research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and conformational analyses of three pyranochromene derivatives

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 June 2015; accepted 6 July 2015; online 15 July 2015)

The title compounds, C27H20O6, (I) [systematic name: methyl 7-oxo-14-phenyl-1H,7H,14H-pyrano[3,2-c:5,4-c′]dichromene-14a(6bH)-carboxyl­ate], C24H22O5, (II) [systematic name: methyl 1-oxo-6-phenyl-2,3,4,12b-tetra­hydro-1H,6H-chromeno[3,4-c]chromene-6a(7H)-carboxyl­ate], and C25H23N3O4, (III) [systematic name: 6-(4-ethyl­phen­yl)-2,4-dimethyl-1,3-dioxo-2,3,4,12b-tetra­hydro-1H,6H-chromeno[4′,3′:4,5]pyrano[2,3-d]pyrimidine-6a(7H)-carbo­nitrile], are pyran­ochromene derivatives. The central pyran rings (B) of compounds (I) and (III) adopt half-chair conformations, whereas that of compound (II) adopts a sofa conformation. The pyran rings (A) of the chromene ring systems of compounds (II) and (III) adopt half-chair conformations, while that of compound (I) adopts a sofa conformation. The mean plane of the central pyran rings (B) make dihedral angles of 70.02 (6), 61.52 (6) and 69.12 (7)°, respectively, with the mean planes of the chromene moieties (C+A) of compounds (I), (II) and (III). The bicyclic coumarin ring system (C+A+B+E) in compound (I) is almost planar (r.m.s. deviation = 0.042 Å). The carbo­nitrile side chain in compound (III) is very nearly linear, with the C—C≡N angle being 176.6 (2)°. The cyclo­hexene ring (E), fused with the central pyran ring (B) in compound (II) adopts a sofa conformation. In the mol­ecular structures of compounds (II) and (III), there are C—H⋯O short contacts, which generate S(7) ring motifs. In the crystal structures of the title compounds, mol­ecules are linked by C—H⋯O hydrogen bonds, which generate mol­ecular sheets parallel to the ab plane, with R43(28) loops in (I), inversion dimers with R22(10) loops in (II) and chains along [010] with R22(12) ring motifs in (III). In the crystal structures of (I) and (III), there are also C—H⋯π inter­actions present, leading to the formation of a three-dimensional framework in (II) and to sheets parallel to (101) in (III).

1. Chemical context

Chromenes, the oxygen-containing heterocyclic scaffolds, represent a privileged structural motif, well distributed in biologically active natural products and also in synthetic compounds used in the fields of medicine, agrochemistry, cosmetics and pigments. A number of drugs containing chromene are used in the treatment of ailments such as hypertension, asthma, ischemia and urinary incontinence. Chromene derivatives are known to possess anti­tumor, anti­vascular (Gourdeau et al., 2004[Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S.-X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375-1384.]), anti­microbial (Sangani et al., 2012[Sangani, C. B., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 1165-1174.]), anti-oxidant (Mladenović et al., 2011[Mladenović, M., Mihailović, M., Bogojević, D., Matić, S., Nićiforović, N., Mihailović, V., Vuković, N., Sukdolak, S. & Solujić, S. (2011). Int. J. Mol. Sci. 12(5), 2822-2841.]), anti­fungal (Thareja et al., 2010[Thareja, S., Verma, A., Kalra, A., Gosain, S., Rewatkar, P. V. & Kokil, G. R. (2010). Acta. Pol. Pharm. 67, 423-427.]), anti­viral (Smith et al., 1998[Smith, P. W., Sollis, S. L., Howes, P. D., Cherry, P. C., Starkey, I. D., Cobley, K. N., Weston, H., Scicinski, J., Merritt, A., Whittington, A., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). J. Med. Chem. 41, 787-797.]), anti-inflammatory (Moon et al., 2007[Moon, D.-O., Choi, Y. H., Kim, N.-D., Park, Y.-M. & Kim, G.-Y. (2007). Int. Immunopharmacol. 7, 506-514.]), anti­malarial (de Andrade-Neto et al., 2004[Andrade-Neto, V. F. de, Goulart, M. O. F., da Silva Filho, J. F., da Silva, M. J., Pinto, M. C. F. R., do, C. F. R., Pinto, A. V., Zalis, M. G., Carvalho, L. H. & Krettli, A. U. (2004). Bioorg. Med. Chem. Lett. 14, 1145-1149.]), sex hormonal (Mohr et al., 1975[Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750-3754.]), anti­proliferative (Bianchi & Tava, 1987[Bianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001-2002.]), anti­cancer, anti-Alzheimer, anti-Parkinson and Huntington's diseases (Andrani & Lapi, 1960[Andrani, L. L. & Lapi, E. (1960). Boll. Chim. Farm. 99, 583-586.]; Zhang et al., 1982[Zhang, Y. L., Chen, B. Z., Zheng, K. Q., Xu, M. L., Lei, X. H. & Yaoxue, X. B. (1982). Chem. Abstr. 96, 135383e.]), Tumor Necrosis Factor (TNF–α) inhibitory (Cheng et al., 2003[Cheng, J.-F., Ishikawa, A., Ono, Y., Arrhenius, T. & Nadzan, A. (2003). Bioorg. Med. Chem. Lett. 13, 3647-3650.]), estrogenic (Jain et al., 2009[Jain, N., Xu, J., Kanojia, R. M., Du, F., Jian-Zhong, G., Pacia, E., Lai, M.-T., Musto, A., Allan, G., Reuman, M., Li, X., Hahn, D. W., Cousineau, M., Peng, S., Ritchie, D., Russell, R., Lundeen, S. & Sui, Z. (2009). J. Med. Chem. 52, 7544-7569.]), anti­filaricidal (Tripathi et al., 2000[Tripathi, R. P., Tripathi, R., Bhaduri, A. P., Singh, S. N., Chatterjee, R. K. & Murthy, P. K. (2000). Acta Trop. 76, 101-106.]) and anti­convulsant (Bhat et al., 2008[Bhat, M. A., Siddiqui, N. & Khan, S. A. (2008). Acta. Pol. Pharm. 65, 235-239.]) activities.

[Scheme 1]

Chromene derivatives also play an important role in the production of highly effective fluorescent dyes for synthetic fibers, daylight-fluorescent pigments and electrophotographic and electroluminescent devices (Khairy et al., 2009[Khairy, A. M., Mohsen, M. A., Yahia, A. M., Basyouni, W. M. & Samir, Y. A. (2009). WJC, 4, 161-170.]). Against this background, the title compounds, (I)[link], (II)[link] and (III)[link], were synthesized and we report herein on their crystal structures and mol­ecular conformations.

2. Structural commentary

The mol­ecular structures of compounds, (I)[link], (II)[link] and (III) are illustrated in Figs. 1[link], 2[link] and 3[link], respectively. All three compounds comprise a central pyran ring (B) fused with a chromene ring system (C+A). The central pyran ring (B) is fused with a second chromene ring system (E+F) in (I)[link], a cyclo­hexene ring (E) in (II)[link] and a pyrimidine ring (E) in (III)[link]; see scheme and Figs. 1[link]–3[link][link]. In compounds (I)[link] and (II)[link], a carboxyl­ate side chain and a benzene ring (D) are attached to the central pyran ring (B), in adjacent positions, whereas in (III)[link] there is a cabo­nitrile side chain and an ethyl-substituted benzene ring attached to the central pyran ring (B).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labelling. The intra­molecular C4—H4⋯O3 inter­action, which generates an S(7) ring motif, is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], with the atom labelling. The intra­molecular C4—H4⋯O3 inter­action, which generates an S(7) ring motif, is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.

In compounds (I)[link] and (III)[link], the central pyran rings (B) adopt half-chair conformations with puckering amplitudes Q = 0.5166 (15) Å, θ = 51.22 (17), φ = 259.4 (2)° and Q = 0.486 (2) Å, θ = 128.3 (2), φ = 74.5 (3)°, respectively. In compound (II)[link], the central pyran ring (B) adopts a sofa conformation [Q = 0.5614 (15) Å, θ = 58.41 (15), φ = 286.21 (16)°]. The cyclo­hexene ring (E) fused to the central pyran ring (B) in compound (II)[link], adopts a sofa conformation [Q = 0.497 (2) Å, θ = 109.8 (2), φ = 5.9 (2)°]. The pyran ring (A) of the chromene moiety adopts a half-chair conformation in compounds (II)[link] and (III)[link] [Q = 0.4850 (14) Å, θ = 53.26 (17), φ = 271.70 (19)° and Q = 0.507 (2) Å, θ = 128.9 (2), φ = 92.7 (3)°, respectively] and a sofa conformation in compound (I)[link] [Q = 0.5130 (16) Å, θ = 57.83 (18), φ = 234.6 (2)°].

In compound (I)[link], the dihedral angle between the benzene ring (C) and the mean plane of the pyran ring (A – sofa conformation) of the chromene moiety is 14.95 (8)°, whereas in (II)[link] and (III)[link] the same angles are 7.83 (7) and 6.42 (10)°, respectively (the A rings here have half-chair conformations). The decrease in the value of the dihedral angle in compounds (II)[link] and (III)[link] is probably due to the intra­molecular C—H⋯O short contacts which generate S(7) ring motifs. The second coumarin ring system (E+F) is almost planar with the dihedral angle between the pyran and benzene rings being 3.73 (7)°. Atom O4 deviates from the mean plane of this coumarin ring system by 0.111 (1) Å. The phenyl ring (D) is inclined to the mean plane of the central pyran ring (B), by 60.48 (8)°.

In compound (II)[link], the mean plane of the central pyran ring (B) makes dihedral angles of 22.63 (8) and 56.99 (9)° with the mean plane of the six-membered carbocylic ring (E) and the phenyl ring (D), respectively. Atom O3 deviates from the mean plane of ring (E) by 0.199 (1) Å.

In compound (III)[link], the central pyran ring (B) makes dihedral angles of 7.36 (9) and 58.24 (10)° with the pyrimidine (E) and ethyl-substituted benzene (D) rings, respectively. Atom O3 and the methyl group C atom, C16, deviate significantly from the mean plane of the pyrimidine ring (E) by 0.106 (1) and −0.107 (2) Å, respectively.

3. Supra­molecular features

In compound (I)[link], C—H⋯O hydrogen bonds are present in which the carboxyl­ate and chromene ring C atoms, C27 and C1, respectively, act as donors and the coumarin ring O atom, O4, acts as a single acceptor (Table 1[link]). These hydrogen bonds link the mol­ecules into [R_{4}^{3}](28) ring motifs, resulting in the formation of sheets parallel to the ab plane (Fig. 4[link]). The sheets are linked by C—H⋯π inter­actions, forming a three-dimensional framework (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of rings C14–C19 and C1–C6, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.58 3.411 (2) 149
C27—H27C⋯O4ii 0.96 2.37 3.053 (2) 128
C12—H12⋯Cg1iii 0.98 2.73 3.6861 (17) 166
C18—H18⋯Cg2iv 0.93 2.84 3.674 (2) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z.
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the c axis, showing the formation of two-dimensional mol­ecular sheets running parallel to the ab plane. Dashed lines indicate the inter­molecular C—H⋯O inter­actions (Table 1[link]). H atoms not involved in hydrogen bonding have been excluded for clarity.

In compound (II)[link], mol­ecules are linked through pairs of C–H⋯O hydrogen bonds, resulting in the formation of inversion dimers with graph-set motif [R_{2}^{2}](10) (Table 2[link] and Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3 0.93 2.22 2.973 (2) 138
C12—H12⋯O4i 0.98 2.41 3.3613 (18) 164
Symmetry code: (i) -x, -y, -z+1.
[Figure 5]
Figure 5
The crystal packing of the title compound (II)[link], viewed along the a axis, showing the formation of inversion dimers with the descriptor [R_{2}^{2}](10). Dashed lines indicate the inter­molecular C—H⋯O inter­actions (Table 2[link]). H atoms not involved in hydrogen bonding have been excluded for clarity.

In compound (III)[link], mol­ecules are linked through C—H⋯O hydrogen bonds, resulting in the formation chains along the b-axis direction, enclosing [R_{2}^{2}](12) ring motifs (Fig. 6[link]). The chains are linked by C—H⋯π inter­actions, forming sheets parallel to (101) (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 and Cg2 are the centroids of rings C14–C19 and C1–C6, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3 0.93 2.39 3.155 (3) 139
C7—H7B⋯O4i 0.97 2.52 3.423 (3) 156
C15—H15A⋯O3ii 0.96 2.50 3.315 (3) 143
C16—H16CCg1iii 0.96 2.93 3.739 (2) 143
C24—H24ACg2iv 0.96 2.70 3.634 (3) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 6]
Figure 6
The crystal packing of the title compound (III)[link], viewed along the a axis, showing the formation of adjacent [R_{2}^{2}](12) ring motifs which connect the inversion-related mol­ecules into chains along [010]. Dashed lines indicate the inter­molecular C—H⋯O inter­actions (Table 3[link]). H atoms not involved in hydrogen bonding have been excluded for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 4,4a,5,10b-tetra­hydro-4-phenyl­pyrano[3,4-c]chromene yielded 14 hits. The bond distances and bond angles in compounds (I)–(III) are in agreement with those in the reported structures. For example: compounds (I)[link] and (II)[link] exhibits structural similarities with entries LESWIR (Ponnusamy et al., 2013[Ponnusamy, R., Sabari, V., Sivakumar, G., Bakthadoss, M. & Aravindhan, S. (2013). Acta Cryst. E69, o267-o268.]) which has a toluene rather than a phenyl substituent on ring (B), OLEZIP (Kathiravan & Raghunathan, 2010[Kathiravan, S. & Raghunathan, R. (2010). Synlett, 13, 1927-1930.]) which has a 4-meth­oxy­phenyl substituent, and AZUKIQ (Swaminathan et al., 2011[Swaminathan, K., Sethusankar, K., Sivakumar, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o2673.]) which has a 2-chloro­phenyl substituent. Compound (III)[link] is similar to entries WUNNAV (Bakthadoss et al., 2009[Bakthadoss, M., Sivakumar, G. & Kannan, D. (2009). Org. Lett. 11, 4466-4469.]), AXACAE (Kanchanadevi et al., 2011[Kanchanadevi, J., Anbalagan, G., Sivakumar, G., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1990.]) and WUNNEZ (Bakthadoss et al., 2009[Bakthadoss, M., Sivakumar, G. & Kannan, D. (2009). Org. Lett. 11, 4466-4469.]), but only the last compound also has a cabo­nitrile side chain.

5. Synthesis and crystallization

Compound (I): A mixture of (E)-methyl 2-[(2-formyl­phen­oxy)meth­yl]-3-phenyl­acrylate (0.296 g, 1 mmol) and 4-hy­droxy-2H -chromen-2-one (0.162 g, 1 mmol) was placed in a round bottom flask and heated at 453 K for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 ml of ethyl­acetate and hexane mixture (1:49 ratio) which successfully provided compound (I)[link] as a colourless solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of (I)[link] in ethyl­acetate at room temperature.

Compound (II): A mixture of (E)-methyl 2-[(2-formyl­phen­oxy)meth­yl]-3-phenyl­acrylate (0.296 g, 1 mmol) and cyclo­hexane-1,3-dione (0.112 g, 1 mmol) was placed in a round bottom flask and heated at 453 K for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 ml of ethyl­acetate and hexane mixture (1:49 ratio) which successfully provided the crude product of compound (II)[link] as a colourless solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of (II)[link] in ethyl­acetate at room temperature.

Compound (III): A mixture of (E)-2-[(2-formyl­phen­oxy)meth­yl]-3-(4-ethyl­phen­yl)acrylo­nitrile (0.291 g, 1 mmol) and 1,3-di­methyl­pyrimidine-2,4,6(1H,3H,5H)-trione (0.156 g, 1 mmol) was placed in a round-bottom flask and heated at 453 K for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 ml of ethyl­acetate and hexane mixture (1:49 ratio) which successfully provided pure compound (III)[link] as a colourless solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of (III)[link] in ethyl­acetate at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details for compounds (I)[link], (II)[link] and (III)[link] are summarized in Table 4[link]. The positions of all of the H atoms were located in difference electron density maps. During refinement they were treated as riding atoms, with d(C—H) = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methyl­ene and methine H atoms, respectively, and with Uiso(H)= 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C27H20O6 C24H22O5 C25H23N3O4
Mr 440.43 390.42 429.46
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 296 296 296
a, b, c (Å) 9.3980 (15), 14.0050 (12), 15.9890 (13) 11.1694 (10), 20.1405 (19), 8.5835 (7) 11.4471 (5), 11.2076 (4), 16.5407 (7)
β (°) 92.048 (5) 96.453 (3) 91.990 (2)
V3) 2103.1 (4) 1918.7 (3) 2120.80 (15)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.09 0.09
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.966, 0.976 0.968, 0.977 0.968, 0.977
No. of measured, independent and observed [I > 2σ(I)] reflections 19091, 3698, 2964 23342, 5466, 3694 18281, 3715, 2814
Rint 0.027 0.033 0.030
(sin θ/λ)max−1) 0.595 0.699 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.07 0.047, 0.155, 0.99 0.044, 0.126, 1.03
No. of reflections 3698 5466 3715
No. of parameters 299 263 292
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.20 0.26, −0.22 0.33, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(I) Methyl 7-oxo-14-phenyl-1H,7H,14H-pyrano[3,2-c:5,4-c']dichromene-14a(6bH)-carboxylate] top
Crystal data top
C27H20O6F(000) = 920
Mr = 440.43Dx = 1.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3698 reflections
a = 9.3980 (15) Åθ = 2.6–25.0°
b = 14.0050 (12) ŵ = 0.10 mm1
c = 15.9890 (13) ÅT = 296 K
β = 92.048 (5)°Block, colourless
V = 2103.1 (4) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3698 independent reflections
Radiation source: fine-focus sealed tube2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω & φ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.966, Tmax = 0.976k = 1616
19091 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.3545P]
where P = (Fo2 + 2Fc2)/3
3698 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56782 (17)0.20825 (13)0.27702 (12)0.0602 (5)
H10.51880.15130.26800.072*
C20.55034 (19)0.25923 (16)0.34916 (12)0.0673 (5)
H20.48930.23660.38920.081*
C30.6227 (2)0.34377 (16)0.36281 (11)0.0641 (5)
H30.61020.37820.41170.077*
C40.71382 (17)0.37705 (13)0.30365 (10)0.0527 (4)
H40.76360.43350.31360.063*
C50.73273 (15)0.32771 (11)0.22924 (9)0.0418 (3)
C60.65935 (16)0.24239 (11)0.21752 (10)0.0472 (4)
C70.77878 (16)0.20819 (11)0.09054 (10)0.0473 (4)
H7A0.73430.24340.04440.057*
H7B0.81650.14940.06820.057*
C80.90161 (15)0.26711 (10)0.12772 (9)0.0382 (3)
C90.84184 (14)0.35891 (10)0.16676 (9)0.0373 (3)
H90.91990.39120.19770.045*
C100.79072 (15)0.42388 (10)0.09597 (9)0.0377 (3)
C110.83533 (15)0.41354 (10)0.01665 (9)0.0390 (3)
C121.00608 (15)0.29584 (10)0.05912 (9)0.0398 (3)
H121.07760.33900.08440.048*
C130.69743 (15)0.50314 (10)0.11408 (10)0.0406 (3)
C140.68064 (15)0.54090 (10)0.03296 (10)0.0436 (4)
C150.78006 (15)0.47146 (10)0.05170 (9)0.0416 (3)
C160.81551 (18)0.45965 (12)0.13507 (10)0.0519 (4)
H160.88290.41430.14900.062*
C170.7513 (2)0.51477 (13)0.19664 (11)0.0594 (5)
H170.77570.50670.25210.071*
C180.65055 (19)0.58214 (13)0.17657 (12)0.0592 (5)
H180.60630.61830.21880.071*
C190.61517 (17)0.59612 (12)0.09496 (11)0.0534 (4)
H190.54820.64200.08150.064*
C201.08306 (16)0.21352 (10)0.01989 (9)0.0437 (4)
C211.21663 (18)0.18833 (12)0.05144 (12)0.0557 (4)
H211.25810.22270.09570.067*
C221.2892 (2)0.11241 (13)0.01770 (14)0.0712 (6)
H221.37920.09610.03930.085*
C231.2289 (2)0.06125 (13)0.04743 (15)0.0754 (6)
H231.27840.01080.07060.091*
C241.0960 (2)0.08450 (14)0.07837 (13)0.0715 (6)
H241.05450.04870.12170.086*
C251.0226 (2)0.16088 (12)0.04583 (11)0.0572 (4)
H250.93290.17690.06800.069*
C260.98572 (15)0.20813 (11)0.19238 (9)0.0423 (4)
C271.1726 (2)0.21330 (15)0.29418 (13)0.0713 (5)
H27A1.11910.18160.33600.107*
H27B1.23670.25840.32060.107*
H27C1.22610.16700.26410.107*
O10.67314 (12)0.18517 (9)0.14893 (8)0.0638 (3)
O20.93013 (11)0.34696 (7)0.00690 (6)0.0466 (3)
O30.64390 (11)0.55763 (7)0.04799 (7)0.0490 (3)
O40.66214 (12)0.52699 (8)0.18248 (7)0.0533 (3)
O51.07607 (11)0.26285 (8)0.23656 (7)0.0535 (3)
O60.97557 (13)0.12343 (8)0.20042 (8)0.0613 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0410 (9)0.0613 (11)0.0790 (13)0.0020 (8)0.0107 (8)0.0229 (10)
C20.0509 (10)0.0891 (15)0.0631 (11)0.0121 (10)0.0165 (9)0.0304 (11)
C30.0585 (11)0.0886 (14)0.0459 (9)0.0167 (10)0.0109 (8)0.0091 (9)
C40.0509 (9)0.0614 (10)0.0459 (9)0.0092 (8)0.0045 (7)0.0014 (8)
C50.0351 (7)0.0456 (8)0.0450 (8)0.0042 (6)0.0036 (6)0.0054 (7)
C60.0362 (8)0.0487 (9)0.0570 (9)0.0018 (7)0.0052 (7)0.0070 (8)
C70.0492 (9)0.0389 (8)0.0540 (9)0.0077 (7)0.0055 (7)0.0035 (7)
C80.0379 (8)0.0322 (7)0.0448 (8)0.0014 (6)0.0049 (6)0.0016 (6)
C90.0339 (7)0.0345 (7)0.0435 (8)0.0020 (6)0.0033 (6)0.0032 (6)
C100.0347 (7)0.0305 (7)0.0480 (8)0.0041 (6)0.0031 (6)0.0022 (6)
C110.0383 (8)0.0297 (7)0.0492 (8)0.0024 (6)0.0043 (6)0.0021 (6)
C120.0419 (8)0.0325 (7)0.0452 (8)0.0012 (6)0.0054 (6)0.0000 (6)
C130.0369 (8)0.0310 (7)0.0539 (9)0.0045 (6)0.0043 (7)0.0021 (7)
C140.0391 (8)0.0353 (8)0.0565 (9)0.0069 (6)0.0026 (7)0.0040 (7)
C150.0423 (8)0.0328 (7)0.0496 (8)0.0055 (6)0.0004 (6)0.0025 (6)
C160.0613 (10)0.0441 (9)0.0504 (9)0.0021 (8)0.0028 (8)0.0013 (7)
C170.0722 (12)0.0556 (11)0.0502 (10)0.0088 (9)0.0026 (8)0.0078 (8)
C180.0573 (11)0.0555 (10)0.0640 (11)0.0090 (8)0.0109 (9)0.0172 (9)
C190.0427 (9)0.0417 (9)0.0754 (12)0.0030 (7)0.0057 (8)0.0122 (8)
C200.0482 (9)0.0331 (8)0.0506 (9)0.0006 (6)0.0143 (7)0.0004 (6)
C210.0492 (9)0.0460 (9)0.0726 (11)0.0017 (7)0.0099 (8)0.0053 (8)
C220.0588 (11)0.0527 (11)0.1033 (16)0.0151 (9)0.0186 (11)0.0025 (11)
C230.0884 (15)0.0408 (10)0.0995 (15)0.0114 (10)0.0372 (13)0.0086 (10)
C240.0917 (15)0.0526 (11)0.0717 (12)0.0006 (10)0.0222 (11)0.0203 (9)
C250.0646 (11)0.0512 (10)0.0562 (10)0.0034 (8)0.0090 (8)0.0096 (8)
C260.0421 (8)0.0382 (8)0.0473 (8)0.0019 (6)0.0103 (7)0.0024 (7)
C270.0585 (11)0.0751 (13)0.0790 (13)0.0166 (10)0.0165 (10)0.0123 (10)
O10.0535 (7)0.0599 (7)0.0789 (8)0.0232 (6)0.0172 (6)0.0120 (6)
O20.0547 (6)0.0411 (6)0.0446 (6)0.0104 (5)0.0106 (5)0.0027 (5)
O30.0476 (6)0.0384 (6)0.0613 (7)0.0071 (5)0.0075 (5)0.0049 (5)
O40.0592 (7)0.0416 (6)0.0596 (7)0.0046 (5)0.0112 (5)0.0091 (5)
O50.0465 (6)0.0464 (6)0.0667 (7)0.0061 (5)0.0100 (5)0.0041 (5)
O60.0759 (8)0.0385 (7)0.0699 (8)0.0000 (6)0.0059 (6)0.0120 (6)
Geometric parameters (Å, º) top
C1—C21.372 (3)C13—O31.3835 (18)
C1—C61.390 (2)C14—O31.3715 (18)
C1—H10.9300C14—C191.384 (2)
C2—C31.379 (3)C14—C151.389 (2)
C2—H20.9300C15—C161.395 (2)
C3—C41.379 (2)C16—C171.374 (2)
C3—H30.9300C16—H160.9300
C4—C51.393 (2)C17—C181.382 (3)
C4—H40.9300C17—H170.9300
C5—C61.389 (2)C18—C191.372 (3)
C5—C91.5211 (19)C18—H180.9300
C6—O11.368 (2)C19—H190.9300
C7—O11.4239 (19)C20—C211.382 (2)
C7—C81.522 (2)C20—C251.388 (2)
C7—H7A0.9700C21—C221.383 (2)
C7—H7B0.9700C21—H210.9300
C8—C261.522 (2)C22—C231.370 (3)
C8—C91.5438 (19)C22—H220.9300
C8—C121.5512 (19)C23—C241.366 (3)
C9—C101.517 (2)C23—H230.9300
C9—H90.9800C24—C251.385 (2)
C10—C111.358 (2)C24—H240.9300
C10—C131.450 (2)C25—H250.9300
C11—O21.3524 (17)C26—O61.1973 (18)
C11—C151.443 (2)C26—O51.3283 (18)
C12—O21.4430 (17)C27—O51.4470 (19)
C12—C201.5094 (19)C27—H27A0.9600
C12—H120.9800C27—H27B0.9600
C13—O41.2015 (17)C27—H27C0.9600
C2—C1—C6119.48 (18)O3—C13—C10118.41 (13)
C2—C1—H1120.3O3—C14—C19117.38 (14)
C6—C1—H1120.3O3—C14—C15121.15 (13)
C1—C2—C3120.46 (16)C19—C14—C15121.47 (15)
C1—C2—H2119.8C14—C15—C16118.34 (14)
C3—C2—H2119.8C14—C15—C11117.20 (14)
C2—C3—C4119.76 (18)C16—C15—C11124.41 (14)
C2—C3—H3120.1C17—C16—C15120.28 (16)
C4—C3—H3120.1C17—C16—H16119.9
C3—C4—C5121.29 (18)C15—C16—H16119.9
C3—C4—H4119.4C16—C17—C18120.28 (17)
C5—C4—H4119.4C16—C17—H17119.9
C6—C5—C4117.66 (14)C18—C17—H17119.9
C6—C5—C9120.11 (13)C19—C18—C17120.62 (16)
C4—C5—C9121.88 (14)C19—C18—H18119.7
O1—C6—C5123.45 (13)C17—C18—H18119.7
O1—C6—C1115.20 (15)C18—C19—C14119.00 (16)
C5—C6—C1121.34 (16)C18—C19—H19120.5
O1—C7—C8113.79 (13)C14—C19—H19120.5
O1—C7—H7A108.8C21—C20—C25118.86 (14)
C8—C7—H7A108.8C21—C20—C12119.07 (14)
O1—C7—H7B108.8C25—C20—C12122.05 (14)
C8—C7—H7B108.8C20—C21—C22120.54 (18)
H7A—C7—H7B107.7C20—C21—H21119.7
C7—C8—C26109.83 (12)C22—C21—H21119.7
C7—C8—C9109.12 (12)C23—C22—C21120.14 (19)
C26—C8—C9111.40 (11)C23—C22—H22119.9
C7—C8—C12110.78 (12)C21—C22—H22119.9
C26—C8—C12107.13 (11)C24—C23—C22119.91 (17)
C9—C8—C12108.57 (11)C24—C23—H23120.0
C10—C9—C5117.35 (11)C22—C23—H23120.0
C10—C9—C8107.94 (11)C23—C24—C25120.64 (19)
C5—C9—C8106.85 (11)C23—C24—H24119.7
C10—C9—H9108.1C25—C24—H24119.7
C5—C9—H9108.1C24—C25—C20119.90 (18)
C8—C9—H9108.1C24—C25—H25120.0
C11—C10—C13118.51 (13)C20—C25—H25120.0
C11—C10—C9122.20 (12)O6—C26—O5124.50 (15)
C13—C10—C9119.20 (12)O6—C26—C8124.68 (14)
O2—C11—C10124.21 (13)O5—C26—C8110.77 (12)
O2—C11—C15113.56 (12)O5—C27—H27A109.5
C10—C11—C15122.19 (13)O5—C27—H27B109.5
O2—C12—C20107.87 (11)H27A—C27—H27B109.5
O2—C12—C8109.69 (11)O5—C27—H27C109.5
C20—C12—C8114.87 (11)H27A—C27—H27C109.5
O2—C12—H12108.1H27B—C27—H27C109.5
C20—C12—H12108.1C6—O1—C7118.76 (12)
C8—C12—H12108.1C11—O2—C12116.87 (11)
O4—C13—O3115.93 (13)C14—O3—C13121.98 (11)
O4—C13—C10125.67 (14)C26—O5—C27115.86 (13)
C6—C1—C2—C30.0 (3)O3—C14—C15—C114.2 (2)
C1—C2—C3—C40.3 (3)C19—C14—C15—C11176.08 (13)
C2—C3—C4—C51.1 (3)O2—C11—C15—C14179.24 (12)
C3—C4—C5—C61.6 (2)C10—C11—C15—C141.6 (2)
C3—C4—C5—C9174.77 (15)O2—C11—C15—C161.9 (2)
C4—C5—C6—O1177.19 (14)C10—C11—C15—C16175.73 (14)
C9—C5—C6—O13.9 (2)C14—C15—C16—C171.0 (2)
C4—C5—C6—C11.4 (2)C11—C15—C16—C17176.29 (14)
C9—C5—C6—C1174.64 (14)C15—C16—C17—C180.3 (3)
C2—C1—C6—O1178.06 (15)C16—C17—C18—C191.2 (3)
C2—C1—C6—C50.6 (2)C17—C18—C19—C140.8 (2)
O1—C7—C8—C2666.18 (16)O3—C14—C19—C18179.25 (14)
O1—C7—C8—C956.20 (16)C15—C14—C19—C180.5 (2)
O1—C7—C8—C12175.67 (12)O2—C12—C20—C21142.93 (14)
C6—C5—C9—C1093.17 (16)C8—C12—C20—C2194.41 (17)
C4—C5—C9—C1093.83 (17)O2—C12—C20—C2538.48 (18)
C6—C5—C9—C828.10 (18)C8—C12—C20—C2584.17 (18)
C4—C5—C9—C8144.90 (14)C25—C20—C21—C220.5 (2)
C7—C8—C9—C1071.67 (14)C12—C20—C21—C22179.09 (15)
C26—C8—C9—C10166.90 (11)C20—C21—C22—C230.1 (3)
C12—C8—C9—C1049.16 (14)C21—C22—C23—C240.9 (3)
C7—C8—C9—C555.38 (15)C22—C23—C24—C251.5 (3)
C26—C8—C9—C566.05 (14)C23—C24—C25—C201.2 (3)
C12—C8—C9—C5176.21 (11)C21—C20—C25—C240.2 (2)
C5—C9—C10—C11140.03 (14)C12—C20—C25—C24178.41 (15)
C8—C9—C10—C1119.34 (17)C7—C8—C26—O614.1 (2)
C5—C9—C10—C1343.55 (18)C9—C8—C26—O6135.12 (15)
C8—C9—C10—C13164.25 (12)C12—C8—C26—O6106.27 (16)
C13—C10—C11—O2175.09 (12)C7—C8—C26—O5168.35 (12)
C9—C10—C11—O21.4 (2)C9—C8—C26—O547.33 (15)
C13—C10—C11—C157.5 (2)C12—C8—C26—O571.28 (14)
C9—C10—C11—C15176.06 (12)C5—C6—O1—C77.0 (2)
C7—C8—C12—O256.60 (15)C1—C6—O1—C7171.66 (14)
C26—C8—C12—O2176.37 (11)C8—C7—O1—C624.1 (2)
C9—C8—C12—O263.21 (14)C10—C11—O2—C1211.38 (19)
C7—C8—C12—C2065.08 (16)C15—C11—O2—C12171.01 (11)
C26—C8—C12—C2054.69 (16)C20—C12—O2—C11169.19 (11)
C9—C8—C12—C20175.12 (12)C8—C12—O2—C1143.41 (15)
C11—C10—C13—O4171.57 (14)C19—C14—O3—C13176.57 (12)
C9—C10—C13—O45.0 (2)C15—C14—O3—C133.7 (2)
C11—C10—C13—O37.88 (19)O4—C13—O3—C14177.07 (13)
C9—C10—C13—O3175.57 (11)C10—C13—O3—C142.43 (19)
O3—C14—C15—C16178.36 (13)O6—C26—O5—C273.7 (2)
C19—C14—C15—C161.4 (2)C8—C26—O5—C27173.81 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C14–C19 and C1–C6, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.583.411 (2)149
C27—H27C···O4ii0.962.373.053 (2)128
C12—H12···Cg1iii0.982.733.6861 (17)166
C18—H18···Cg2iv0.932.843.674 (2)150
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1, y+1, z.
(II) Methyl 1-oxo-6-phenyl-2,3,4,12b-tetrahydro-1H,6H-chromeno[3,4-c]chromene-6a(7H)-carboxylate] top
Crystal data top
C24H22O5F(000) = 824
Mr = 390.42Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5466 reflections
a = 11.1694 (10) Åθ = 2.1–29.8°
b = 20.1405 (19) ŵ = 0.09 mm1
c = 8.5835 (7) ÅT = 296 K
β = 96.453 (3)°Block, colourless
V = 1918.7 (3) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5466 independent reflections
Radiation source: fine-focus sealed tube3694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω & φ scansθmax = 29.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.968, Tmax = 0.977k = 2827
23342 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0894P)2 + 0.1805P]
where P = (Fo2 + 2Fc2)/3
5466 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31613 (14)0.23586 (8)0.65866 (19)0.0508 (4)
H10.29750.27900.68600.061*
C20.42353 (15)0.20782 (10)0.7195 (2)0.0593 (4)
H20.47690.23170.78940.071*
C30.45178 (15)0.14467 (10)0.6769 (2)0.0601 (4)
H30.52570.12620.71470.072*
C40.37039 (13)0.10856 (8)0.57786 (18)0.0478 (4)
H40.38980.06530.55210.057*
C50.25975 (11)0.13496 (7)0.51513 (14)0.0348 (3)
C60.23532 (12)0.19988 (7)0.55629 (16)0.0379 (3)
C70.05795 (12)0.20179 (7)0.37858 (16)0.0374 (3)
H7A0.09560.20850.28330.045*
H7B0.02060.22290.36480.045*
C80.04229 (11)0.12785 (6)0.40481 (14)0.0311 (3)
C90.16596 (11)0.09252 (6)0.41771 (14)0.0316 (3)
H90.15800.05100.47510.038*
C100.20028 (12)0.07429 (7)0.25652 (15)0.0376 (3)
C110.12973 (14)0.08917 (8)0.12367 (16)0.0436 (3)
C120.03692 (12)0.09634 (7)0.26444 (15)0.0360 (3)
H120.03390.04800.27810.043*
C130.29831 (14)0.02678 (8)0.2427 (2)0.0486 (4)
C140.33358 (18)0.01282 (12)0.0817 (2)0.0733 (6)
H14A0.42030.00740.08920.088*
H14B0.29710.02880.04420.088*
C150.29703 (19)0.06569 (12)0.0346 (2)0.0751 (6)
H15A0.31380.05130.13780.090*
H15B0.34370.10550.00770.090*
C160.16417 (17)0.08128 (11)0.03816 (19)0.0652 (5)
H16A0.14600.12190.09680.078*
H16B0.11730.04570.09110.078*
C170.16701 (13)0.11648 (7)0.23894 (16)0.0418 (3)
C180.20700 (17)0.16855 (9)0.1421 (2)0.0578 (4)
H180.15270.19390.09270.069*
C190.3299 (2)0.18263 (11)0.1194 (3)0.0842 (7)
H190.35800.21710.05300.101*
C200.40961 (19)0.14608 (13)0.1939 (4)0.0922 (8)
H200.49140.15600.17780.111*
C210.37047 (17)0.09518 (12)0.2915 (3)0.0804 (6)
H210.42490.07090.34320.096*
C220.24989 (14)0.08015 (9)0.3127 (2)0.0560 (4)
H220.22320.04500.37780.067*
C230.01905 (11)0.11340 (6)0.55155 (15)0.0326 (3)
C240.16103 (16)0.14882 (9)0.7159 (2)0.0607 (5)
H24A0.21970.11520.68430.091*
H24B0.20130.18870.74250.091*
H24C0.10910.13360.80550.091*
O10.12981 (9)0.23212 (5)0.50640 (12)0.0447 (3)
O20.01594 (10)0.11195 (6)0.12316 (11)0.0471 (3)
O30.34448 (11)0.00487 (7)0.35498 (15)0.0625 (3)
O40.00799 (10)0.06241 (5)0.62305 (12)0.0489 (3)
O50.09014 (9)0.16233 (5)0.58848 (12)0.0466 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (9)0.0473 (9)0.0540 (9)0.0135 (7)0.0058 (7)0.0108 (7)
C20.0479 (9)0.0697 (12)0.0575 (10)0.0193 (8)0.0071 (7)0.0041 (8)
C30.0403 (8)0.0725 (12)0.0642 (11)0.0054 (8)0.0084 (7)0.0036 (9)
C40.0381 (7)0.0530 (9)0.0513 (9)0.0026 (6)0.0001 (6)0.0004 (7)
C50.0338 (6)0.0405 (7)0.0303 (6)0.0017 (5)0.0050 (5)0.0011 (5)
C60.0361 (6)0.0402 (7)0.0383 (7)0.0044 (6)0.0073 (5)0.0010 (5)
C70.0396 (7)0.0326 (7)0.0395 (7)0.0011 (5)0.0027 (5)0.0026 (5)
C80.0317 (6)0.0307 (6)0.0305 (6)0.0009 (5)0.0025 (4)0.0004 (5)
C90.0313 (6)0.0316 (6)0.0321 (6)0.0024 (5)0.0042 (5)0.0006 (5)
C100.0394 (7)0.0379 (7)0.0368 (7)0.0015 (5)0.0093 (5)0.0062 (5)
C110.0485 (8)0.0467 (8)0.0363 (7)0.0030 (6)0.0082 (6)0.0066 (6)
C120.0384 (7)0.0362 (7)0.0323 (6)0.0013 (5)0.0008 (5)0.0007 (5)
C130.0414 (8)0.0502 (9)0.0558 (9)0.0002 (7)0.0134 (7)0.0153 (7)
C140.0639 (11)0.0924 (15)0.0681 (12)0.0066 (11)0.0268 (9)0.0283 (11)
C150.0785 (13)0.0995 (16)0.0534 (11)0.0132 (12)0.0334 (9)0.0195 (11)
C160.0760 (12)0.0876 (14)0.0339 (8)0.0055 (10)0.0145 (8)0.0095 (8)
C170.0397 (7)0.0412 (8)0.0416 (7)0.0045 (6)0.0079 (6)0.0072 (6)
C180.0592 (10)0.0520 (10)0.0576 (10)0.0109 (8)0.0144 (8)0.0001 (7)
C190.0760 (14)0.0629 (13)0.1027 (17)0.0275 (11)0.0389 (13)0.0101 (11)
C200.0431 (10)0.0777 (16)0.148 (2)0.0128 (10)0.0234 (13)0.0324 (16)
C210.0398 (9)0.0790 (15)0.1203 (18)0.0055 (9)0.0004 (11)0.0154 (13)
C220.0415 (8)0.0573 (10)0.0675 (11)0.0033 (7)0.0016 (7)0.0020 (8)
C230.0316 (6)0.0338 (6)0.0323 (6)0.0011 (5)0.0027 (5)0.0029 (5)
C240.0606 (10)0.0591 (10)0.0691 (11)0.0022 (8)0.0366 (9)0.0021 (8)
O10.0432 (5)0.0339 (5)0.0560 (6)0.0005 (4)0.0013 (4)0.0096 (4)
O20.0518 (6)0.0586 (7)0.0300 (5)0.0053 (5)0.0010 (4)0.0005 (4)
O30.0557 (7)0.0606 (8)0.0711 (8)0.0213 (6)0.0069 (6)0.0092 (6)
O40.0620 (7)0.0429 (6)0.0442 (6)0.0077 (5)0.0161 (5)0.0094 (4)
O50.0472 (6)0.0415 (6)0.0549 (6)0.0055 (4)0.0223 (5)0.0020 (4)
Geometric parameters (Å, º) top
C1—C21.375 (2)C13—O31.220 (2)
C1—C61.391 (2)C13—C141.506 (2)
C1—H10.9300C14—C151.485 (3)
C2—C31.370 (3)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C3—C41.380 (2)C15—C161.514 (3)
C3—H30.9300C15—H15A0.9700
C4—C51.3965 (19)C15—H15B0.9700
C4—H40.9300C16—H16A0.9700
C5—C61.389 (2)C16—H16B0.9700
C5—C91.5265 (18)C17—C181.381 (2)
C6—O11.3712 (17)C17—C221.388 (2)
C7—O11.4224 (16)C18—C191.394 (3)
C7—C81.5190 (18)C18—H180.9300
C7—H7A0.9700C19—C201.368 (4)
C7—H7B0.9700C19—H190.9300
C8—C231.5280 (17)C20—C211.365 (4)
C8—C91.5467 (17)C20—H200.9300
C8—C121.5484 (18)C21—C221.372 (2)
C9—C101.5216 (17)C21—H210.9300
C9—H90.9800C22—H220.9300
C10—C111.345 (2)C23—O41.1957 (16)
C10—C131.469 (2)C23—O51.3262 (15)
C11—O21.3508 (18)C24—O51.4465 (17)
C11—C161.491 (2)C24—H24A0.9600
C12—O21.4418 (16)C24—H24B0.9600
C12—C171.5008 (19)C24—H24C0.9600
C12—H120.9800
C2—C1—C6120.18 (16)C10—C13—C14118.02 (16)
C2—C1—H1119.9C15—C14—C13113.74 (16)
C6—C1—H1119.9C15—C14—H14A108.8
C3—C2—C1119.83 (15)C13—C14—H14A108.8
C3—C2—H2120.1C15—C14—H14B108.8
C1—C2—H2120.1C13—C14—H14B108.8
C2—C3—C4119.87 (16)H14A—C14—H14B107.7
C2—C3—H3120.1C14—C15—C16110.94 (16)
C4—C3—H3120.1C14—C15—H15A109.5
C3—C4—C5122.02 (16)C16—C15—H15A109.5
C3—C4—H4119.0C14—C15—H15B109.5
C5—C4—H4119.0C16—C15—H15B109.5
C6—C5—C4116.79 (13)H15A—C15—H15B108.0
C6—C5—C9121.60 (11)C11—C16—C15110.98 (15)
C4—C5—C9121.41 (13)C11—C16—H16A109.4
O1—C6—C5123.54 (12)C15—C16—H16A109.4
O1—C6—C1115.13 (13)C11—C16—H16B109.4
C5—C6—C1121.26 (14)C15—C16—H16B109.4
O1—C7—C8111.79 (11)H16A—C16—H16B108.0
O1—C7—H7A109.3C18—C17—C22119.22 (15)
C8—C7—H7A109.3C18—C17—C12122.37 (15)
O1—C7—H7B109.3C22—C17—C12118.39 (13)
C8—C7—H7B109.3C17—C18—C19119.0 (2)
H7A—C7—H7B107.9C17—C18—H18120.5
C7—C8—C23112.26 (10)C19—C18—H18120.5
C7—C8—C9110.17 (10)C20—C19—C18120.5 (2)
C23—C8—C9109.45 (10)C20—C19—H19119.8
C7—C8—C12110.59 (10)C18—C19—H19119.8
C23—C8—C12107.06 (10)C21—C20—C19120.75 (19)
C9—C8—C12107.14 (10)C21—C20—H20119.6
C10—C9—C5113.94 (10)C19—C20—H20119.6
C10—C9—C8111.11 (10)C20—C21—C22119.3 (2)
C5—C9—C8109.51 (10)C20—C21—H21120.4
C10—C9—H9107.3C22—C21—H21120.4
C5—C9—H9107.3C21—C22—C17121.21 (19)
C8—C9—H9107.3C21—C22—H22119.4
C11—C10—C13116.61 (12)C17—C22—H22119.4
C11—C10—C9122.25 (12)O4—C23—O5123.07 (12)
C13—C10—C9119.78 (12)O4—C23—C8123.83 (11)
C10—C11—O2122.67 (12)O5—C23—C8113.04 (11)
C10—C11—C16125.32 (15)O5—C24—H24A109.5
O2—C11—C16111.99 (13)O5—C24—H24B109.5
O2—C12—C17107.44 (11)H24A—C24—H24B109.5
O2—C12—C8108.24 (10)O5—C24—H24C109.5
C17—C12—C8117.51 (11)H24A—C24—H24C109.5
O2—C12—H12107.8H24B—C24—H24C109.5
C17—C12—H12107.8C6—O1—C7115.35 (10)
C8—C12—H12107.8C11—O2—C12113.41 (10)
O3—C13—C10121.98 (14)C23—O5—C24115.74 (12)
O3—C13—C14119.76 (15)
C6—C1—C2—C31.1 (3)C11—C10—C13—O3158.15 (16)
C1—C2—C3—C42.5 (3)C9—C10—C13—O38.8 (2)
C2—C3—C4—C51.7 (3)C11—C10—C13—C1416.1 (2)
C3—C4—C5—C60.4 (2)C9—C10—C13—C14176.91 (14)
C3—C4—C5—C9174.44 (14)O3—C13—C14—C15164.40 (17)
C4—C5—C6—O1178.79 (12)C10—C13—C14—C1521.2 (2)
C9—C5—C6—O13.93 (19)C13—C14—C15—C1652.5 (2)
C4—C5—C6—C11.78 (19)C10—C11—C16—C1510.0 (3)
C9—C5—C6—C1173.08 (12)O2—C11—C16—C15171.53 (16)
C2—C1—C6—O1178.29 (13)C14—C15—C16—C1146.8 (2)
C2—C1—C6—C51.0 (2)O2—C12—C17—C1830.11 (18)
O1—C7—C8—C2360.13 (14)C8—C12—C17—C1892.13 (16)
O1—C7—C8—C962.12 (13)O2—C12—C17—C22148.25 (13)
O1—C7—C8—C12179.62 (10)C8—C12—C17—C2289.51 (17)
C6—C5—C9—C10114.47 (13)C22—C17—C18—C190.9 (2)
C4—C5—C9—C1070.91 (16)C12—C17—C18—C19177.47 (16)
C6—C5—C9—C810.65 (16)C17—C18—C19—C201.0 (3)
C4—C5—C9—C8163.97 (12)C18—C19—C20—C210.1 (4)
C7—C8—C9—C1085.59 (13)C19—C20—C21—C221.0 (4)
C23—C8—C9—C10150.52 (11)C20—C21—C22—C171.2 (3)
C12—C8—C9—C1034.77 (14)C18—C17—C22—C210.2 (3)
C7—C8—C9—C541.15 (13)C12—C17—C22—C21178.62 (16)
C23—C8—C9—C582.74 (12)C7—C8—C23—O4155.62 (13)
C12—C8—C9—C5161.51 (10)C9—C8—C23—O432.96 (17)
C5—C9—C10—C11123.25 (14)C12—C8—C23—O482.84 (15)
C8—C9—C10—C111.02 (18)C7—C8—C23—O526.93 (15)
C5—C9—C10—C1370.53 (16)C9—C8—C23—O5149.59 (11)
C8—C9—C10—C13165.20 (12)C12—C8—C23—O594.61 (12)
C13—C10—C11—O2156.24 (14)C5—C6—O1—C715.15 (18)
C9—C10—C11—O210.4 (2)C1—C6—O1—C7167.68 (12)
C13—C10—C11—C1622.1 (2)C8—C7—O1—C648.13 (15)
C9—C10—C11—C16171.31 (15)C10—C11—O2—C1221.3 (2)
C7—C8—C12—O254.74 (13)C16—C11—O2—C12157.21 (13)
C23—C8—C12—O2177.32 (10)C17—C12—O2—C11172.70 (12)
C9—C8—C12—O265.35 (13)C8—C12—O2—C1159.47 (14)
C7—C8—C12—C1767.09 (15)O4—C23—O5—C244.0 (2)
C23—C8—C12—C1755.49 (15)C8—C23—O5—C24173.49 (12)
C9—C8—C12—C17172.82 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O30.932.222.973 (2)138
C12—H12···O4i0.982.413.3613 (18)164
Symmetry code: (i) x, y, z+1.
(III) 6-(4-Ethylphenyl)-2,4-dimethyl-1,3-dioxo-2,3,4,12b-tetrahydro-1H,6H-chromeno[4',3':4,5]pyrano[2,3-d]pyrimidine-6a(7H)-carbonitrile] top
Crystal data top
C25H23N3O4F(000) = 904
Mr = 429.46Dx = 1.345 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3715 reflections
a = 11.4471 (5) Åθ = 2.1–25.0°
b = 11.2076 (4) ŵ = 0.09 mm1
c = 16.5407 (7) ÅT = 296 K
β = 91.990 (2)°Block, colourless
V = 2120.80 (15) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3715 independent reflections
Radiation source: fine-focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω & φ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.968, Tmax = 0.977k = 1013
18281 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.8627P]
where P = (Fo2 + 2Fc2)/3
3715 reflections(Δ/σ)max = 0.007
292 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1534 (2)0.1733 (2)0.02179 (14)0.0590 (6)
H10.15890.19650.03190.071*
C20.0885 (2)0.2402 (2)0.07377 (15)0.0609 (6)
H20.05070.30910.05550.073*
C30.0802 (2)0.2042 (2)0.15302 (15)0.0565 (6)
H30.03710.24930.18860.068*
C40.13542 (17)0.10173 (18)0.17962 (13)0.0465 (5)
H40.12890.07860.23330.056*
C50.20076 (16)0.03175 (17)0.12840 (11)0.0396 (4)
C60.21040 (18)0.07139 (18)0.04949 (12)0.0468 (5)
C70.35811 (18)0.06931 (19)0.02593 (12)0.0468 (5)
H7A0.39180.11430.01760.056*
H7B0.42050.02550.05380.056*
C80.30204 (16)0.15565 (17)0.08532 (11)0.0373 (4)
C90.25965 (16)0.08300 (17)0.15816 (11)0.0372 (4)
H90.32870.06060.19150.045*
C100.18416 (15)0.16192 (16)0.20870 (11)0.0359 (4)
C110.13384 (15)0.26105 (17)0.17771 (10)0.0353 (4)
C120.19681 (16)0.22106 (17)0.04440 (11)0.0374 (4)
H120.13940.16080.02670.045*
C130.17301 (16)0.13736 (17)0.29330 (11)0.0391 (4)
C140.04976 (16)0.31618 (18)0.30307 (12)0.0409 (5)
C150.01236 (19)0.44176 (19)0.18395 (13)0.0522 (5)
H15A0.07040.48940.15860.078*
H15B0.02510.48830.22430.078*
H15C0.04490.41590.14390.078*
C160.0767 (2)0.1869 (2)0.41949 (12)0.0571 (6)
H16A0.13010.23040.45450.086*
H16B0.08660.10290.42870.086*
H16C0.00210.20940.43060.086*
C170.22490 (16)0.29571 (17)0.02756 (11)0.0378 (4)
C180.2163 (2)0.24542 (19)0.10328 (12)0.0496 (5)
H180.19080.16700.10910.059*
C190.2453 (2)0.31004 (19)0.17082 (12)0.0556 (6)
H190.23900.27420.22150.067*
C200.28318 (19)0.42640 (18)0.16474 (12)0.0474 (5)
C210.29008 (19)0.47620 (18)0.08850 (12)0.0490 (5)
H210.31520.55480.08280.059*
C220.26093 (18)0.41312 (17)0.02041 (12)0.0443 (5)
H220.26550.44950.03010.053*
C230.3174 (3)0.4970 (2)0.23790 (14)0.0722 (7)
H23A0.25020.54350.25640.087*
H23B0.37820.55280.22100.087*
C240.3588 (3)0.4293 (3)0.30635 (16)0.0839 (9)
H24A0.41610.37230.28760.126*
H24B0.39320.48270.34410.126*
H24C0.29420.38820.33250.126*
C250.39321 (18)0.24049 (19)0.11184 (12)0.0438 (5)
N10.10034 (14)0.21462 (15)0.33494 (9)0.0413 (4)
N20.06822 (13)0.33754 (14)0.22202 (9)0.0395 (4)
N30.46792 (18)0.3023 (2)0.13123 (13)0.0693 (6)
O10.27450 (14)0.01194 (13)0.00673 (8)0.0555 (4)
O20.14164 (11)0.29896 (11)0.10132 (7)0.0415 (3)
O30.22107 (12)0.05425 (13)0.32899 (8)0.0499 (4)
O40.00801 (13)0.38384 (13)0.34285 (9)0.0544 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0813 (16)0.0442 (13)0.0515 (13)0.0007 (12)0.0011 (12)0.0045 (10)
C20.0706 (15)0.0425 (13)0.0691 (16)0.0078 (11)0.0053 (12)0.0015 (12)
C30.0590 (13)0.0445 (13)0.0664 (15)0.0057 (10)0.0076 (11)0.0091 (11)
C40.0524 (12)0.0405 (12)0.0470 (11)0.0016 (9)0.0088 (9)0.0058 (9)
C50.0433 (10)0.0358 (11)0.0400 (10)0.0066 (8)0.0066 (8)0.0037 (8)
C60.0596 (12)0.0367 (11)0.0445 (11)0.0040 (9)0.0084 (10)0.0039 (9)
C70.0562 (12)0.0425 (12)0.0427 (11)0.0034 (10)0.0172 (9)0.0018 (9)
C80.0407 (10)0.0363 (11)0.0355 (10)0.0006 (8)0.0098 (8)0.0019 (8)
C90.0405 (10)0.0375 (11)0.0341 (10)0.0034 (8)0.0081 (8)0.0045 (8)
C100.0392 (9)0.0361 (10)0.0330 (9)0.0017 (8)0.0097 (8)0.0006 (8)
C110.0349 (9)0.0385 (11)0.0330 (9)0.0036 (8)0.0081 (7)0.0006 (8)
C120.0437 (10)0.0361 (11)0.0327 (9)0.0012 (8)0.0086 (8)0.0012 (8)
C130.0394 (10)0.0402 (11)0.0382 (10)0.0040 (9)0.0080 (8)0.0015 (9)
C140.0388 (10)0.0436 (12)0.0411 (11)0.0063 (9)0.0114 (8)0.0045 (9)
C150.0535 (12)0.0487 (13)0.0550 (13)0.0134 (10)0.0117 (10)0.0039 (10)
C160.0685 (14)0.0674 (16)0.0364 (11)0.0008 (12)0.0178 (10)0.0042 (10)
C170.0424 (10)0.0369 (11)0.0343 (10)0.0020 (8)0.0051 (8)0.0026 (8)
C180.0733 (14)0.0363 (11)0.0394 (11)0.0115 (10)0.0070 (10)0.0011 (9)
C190.0886 (17)0.0463 (13)0.0323 (10)0.0067 (12)0.0100 (10)0.0031 (9)
C200.0643 (13)0.0396 (12)0.0391 (11)0.0005 (10)0.0109 (9)0.0050 (9)
C210.0699 (14)0.0332 (11)0.0443 (11)0.0060 (10)0.0062 (10)0.0022 (9)
C220.0610 (12)0.0363 (11)0.0359 (10)0.0038 (9)0.0050 (9)0.0010 (8)
C230.114 (2)0.0560 (15)0.0477 (13)0.0055 (14)0.0223 (14)0.0121 (12)
C240.116 (2)0.0790 (19)0.0596 (16)0.0160 (17)0.0368 (15)0.0218 (14)
C250.0440 (11)0.0488 (12)0.0392 (10)0.0005 (10)0.0107 (9)0.0037 (9)
N10.0469 (9)0.0451 (10)0.0326 (8)0.0020 (8)0.0118 (7)0.0003 (7)
N20.0408 (8)0.0376 (9)0.0409 (9)0.0034 (7)0.0110 (7)0.0004 (7)
N30.0617 (12)0.0812 (15)0.0654 (13)0.0214 (12)0.0054 (10)0.0054 (11)
O10.0826 (11)0.0449 (9)0.0402 (8)0.0055 (8)0.0187 (7)0.0042 (7)
O20.0500 (8)0.0403 (8)0.0349 (7)0.0083 (6)0.0118 (6)0.0060 (6)
O30.0603 (9)0.0507 (9)0.0390 (7)0.0067 (7)0.0071 (6)0.0089 (7)
O40.0604 (9)0.0524 (9)0.0518 (9)0.0056 (7)0.0219 (7)0.0091 (7)
Geometric parameters (Å, º) top
C1—C21.378 (3)C14—O41.215 (2)
C1—C61.385 (3)C14—N11.374 (3)
C1—H10.9300C14—N21.385 (2)
C2—C31.378 (3)C15—N21.463 (3)
C2—H20.9300C15—H15A0.9600
C3—C41.376 (3)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.392 (3)C16—N11.467 (2)
C4—H40.9300C16—H16A0.9600
C5—C61.387 (3)C16—H16B0.9600
C5—C91.526 (3)C16—H16C0.9600
C6—O11.376 (2)C17—C181.374 (3)
C7—O11.415 (2)C17—C221.383 (3)
C7—C81.535 (3)C18—C191.381 (3)
C7—H7A0.9700C18—H180.9300
C7—H7B0.9700C19—C201.377 (3)
C8—C251.468 (3)C19—H190.9300
C8—C121.546 (3)C20—C211.379 (3)
C8—C91.546 (2)C20—C231.508 (3)
C9—C101.509 (2)C21—C221.381 (3)
C9—H90.9800C21—H210.9300
C10—C111.345 (3)C22—H220.9300
C10—C131.436 (3)C23—C241.456 (3)
C11—O21.339 (2)C23—H23A0.9700
C11—N21.369 (2)C23—H23B0.9700
C12—O21.445 (2)C24—H24A0.9600
C12—C171.499 (2)C24—H24B0.9600
C12—H120.9800C24—H24C0.9600
C13—O31.223 (2)C25—N31.138 (3)
C13—N11.399 (2)
C2—C1—C6120.0 (2)N1—C14—N2115.99 (16)
C2—C1—H1120.0N2—C15—H15A109.5
C6—C1—H1120.0N2—C15—H15B109.5
C1—C2—C3119.4 (2)H15A—C15—H15B109.5
C1—C2—H2120.3N2—C15—H15C109.5
C3—C2—H2120.3H15A—C15—H15C109.5
C4—C3—C2120.1 (2)H15B—C15—H15C109.5
C4—C3—H3119.9N1—C16—H16A109.5
C2—C3—H3119.9N1—C16—H16B109.5
C3—C4—C5121.8 (2)H16A—C16—H16B109.5
C3—C4—H4119.1N1—C16—H16C109.5
C5—C4—H4119.1H16A—C16—H16C109.5
C6—C5—C4117.03 (18)H16B—C16—H16C109.5
C6—C5—C9121.66 (17)C18—C17—C22118.68 (17)
C4—C5—C9121.31 (17)C18—C17—C12118.97 (17)
O1—C6—C1115.57 (19)C22—C17—C12122.33 (17)
O1—C6—C5122.86 (18)C17—C18—C19120.71 (19)
C1—C6—C5121.6 (2)C17—C18—H18119.6
O1—C7—C8110.96 (16)C19—C18—H18119.6
O1—C7—H7A109.4C20—C19—C18121.42 (19)
C8—C7—H7A109.4C20—C19—H19119.3
O1—C7—H7B109.4C18—C19—H19119.3
C8—C7—H7B109.4C19—C20—C21117.26 (18)
H7A—C7—H7B108.0C19—C20—C23121.85 (19)
C25—C8—C7106.91 (15)C21—C20—C23120.9 (2)
C25—C8—C12111.03 (16)C20—C21—C22122.08 (19)
C7—C8—C12110.82 (15)C20—C21—H21119.0
C25—C8—C9110.33 (15)C22—C21—H21119.0
C7—C8—C9108.43 (16)C21—C22—C17119.83 (18)
C12—C8—C9109.27 (14)C21—C22—H22120.1
C10—C9—C5114.68 (15)C17—C22—H22120.1
C10—C9—C8108.92 (15)C24—C23—C20116.8 (2)
C5—C9—C8109.86 (15)C24—C23—H23A108.1
C10—C9—H9107.7C20—C23—H23A108.1
C5—C9—H9107.7C24—C23—H23B108.1
C8—C9—H9107.7C20—C23—H23B108.1
C11—C10—C13118.58 (17)H23A—C23—H23B107.3
C11—C10—C9121.25 (16)C23—C24—H24A109.5
C13—C10—C9119.96 (16)C23—C24—H24B109.5
O2—C11—C10125.46 (16)H24A—C24—H24B109.5
O2—C11—N2111.24 (16)C23—C24—H24C109.5
C10—C11—N2123.29 (16)H24A—C24—H24C109.5
O2—C12—C17106.90 (14)H24B—C24—H24C109.5
O2—C12—C8110.65 (14)N3—C25—C8176.6 (2)
C17—C12—C8115.27 (15)C14—N1—C13125.03 (16)
O2—C12—H12107.9C14—N1—C16116.85 (16)
C17—C12—H12107.9C13—N1—C16118.12 (17)
C8—C12—H12107.9C11—N2—C14120.98 (16)
O3—C13—N1119.93 (17)C11—N2—C15120.60 (16)
O3—C13—C10124.23 (17)C14—N2—C15118.38 (16)
N1—C13—C10115.83 (17)C6—O1—C7115.02 (15)
O4—C14—N1122.65 (18)C11—O2—C12117.91 (14)
O4—C14—N2121.36 (19)
C6—C1—C2—C30.6 (4)C9—C10—C13—N1179.40 (15)
C1—C2—C3—C40.6 (3)O2—C12—C17—C18144.56 (18)
C2—C3—C4—C50.1 (3)C8—C12—C17—C1892.0 (2)
C3—C4—C5—C61.6 (3)O2—C12—C17—C2236.5 (2)
C3—C4—C5—C9178.79 (18)C8—C12—C17—C2287.0 (2)
C2—C1—C6—O1178.9 (2)C22—C17—C18—C191.2 (3)
C2—C1—C6—C52.3 (3)C12—C17—C18—C19177.8 (2)
C4—C5—C6—O1178.57 (18)C17—C18—C19—C200.2 (4)
C9—C5—C6—O11.1 (3)C18—C19—C20—C210.6 (3)
C4—C5—C6—C12.8 (3)C18—C19—C20—C23178.7 (2)
C9—C5—C6—C1177.61 (19)C19—C20—C21—C220.2 (3)
O1—C7—C8—C25176.52 (15)C23—C20—C21—C22179.1 (2)
O1—C7—C8—C1255.4 (2)C20—C21—C22—C170.8 (3)
O1—C7—C8—C964.5 (2)C18—C17—C22—C211.5 (3)
C6—C5—C9—C10135.93 (18)C12—C17—C22—C21177.45 (18)
C4—C5—C9—C1044.5 (2)C19—C20—C23—C2426.5 (4)
C6—C5—C9—C812.9 (2)C21—C20—C23—C24152.7 (3)
C4—C5—C9—C8167.51 (17)O4—C14—N1—C13176.16 (18)
C25—C8—C9—C1074.10 (19)N2—C14—N1—C133.9 (3)
C7—C8—C9—C10169.13 (15)O4—C14—N1—C163.1 (3)
C12—C8—C9—C1048.2 (2)N2—C14—N1—C16176.82 (17)
C25—C8—C9—C5159.52 (15)O3—C13—N1—C14174.31 (18)
C7—C8—C9—C542.75 (19)C10—C13—N1—C146.6 (3)
C12—C8—C9—C578.14 (18)O3—C13—N1—C164.9 (3)
C5—C9—C10—C11103.3 (2)C10—C13—N1—C16174.15 (17)
C8—C9—C10—C1120.3 (2)O2—C11—N2—C14179.32 (15)
C5—C9—C10—C1382.0 (2)C10—C11—N2—C140.0 (3)
C8—C9—C10—C13154.41 (16)O2—C11—N2—C152.9 (2)
C13—C10—C11—O2176.38 (16)C10—C11—N2—C15177.83 (18)
C9—C10—C11—O21.6 (3)O4—C14—N2—C11179.73 (17)
C13—C10—C11—N22.8 (3)N1—C14—N2—C110.4 (3)
C9—C10—C11—N2177.56 (16)O4—C14—N2—C152.4 (3)
C25—C8—C12—O263.45 (19)N1—C14—N2—C15177.48 (16)
C7—C8—C12—O2177.89 (14)C1—C6—O1—C7162.40 (19)
C9—C8—C12—O258.46 (19)C5—C6—O1—C718.9 (3)
C25—C8—C12—C1758.0 (2)C8—C7—O1—C651.8 (2)
C7—C8—C12—C1760.7 (2)C10—C11—O2—C127.7 (3)
C9—C8—C12—C17179.90 (15)N2—C11—O2—C12173.07 (14)
C11—C10—C13—O3175.21 (18)C17—C12—O2—C11164.19 (15)
C9—C10—C13—O30.4 (3)C8—C12—O2—C1137.9 (2)
C11—C10—C13—N15.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C14–C19 and C1–C6, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O30.932.393.155 (3)139
C7—H7B···O4i0.972.523.423 (3)156
C15—H15A···O3ii0.962.503.315 (3)143
C16—H16C···Cg1iii0.962.933.739 (2)143
C24—H24A···Cg2iv0.962.703.634 (3)164
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x3/2, y1/2, z1/2; (iv) x1/2, y1/2, z3/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationAndrade-Neto, V. F. de, Goulart, M. O. F., da Silva Filho, J. F., da Silva, M. J., Pinto, M. C. F. R., do, C. F. R., Pinto, A. V., Zalis, M. G., Carvalho, L. H. & Krettli, A. U. (2004). Bioorg. Med. Chem. Lett. 14, 1145–1149.  Web of Science PubMed Google Scholar
First citationAndrani, L. L. & Lapi, E. (1960). Boll. Chim. Farm. 99, 583–586.  PubMed Google Scholar
First citationBakthadoss, M., Sivakumar, G. & Kannan, D. (2009). Org. Lett. 11, 4466–4469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBhat, M. A., Siddiqui, N. & Khan, S. A. (2008). Acta. Pol. Pharm. 65, 235–239.  Web of Science PubMed CAS Google Scholar
First citationBianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001–2002.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-F., Ishikawa, A., Ono, Y., Arrhenius, T. & Nadzan, A. (2003). Bioorg. Med. Chem. Lett. 13, 3647–3650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S.-X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384.  Web of Science PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJain, N., Xu, J., Kanojia, R. M., Du, F., Jian-Zhong, G., Pacia, E., Lai, M.-T., Musto, A., Allan, G., Reuman, M., Li, X., Hahn, D. W., Cousineau, M., Peng, S., Ritchie, D., Russell, R., Lundeen, S. & Sui, Z. (2009). J. Med. Chem. 52, 7544–7569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKanchanadevi, J., Anbalagan, G., Sivakumar, G., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKathiravan, S. & Raghunathan, R. (2010). Synlett, 13, 1927–1930.  Google Scholar
First citationKhairy, A. M., Mohsen, M. A., Yahia, A. M., Basyouni, W. M. & Samir, Y. A. (2009). WJC, 4, 161–170.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMladenović, M., Mihailović, M., Bogojević, D., Matić, S., Nićiforović, N., Mihailović, V., Vuković, N., Sukdolak, S. & Solujić, S. (2011). Int. J. Mol. Sci. 12(5), 2822–2841.  Google Scholar
First citationMohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750–3754.  PubMed CAS Web of Science Google Scholar
First citationMoon, D.-O., Choi, Y. H., Kim, N.-D., Park, Y.-M. & Kim, G.-Y. (2007). Int. Immunopharmacol. 7, 506–514.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPonnusamy, R., Sabari, V., Sivakumar, G., Bakthadoss, M. & Aravindhan, S. (2013). Acta Cryst. E69, o267–o268.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSangani, C. B., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 1165–1174.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, P. W., Sollis, S. L., Howes, P. D., Cherry, P. C., Starkey, I. D., Cobley, K. N., Weston, H., Scicinski, J., Merritt, A., Whittington, A., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). J. Med. Chem. 41, 787–797.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Sivakumar, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o2673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThareja, S., Verma, A., Kalra, A., Gosain, S., Rewatkar, P. V. & Kokil, G. R. (2010). Acta. Pol. Pharm. 67, 423–427.  Web of Science CAS PubMed Google Scholar
First citationTripathi, R. P., Tripathi, R., Bhaduri, A. P., Singh, S. N., Chatterjee, R. K. & Murthy, P. K. (2000). Acta Trop. 76, 101–106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Y. L., Chen, B. Z., Zheng, K. Q., Xu, M. L., Lei, X. H. & Yaoxue, X. B. (1982). Chem. Abstr. 96, 135383e.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds