2) | 0.024 (2) | −0.002 (2) |
C18 | 0.022 (2) | 0.039 (2) | 0.020 (2) | 0.0024 (18) | 0.0133 (18) | −0.0001 (18) |
C19 | 0.040 (3) | 0.052 (3) | 0.028 (3) | −0.008 (2) | 0.013 (2) | 0.001 (2) |
C20 | 0.037 (3) | 0.038 (3) | 0.027 (2) | 0.001 (2) | 0.015 (2) | 0.004 (2) |
C21 | 0.020 (2) | 0.0148 (18) | 0.0162 (19) | −0.0042 (15) | 0.0096 (16) | −0.0017 (15) |
C22 | 0.019 (3) | 0.016 (3) | 0.017 (3) | 0.000 | 0.010 (2) | 0.000 |
Cl2 | 0.0452 (8) | 0.0907 (11) | 0.0573 (9) | −0.0103 (7) | 0.0279 (7) | −0.0248 (8) |
Cl3 | 0.0508 (8) | 0.0583 (9) | 0.0599 (9) | 0.0080 (6) | 0.0344 (7) | 0.0196 (7) |
C23 | 0.030 (2) | 0.065 (3) | 0.030 (3) | −0.007 (2) | 0.015 (2) | −0.004 (2) |
Cl4 | 0.0564 (8) | 0.0313 (6) | 0.0472 (8) | −0.0066 (6) | 0.0223 (6) | −0.0007 (5) |
C24 | 0.041 (4) | 0.018 (3) | 0.036 (4) | 0.000 | 0.006 (3) | 0.000 |
Cu1—O3 | 1.952 (3) | C9—C14 | 1.393 (5) |
Cu1—O7 | 1.963 (2) | C10—C11 | 1.394 (5) |
Cu1—O1 | 1.976 (2) | C10—C15 | 1.531 (5) |
Cu1—O5 | 1.997 (2) | C11—C12 | 1.372 (5) |
Cu1—Cl1 | 2.4365 (5) | C11—H11 | 0.9500 |
Cu1—Cu2 | 2.6015 (6) | C12—C13 | 1.382 (5) |
Cu2—O2 | 1.939 (3) | C12—H12 | 0.9500 |
Cu2—O4 | 1.944 (3) | C13—C14 | 1.394 (5) |
Cu2—O8 | 1.951 (3) | C13—H13 | 0.9500 |
Cu2—O6 | 1.996 (2) | C14—C18 | 1.520 (5) |
Cu2—O6i | 2.200 (2) | C15—C16 | 1.506 (5) |
Cl1—Cu1ii | 2.4365 (5) | C15—C17 | 1.523 (5) |
O1—C1 | 1.257 (4) | C15—H15 | 1.0000 |
O2—C1 | 1.255 (4) | C16—H16A | 0.9800 |
O3—C3 | 1.255 (4) | C16—H16B | 0.9800 |
O4—C3 | 1.257 (4) | C16—H16C | 0.9800 |
O5—C5 | 1.250 (4) | C17—H17A | 0.9800 |
O6—C5 | 1.262 (4) | C17—H17B | 0.9800 |
O6—Cu2i | 2.200 (2) | C17—H17C | 0.9800 |
O7—C7 | 1.260 (4) | C18—C20 | 1.525 (5) |
O8—C7 | 1.256 (4) | C18—C19 | 1.535 (5) |
C1—C2 | 1.503 (5) | C18—H18 | 1.0000 |
C2—H2A | 0.9800 | C19—H19A | 0.9800 |
C2—H2B | 0.9800 | C19—H19B | 0.9800 |
C2—H2C | 0.9800 | C19—H19C | 0.9800 |
C3—C4 | 1.509 (5) | C20—H20A | 0.9800 |
C4—H4A | 0.9800 | C20—H20B | 0.9800 |
C4—H4B | 0.9800 | C20—H20C | 0.9800 |
C4—H4C | 0.9800 | C21—C21iii | 1.349 (6) |
C5—C6 | 1.497 (5) | C21—H21 | 0.9500 |
C6—H6A | 0.9800 | C22—N1iii | 1.324 (4) |
C6—H6B | 0.9800 | C22—H22 | 0.9500 |
C6—H6C | 0.9800 | Cl2—C23 | 1.762 (4) |
C7—C8 | 1.496 (5) | Cl3—C23 | 1.750 (5) |
C8—H8A | 0.9800 | C23—H23A | 0.9900 |
C8—H8B | 0.9800 | C23—H23B | 0.9900 |
C8—H8C | 0.9800 | Cl4—C24 | 1.764 (3) |
N1—C22 | 1.324 (4) | C24—Cl4ii | 1.764 (3) |
N1—C21 | 1.376 (4) | C24—H24A | 0.9900 |
N1—C9 | 1.455 (4) | C24—H24B | 0.9900 |
C9—C10 | 1.390 (5) | ||
O3—Cu1—O7 | 167.50 (11) | H8B—C8—H8C | 109.5 |
O3—Cu1—O1 | 91.12 (11) | C22—N1—C21 | 108.5 (3) |
O7—Cu1—O1 | 90.14 (11) | C22—N1—C9 | 124.4 (3) |
O3—Cu1—O5 | 88.26 (11) | C21—N1—C9 | 126.9 (3) |
O7—Cu1—O5 | 87.30 (11) | C10—C9—C14 | 124.6 (3) |
O1—Cu1—O5 | 164.93 (10) | C10—C9—N1 | 116.9 (3) |
O3—Cu1—Cl1 | 96.62 (8) | C14—C9—N1 | 118.5 (3) |
O7—Cu1—Cl1 | 95.55 (8) | C9—C10—C11 | 116.5 (3) |
O1—Cu1—Cl1 | 97.34 (8) | C9—C10—C15 | 123.8 (3) |
O5—Cu1—Cl1 | 97.69 (7) | C11—C10—C15 | 119.7 (3) |
O3—Cu1—Cu2 | 83.81 (8) | C12—C11—C10 | 120.9 (4) |
O7—Cu1—Cu2 | 84.08 (7) | C12—C11—H11 | 119.5 |
O1—Cu1—Cu2 | 81.54 (7) | C10—C11—H11 | 119.5 |
O5—Cu1—Cu2 | 83.42 (7) | C11—C12—C13 | 120.9 (4) |
Cl1—Cu1—Cu2 | 178.81 (3) | C11—C12—H12 | 119.5 |
O2—Cu2—O4 | 91.50 (11) | C13—C12—H12 | 119.5 |
O2—Cu2—O8 | 89.64 (11) | C12—C13—C14 | 120.9 (4) |
O4—Cu2—O8 | 169.67 (11) | C12—C13—H13 | 119.5 |
O2—Cu2—O6 | 172.08 (10) | C14—C13—H13 | 119.5 |
O4—Cu2—O6 | 89.70 (10) | C9—C14—C13 | 116.2 (4) |
O8—Cu2—O6 | 87.79 (10) | C9—C14—C18 | 122.7 (3) |
O2—Cu2—O6i | 106.62 (10) | C13—C14—C18 | 121.1 (3) |
O4—Cu2—O6i | 97.74 (10) | C16—C15—C17 | 111.6 (3) |
O8—Cu2—O6i | 91.76 (10) | C16—C15—C10 | 111.5 (3) |
O6—Cu2—O6i | 80.96 (10) | C17—C15—C10 | 111.0 (3) |
O2—Cu2—Cu1 | 87.23 (8) | C16—C15—H15 | 107.5 |
O4—Cu2—Cu1 | 84.89 (7) | C17—C15—H15 | 107.5 |
O8—Cu2—Cu1 | 84.91 (7) | C10—C15—H15 | 107.5 |
O6—Cu2—Cu1 | 85.09 (7) | C15—C16—H16A | 109.5 |
O6i—Cu2—Cu1 | 165.77 (6) | C15—C16—H16B | 109.5 |
Cu1—Cl1—Cu1ii | 167.06 (6) | H16A—C16—H16B | 109.5 |
C1—O1—Cu1 | 124.7 (2) | C15—C16—H16C | 109.5 |
C1—O2—Cu2 | 120.1 (2) | H16A—C16—H16C | 109.5 |
C3—O3—Cu1 | 122.8 (2) | H16B—C16—H16C | 109.5 |
C3—O4—Cu2 | 121.6 (2) | C15—C17—H17A | 109.5 |
C5—O5—Cu1 | 124.7 (2) | C15—C17—H17B | 109.5 |
C5—O6—Cu2 | 122.3 (2) | H17A—C17—H17B | 109.5 |
C5—O6—Cu2i | 137.1 (2) | C15—C17—H17C | 109.5 |
Cu2—O6—Cu2i | 99.04 (9) | H17A—C17—H17C | 109.5 |
C7—O7—Cu1 | 122.3 (2) | H17B—C17—H17C | 109.5 |
C7—O8—Cu2 | 122.3 (2) | C14—C18—C20 | 113.1 (3) |
O2—C1—O1 | 125.3 (3) | C14—C18—C19 | 110.7 (3) |
O2—C1—C2 | 116.6 (3) | C20—C18—C19 | 109.2 (3) |
O1—C1—C2 | 118.1 (3) | C14—C18—H18 | 107.9 |
C1—C2—H2A | 109.5 | C20—C18—H18 | 107.9 |
C1—C2—H2B | 109.5 | C19—C18—H18 | 107.9 |
H2A—C2—H2B | 109.5 | C18—C19—H19A | 109.5 |
C1—C2—H2C | 109.5 | C18—C19—H19B | 109.5 |
H2A—C2—H2C | 109.5 | H19A—C19—H19B | 109.5 |
H2B—C2—H2C | 109.5 | C18—C19—H19C | 109.5 |
O3—C3—O4 | 125.5 (4) | H19A—C19—H19C | 109.5 |
O3—C3—C4 | 116.6 (3) | H19B—C19—H19C | 109.5 |
O4—C3—C4 | 117.9 (3) | C18—C20—H20A | 109.5 |
C3—C4—H4A | 109.5 | C18—C20—H20B | 109.5 |
C3—C4—H4B | 109.5 | H20A—C20—H20B | 109.5 |
H4A—C4—H4B | 109.5 | C18—C20—H20C | 109.5 |
C3—C4—H4C | 109.5 | H20A—C20—H20C | 109.5 |
H4A—C4—H4C | 109.5 | H20B—C20—H20C | 109.5 |
H4B—C4—H4C | 109.5 | C21iii—C21—N1 | 107.02 (18) |
O5—C5—O6 | 123.5 (3) | C21iii—C21—H21 | 126.5 |
O5—C5—C6 | 118.2 (3) | N1—C21—H21 | 126.5 |
O6—C5—C6 | 118.2 (3) | N1iii—C22—N1 | 108.9 (4) |
C5—C6—H6A | 109.5 | N1iii—C22—H22 | 125.6 |
C5—C6—H6B | 109.5 | N1—C22—H22 | 125.6 |
H6A—C6—H6B | 109.5 | Cl3—C23—Cl2 | 111.4 (2) |
C5—C6—H6C | 109.5 | Cl3—C23—H23A | 109.3 |
H6A—C6—H6C | 109.5 | Cl2—C23—H23A | 109.3 |
H6B—C6—H6C | 109.5 | Cl3—C23—H23B | 109.3 |
O8—C7—O7 | 125.5 (3) | Cl2—C23—H23B | 109.3 |
O8—C7—C8 | 117.4 (3) | H23A—C23—H23B | 108.0 |
O7—C7—C8 | 117.1 (3) | Cl4—C24—Cl4ii | 111.2 (3) |
C7—C8—H8A | 109.5 | Cl4—C24—H24A | 109.4 |
C7—C8—H8B | 109.5 | Cl4ii—C24—H24A | 109.4 |
H8A—C8—H8B | 109.5 | Cl4—C24—H24B | 109.4 |
C7—C8—H8C | 109.5 | Cl4ii—C24—H24B | 109.4 |
H8A—C8—H8C | 109.5 | H24A—C24—H24B | 108.0 |
Cu2—O2—C1—O1 | −3.8 (5) | C14—C9—C10—C15 | −180.0 (4) |
Cu2—O2—C1—C2 | 177.3 (2) | N1—C9—C10—C15 | 0.2 (5) |
Cu1—O1—C1—O2 | −6.5 (5) | C9—C10—C11—C12 | 0.5 (6) |
Cu1—O1—C1—C2 | 172.4 (2) | C15—C10—C11—C12 | 179.4 (4) |
Cu1—O3—C3—O4 | −0.9 (5) | C10—C11—C12—C13 | 0.7 (6) |
Cu1—O3—C3—C4 | −180.0 (3) | C11—C12—C13—C14 | −1.4 (6) |
Cu2—O4—C3—O3 | −9.7 (5) | C10—C9—C14—C13 | 0.5 (6) |
Cu2—O4—C3—C4 | 169.4 (3) | N1—C9—C14—C13 | −179.6 (3) |
Cu1—O5—C5—O6 | −2.0 (5) | C10—C9—C14—C18 | −176.6 (3) |
Cu1—O5—C5—C6 | 178.2 (2) | N1—C9—C14—C18 | 3.3 (5) |
Cu2—O6—C5—O5 | −7.1 (5) | C12—C13—C14—C9 | 0.8 (5) |
Cu2i—O6—C5—O5 | −169.6 (2) | C12—C13—C14—C18 | 178.0 (3) |
Cu2—O6—C5—C6 | 172.7 (2) | C9—C10—C15—C16 | −120.9 (4) |
Cu2i—O6—C5—C6 | 10.2 (5) | C11—C10—C15—C16 | 60.3 (5) |
Cu2—O8—C7—O7 | 1.6 (5) | C9—C10—C15—C17 | 114.0 (4) |
Cu2—O8—C7—C8 | −177.0 (2) | C11—C10—C15—C17 | −64.7 (5) |
Cu1—O7—C7—O8 | −10.2 (5) | C9—C14—C18—C20 | −151.1 (4) |
Cu1—O7—C7—C8 | 168.4 (2) | C13—C14—C18—C20 | 31.8 (5) |
C22—N1—C9—C10 | 77.5 (4) | C9—C14—C18—C19 | 86.0 (4) |
C21—N1—C9—C10 | −98.0 (4) | C13—C14—C18—C19 | −91.0 (4) |
C22—N1—C9—C14 | −102.4 (4) | C22—N1—C21—C21iii | 0.8 (5) |
C21—N1—C9—C14 | 82.2 (5) | C9—N1—C21—C21iii | 176.8 (4) |
C14—C9—C10—C11 | −1.2 (6) | C21—N1—C22—N1iii | −0.29 (17) |
N1—C9—C10—C11 | 178.9 (3) | C9—N1—C22—N1iii | −176.4 (4) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+1/2; (iii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···O2i | 0.98 | 2.43 | 3.368 (4) | 161 |
C21—H21···O1iv | 0.95 | 2.54 | 3.344 (4) | 142 |
C22—H22···Cl4v | 0.95 | 2.78 | 3.626 (5) | 149 |
C22—H22···Cl4vi | 0.95 | 2.78 | 3.626 (5) | 149 |
C23—H23A···O5ii | 0.99 | 2.42 | 3.316 (5) | 151 |
C23—H23B···O7 | 0.99 | 2.42 | 3.413 (5) | 177 |
C24—H24B···O5 | 0.99 | 2.42 | 3.303 (4) | 148 |
C24—H24B···O7 | 0.99 | 2.52 | 3.378 (4) | 145 |
C24—H24A···O5ii | 0.99 | 2.42 | 3.303 (4) | 148 |
C24—H24A···O7ii | 0.99 | 2.52 | 3.378 (4) | 145 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1/2, y+1/2, z; (vi) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···O2i | 0.98 | 2.43 | 3.368 (4) | 161 |
C21—H21···O1ii | 0.95 | 2.54 | 3.344 (4) | 142 |
C22—H22···Cl4iii | 0.95 | 2.78 | 3.626 (5) | 149 |
C22—H22···Cl4iv | 0.95 | 2.78 | 3.626 (5) | 149 |
C23—H23A···O5v | 0.99 | 2.42 | 3.316 (5) | 151 |
C23—H23B···O7 | 0.99 | 2.42 | 3.413 (5) | 177 |
C24—H24B···O5 | 0.99 | 2.42 | 3.303 (4) | 148 |
C24—H24B···O7 | 0.99 | 2.52 | 3.378 (4) | 145 |
C24—H24A···O5v | 0.99 | 2.42 | 3.303 (4) | 148 |
C24—H24A···O7v | 0.99 | 2.52 | 3.378 (4) | 145 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, y+1/2, z; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x, y, −z+1/2. |
Acknowledgements
Financial support from the Higher Education Commission of the Government of Pakistan is gratefully acknowledged. We also thank the University of Manchester for research facilities.
References
Ackermann, H., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 1712–1714. Web of Science CSD CrossRef CAS Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bull, J. A., Hutchings, M. G., Luján, C. & Quayle, P. (2008). Tetrahedron Lett. 49, 1352–1356. CrossRef CAS Google Scholar
Chen, D.-M., Ma, J.-G. & Cheng, P. (2015). Dalton Trans. 44, 8926–8931. CSD CrossRef CAS PubMed Google Scholar
Cotton, F. A., Dikarev, E. V. & Petrukhina, M. A. (2000). Inorg. Chem. 39, 6072–6079. Web of Science CSD CrossRef PubMed CAS Google Scholar
Faulkner, J., Edlin, C. D., Fengas, D., Preece, I., Quayle, P. & Richards, S. N. (2005). Tetrahedron Lett. 46, 2381–2385. CrossRef CAS Google Scholar
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496. Web of Science CrossRef CAS PubMed Google Scholar
Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99–128. CrossRef CAS Web of Science Google Scholar
Meester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575–2578. Google Scholar
Paschke, R., Liebsch, S., Tschierske, C., Oakley, M. A. & Sinn, E. (2003). Inorg. Chem. 42, 8230–8240. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suresh, P., Babu, C. N. & Prabusankar, G. (2015). Polyhedron, 89, 322–329. CSD CrossRef CAS Google Scholar
Zhang, J., Hubert-Pfalzgraf, L. G. & Luneau, D. (2005). Polyhedron, 24, 1185–1195. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.