organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-cyano-N-(furan-2-ylmeth­yl)-3-(3-nitro­phen­yl)propanamide

aDepartment of Physics, Dr M. G. R. Educational and Research Institute University, Maduravoyal, Chennai, India, bDepartment of Engineering Chemistry, Cauvery Institute of Technology, Sundhahalli, Mandya, India, cDepartment of Chemistry, Post-Graduate and Research Centre, St Joseph's College (Autonomous), Bangalore 560 027, India, dDepartment of Pharmaceutical Chemistry, PES College of Pharmacy, Hanumanthnagar, Bangalore 560 050, India, and eCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: drdgayathri@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 June 2015; accepted 4 July 2015; online 15 July 2015)

In the title compound, C15H11N3O4, the acetamide group is inclined to the furan ring by 66.5 (1)°. The dihedral angle between the furan ring and the benzene ring is 66.8 (1)°. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are linked via two pairs of C—H⋯O hydrogen bonds to the same acceptor oxygen atom, enclosing R21(6) ring motifs, forming chains along the [101] direction.

1. Related literature

For examples of biological properties of furan derivatives, see: Anupam et al. (2011[Anupam, V., Pandeya, S. N. & Shweta, S. (2011). Int. J. Res. Ayurveda Pharm. 2, 1110-1116.]). For the biological activities of some heterocyclic derivatives containing the acetamide moiety, see: Fallah-Tafti et al. (2011[Fallah-Tafti, A., Foroumadi, A., Tiwari, R., Shirazi, A. N., Hangauer, D. G., Bu, Y., Akbarzadeh, T., Parang, K. & Shafiee, A. (2011). Eur. J. Med. Chem. 46, 4853-4858.]); Shams et al. (2011[Shams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52-73.]). For the crystal structure of the similar compound 2-cyano-N-furfuryl-3-(2-fur­yl)acryl­amide, see: Pomés Hernández et al. (1996[Pomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 203-205.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H11N3O4

  • Mr = 297.27

  • Triclinic, [P \overline 1]

  • a = 7.4358 (3) Å

  • b = 9.4165 (5) Å

  • c = 10.3934 (5) Å

  • α = 90.938 (2)°

  • β = 96.910 (2)°

  • γ = 105.872 (2)°

  • V = 693.98 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.983

  • 12708 measured reflections

  • 2442 independent reflections

  • 2055 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.02

  • 2442 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.27 3.056 (2) 152
C5—H5⋯O3ii 0.93 2.49 3.337 (2) 151
C7—H7⋯O3ii 0.93 2.49 3.362 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON.

Supporting information


Comment top

Furan is one of the most important five-membered heterocyclic ring systems and its derivatives are well known to possess various biological properties, such as antibacterial, antitumor, anti-inflammatory, antifungal, anticonvulsant, and analgesic (Anupam et al., 2011). Acetamide derivatives possess a wide range of pharmacological properties (Fallah-Tafti et al., 2011; Shams et al., 2011). In view of the biological importance of furan and acetamide derivatives, we have synthesized the title compound and report herein on its crystal structure.

In the title compound, Fig. 1, the acetamide group is inclined to the furan ring by 66.5 (1)°. Torsion angles N3—C9—C8—C15 [-5.4 (2)°] and O3—C9—C8—C15 [174.6 (2)°] indicate that the acetonitrile and acetamide moieties are almost planar. The dihedral angle between the furan ring and the benzene ring is 66.8 (1)°. The bond lengths and bond angles are comparable with those reported for a similar structure, viz. 2-cyano-N-furfuryl-3-(2-furyl)acrylamide (Pomés Hernández et al., 1996).

In the crystal (Table 1 and Fig. 2), molecules are linked by pairs of N-H···N hydrogen bonds forming inversion dimers with an R22(12) ring motif. The dimers are linked via two pairs of bifurcated C-H···O hydrogen bonds, enclosing R21(6) ring motifs, forming chains along direction [101].

Related literature top

For examples of biological properties of furan derivatives, see: Anupam et al. (2011). For the biological activities of some heterocyclic derivatives containing the acetamide moiety, see: Fallah-Tafti et al. (2011); Shams et al. (2011). For the crystal structure of the similar compound 2-cyano-N-furfuryl-3-(2-furyl)acrylamide, see: Pomés Hernández et al. (1996).

Experimental top

An equimolar mixture of furfuryl amine and ethyl cyano acetate was mixed in a conical flask and the mixture was heated under microwave irradiation at 700 W for 3 min with an interval of 20 s each time. The mixture was then poured into a beaker and cooled giving a solid that was washed with ethanol. The furfuryl cyano acetamide product so obtained was treated with an equi-molar ratio of 3-nitro benzaldehyde in the presence of glacial acetic acid and refluxed for 3 h. On cooling, colourless crystals of the title compound were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were included in calculated positions and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(N,C).

Structure description top

Furan is one of the most important five-membered heterocyclic ring systems and its derivatives are well known to possess various biological properties, such as antibacterial, antitumor, anti-inflammatory, antifungal, anticonvulsant, and analgesic (Anupam et al., 2011). Acetamide derivatives possess a wide range of pharmacological properties (Fallah-Tafti et al., 2011; Shams et al., 2011). In view of the biological importance of furan and acetamide derivatives, we have synthesized the title compound and report herein on its crystal structure.

In the title compound, Fig. 1, the acetamide group is inclined to the furan ring by 66.5 (1)°. Torsion angles N3—C9—C8—C15 [-5.4 (2)°] and O3—C9—C8—C15 [174.6 (2)°] indicate that the acetonitrile and acetamide moieties are almost planar. The dihedral angle between the furan ring and the benzene ring is 66.8 (1)°. The bond lengths and bond angles are comparable with those reported for a similar structure, viz. 2-cyano-N-furfuryl-3-(2-furyl)acrylamide (Pomés Hernández et al., 1996).

In the crystal (Table 1 and Fig. 2), molecules are linked by pairs of N-H···N hydrogen bonds forming inversion dimers with an R22(12) ring motif. The dimers are linked via two pairs of bifurcated C-H···O hydrogen bonds, enclosing R21(6) ring motifs, forming chains along direction [101].

For examples of biological properties of furan derivatives, see: Anupam et al. (2011). For the biological activities of some heterocyclic derivatives containing the acetamide moiety, see: Fallah-Tafti et al. (2011); Shams et al. (2011). For the crystal structure of the similar compound 2-cyano-N-furfuryl-3-(2-furyl)acrylamide, see: Pomés Hernández et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details). For clarity, H atoms not involved in hydrogen bonding have been omitted.
2-Cyano-N-(furan-2-ylmethyl)-3-(3-nitrophenyl)propanamide top
Crystal data top
C15H11N3O4Z = 2
Mr = 297.27F(000) = 308
Triclinic, P1Dx = 1.423 Mg m3
a = 7.4358 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4165 (5) ÅCell parameters from 6452 reflections
c = 10.3934 (5) Åθ = 2.8–25.6°
α = 90.938 (2)°µ = 0.11 mm1
β = 96.910 (2)°T = 293 K
γ = 105.872 (2)°Block, colourless
V = 693.98 (6) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2442 independent reflections
Radiation source: fine-focus sealed tube2055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.942, Tmax = 0.983k = 1110
12708 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2005P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2442 reflectionsΔρmax = 0.22 e Å3
200 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (5)
Crystal data top
C15H11N3O4γ = 105.872 (2)°
Mr = 297.27V = 693.98 (6) Å3
Triclinic, P1Z = 2
a = 7.4358 (3) ÅMo Kα radiation
b = 9.4165 (5) ŵ = 0.11 mm1
c = 10.3934 (5) ÅT = 293 K
α = 90.938 (2)°0.30 × 0.20 × 0.20 mm
β = 96.910 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2442 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2055 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.983Rint = 0.027
12708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
2442 reflectionsΔρmin = 0.16 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5353 (2)0.28891 (17)0.58091 (15)0.0437 (4)
H10.58620.32390.66540.052*
C20.6211 (2)0.20823 (17)0.51113 (16)0.0450 (4)
C30.5534 (3)0.15471 (19)0.38555 (17)0.0548 (5)
H30.61600.10150.34000.066*
C40.3898 (3)0.1826 (2)0.32955 (17)0.0576 (5)
H40.34010.14700.24500.069*
C50.2988 (2)0.26268 (18)0.39767 (15)0.0479 (4)
H50.18790.27980.35860.057*
C60.3703 (2)0.31818 (16)0.52382 (14)0.0389 (4)
C70.2662 (2)0.40380 (16)0.58752 (14)0.0392 (4)
H70.16170.41770.53600.047*
C80.2965 (2)0.46539 (16)0.70769 (14)0.0380 (4)
C90.1628 (2)0.54718 (17)0.74909 (14)0.0404 (4)
C100.0773 (2)0.67695 (19)0.92842 (16)0.0486 (4)
H10A0.07500.65641.01940.058*
H10B0.05090.64120.88510.058*
C110.1429 (2)0.83840 (19)0.91721 (15)0.0474 (4)
C120.2518 (5)0.9468 (3)0.9961 (2)0.1020 (10)
H120.30960.93781.07880.122*
C130.2647 (5)1.0791 (3)0.9319 (3)0.1089 (10)
H130.33101.17390.96450.131*
C140.1663 (3)1.0432 (3)0.8186 (3)0.0790 (7)
H140.15191.10940.75530.095*
C150.4516 (2)0.45908 (19)0.80123 (14)0.0447 (4)
N10.7935 (2)0.17794 (17)0.57526 (18)0.0592 (4)
N20.5728 (2)0.4565 (2)0.87857 (14)0.0667 (5)
N30.19322 (18)0.59563 (15)0.87343 (12)0.0439 (3)
H3A0.28510.57810.92310.053*
O10.8792 (2)0.1167 (2)0.51177 (17)0.0881 (5)
O20.8406 (2)0.2139 (2)0.69036 (16)0.0840 (5)
O30.03619 (18)0.56592 (15)0.67145 (11)0.0609 (4)
O40.0876 (2)0.89464 (16)0.80594 (13)0.0724 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (9)0.0476 (9)0.0417 (8)0.0195 (7)0.0013 (7)0.0035 (7)
C20.0437 (9)0.0420 (9)0.0556 (10)0.0200 (7)0.0106 (7)0.0120 (7)
C30.0667 (11)0.0488 (10)0.0584 (11)0.0261 (9)0.0212 (9)0.0027 (8)
C40.0688 (12)0.0622 (11)0.0452 (9)0.0268 (9)0.0017 (8)0.0086 (8)
C50.0490 (9)0.0522 (10)0.0439 (9)0.0201 (8)0.0023 (7)0.0022 (7)
C60.0395 (8)0.0396 (8)0.0392 (8)0.0148 (6)0.0023 (6)0.0039 (6)
C70.0376 (8)0.0436 (8)0.0381 (8)0.0172 (7)0.0022 (6)0.0032 (6)
C80.0375 (8)0.0413 (8)0.0369 (8)0.0159 (6)0.0002 (6)0.0053 (6)
C90.0415 (8)0.0445 (9)0.0379 (8)0.0191 (7)0.0009 (6)0.0030 (6)
C100.0509 (9)0.0579 (10)0.0426 (9)0.0227 (8)0.0099 (7)0.0007 (7)
C110.0511 (9)0.0554 (10)0.0414 (8)0.0257 (8)0.0035 (7)0.0015 (7)
C120.159 (3)0.0602 (14)0.0657 (14)0.0154 (15)0.0330 (15)0.0052 (11)
C130.153 (3)0.0523 (14)0.107 (2)0.0143 (15)0.008 (2)0.0025 (13)
C140.0888 (16)0.0643 (14)0.0948 (17)0.0370 (12)0.0152 (13)0.0253 (12)
C150.0470 (9)0.0588 (10)0.0342 (8)0.0262 (8)0.0012 (7)0.0008 (7)
N10.0539 (9)0.0598 (9)0.0764 (11)0.0323 (8)0.0161 (8)0.0197 (8)
N20.0628 (10)0.1065 (14)0.0412 (8)0.0480 (9)0.0084 (7)0.0060 (8)
N30.0474 (7)0.0536 (8)0.0364 (7)0.0261 (6)0.0006 (5)0.0010 (6)
O10.0840 (11)0.1097 (13)0.1024 (12)0.0702 (10)0.0338 (9)0.0228 (9)
O20.0720 (10)0.1099 (13)0.0829 (11)0.0555 (9)0.0105 (8)0.0032 (9)
O30.0626 (8)0.0875 (9)0.0446 (6)0.0495 (7)0.0111 (6)0.0084 (6)
O40.0791 (9)0.0714 (9)0.0649 (8)0.0266 (7)0.0123 (7)0.0114 (7)
Geometric parameters (Å, º) top
C1—C21.367 (2)C9—N31.3354 (19)
C1—C61.396 (2)C10—N31.4564 (19)
C1—H10.9300C10—C111.475 (2)
C2—C31.376 (2)C10—H10A0.9700
C2—N11.472 (2)C10—H10B0.9700
C3—C41.377 (3)C11—C121.315 (3)
C3—H30.9300C11—O41.346 (2)
C4—C51.380 (2)C12—C131.408 (4)
C4—H40.9300C12—H120.9300
C5—C61.390 (2)C13—C141.296 (4)
C5—H50.9300C13—H130.9300
C6—C71.461 (2)C14—O41.358 (3)
C7—C81.336 (2)C14—H140.9300
C7—H70.9300C15—N21.139 (2)
C8—C151.432 (2)N1—O11.210 (2)
C8—C91.509 (2)N1—O21.220 (2)
C9—O31.2170 (18)N3—H3A0.8600
C2—C1—C6119.19 (15)N3—C10—C11114.03 (14)
C2—C1—H1120.4N3—C10—H10A108.7
C6—C1—H1120.4C11—C10—H10A108.7
C1—C2—C3123.02 (15)N3—C10—H10B108.7
C1—C2—N1117.60 (15)C11—C10—H10B108.7
C3—C2—N1119.38 (15)H10A—C10—H10B107.6
C2—C3—C4117.80 (15)C12—C11—O4109.03 (18)
C2—C3—H3121.1C12—C11—C10132.98 (17)
C4—C3—H3121.1O4—C11—C10117.98 (15)
C3—C4—C5120.64 (16)C11—C12—C13107.3 (2)
C3—C4—H4119.7C11—C12—H12126.4
C5—C4—H4119.7C13—C12—H12126.4
C4—C5—C6121.02 (15)C14—C13—C12106.8 (2)
C4—C5—H5119.5C14—C13—H13126.6
C6—C5—H5119.5C12—C13—H13126.6
C5—C6—C1118.31 (14)C13—C14—O4109.9 (2)
C5—C6—C7117.18 (13)C13—C14—H14125.0
C1—C6—C7124.50 (13)O4—C14—H14125.0
C8—C7—C6130.56 (13)N2—C15—C8177.71 (16)
C8—C7—H7114.7O1—N1—O2123.45 (16)
C6—C7—H7114.7O1—N1—C2118.39 (17)
C7—C8—C15123.40 (13)O2—N1—C2118.15 (14)
C7—C8—C9119.37 (13)C9—N3—C10122.71 (13)
C15—C8—C9117.24 (12)C9—N3—H3A118.6
O3—C9—N3123.55 (14)C10—N3—H3A118.6
O3—C9—C8120.49 (13)C11—O4—C14106.99 (16)
N3—C9—C8115.97 (12)
C6—C1—C2—C30.6 (3)C15—C8—C9—N35.4 (2)
C6—C1—C2—N1179.20 (14)N3—C10—C11—C1294.5 (3)
C1—C2—C3—C41.1 (3)N3—C10—C11—O484.68 (19)
N1—C2—C3—C4178.69 (15)O4—C11—C12—C130.6 (3)
C2—C3—C4—C50.5 (3)C10—C11—C12—C13179.9 (2)
C3—C4—C5—C60.5 (3)C11—C12—C13—C140.9 (4)
C4—C5—C6—C11.0 (3)C12—C13—C14—O40.9 (4)
C4—C5—C6—C7178.99 (15)C1—C2—N1—O1174.37 (16)
C2—C1—C6—C50.5 (2)C3—C2—N1—O15.9 (2)
C2—C1—C6—C7179.50 (14)C1—C2—N1—O26.8 (2)
C5—C6—C7—C8177.38 (16)C3—C2—N1—O2172.96 (17)
C1—C6—C7—C82.6 (3)O3—C9—N3—C100.3 (3)
C6—C7—C8—C151.2 (3)C8—C9—N3—C10179.74 (14)
C6—C7—C8—C9179.14 (15)C11—C10—N3—C988.52 (19)
C7—C8—C9—O35.1 (2)C12—C11—O4—C140.1 (3)
C15—C8—C9—O3174.61 (15)C10—C11—O4—C14179.50 (16)
C7—C8—C9—N3174.88 (14)C13—C14—O4—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.273.056 (2)152
C5—H5···O3ii0.932.493.337 (2)151
C7—H7···O3ii0.932.493.362 (2)156
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.273.056 (2)152
C5—H5···O3ii0.932.493.337 (2)151
C7—H7···O3ii0.932.493.362 (2)156
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
 

Acknowledgements

We thank Dr Babu Varghese for the XRD data collection at the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Madras.

References

First citationAnupam, V., Pandeya, S. N. & Shweta, S. (2011). Int. J. Res. Ayurveda Pharm. 2, 1110–1116.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFallah-Tafti, A., Foroumadi, A., Tiwari, R., Shirazi, A. N., Hangauer, D. G., Bu, Y., Akbarzadeh, T., Parang, K. & Shafiee, A. (2011). Eur. J. Med. Chem. 46, 4853–4858.  Web of Science CAS PubMed Google Scholar
First citationPomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 203–205.  CSD CrossRef IUCr Journals Google Scholar
First citationShams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52–73.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds