research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 4-phenyl­piperazin-1-ium 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide and 4-phenyl­piperazin-1-ium 6-chloro-5-iso­propyl-2,4-dioxopyrimidin-1-ide

aDepartment of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and cDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: elemam5@hotmail.com, sgg@uniovi.es

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 June 2015; accepted 10 July 2015; online 22 July 2015)

The title mol­ecular salts, C10H15N2+·C6H6ClN2O2, (I), and C10H15N2+·C7H8ClN2O2, (II), consist of 4-phenyl­piperazin-1-ium cations with a 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide anion in (I) and a 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide anion in (II). Salt (I) crystallizes with two independent cations and anions in the asymmetric unit. In the crystal structures of both salts, the ions are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming sheets which are parallel to (100) in (I) and to (001) in (II). In (I), the sheets are linked via C—H⋯Cl hydrogen bonds, forming a three-dimensional framework.

1. Chemical context

2,4-Dioxo­pyrimidine derivatives (uracils) and their related analogues are known for their diverse chemotherapeutic activities including anti­cancer activity (Ghoshal & Jacob, 1997[Ghoshal, K. & Jacob, S. T. (1997). Biochem. Pharmacol. 53, 1569-1575.]; Spáčilová et al., 2007[Spáčilová, L., Džubák, P., Hajdúch, M., Křupková, S., Hradil, P. & Hlaváč, J. (2007). Bioorg. Med. Chem. Lett. 17, 6647-6650.]; Blokhina et al., 1972[Blokhina, N. G., Vozny, E. K. & Garin, A. M. (1972). Cancer, 30, 390-392.]), anti-HIV activity (Tanaka et al., 1995[Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860-2865.]; El-Emam et al., 2004[El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991-996.]) and anti­bacterial activity (Al-Turkistani et al., 2011[Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El-Emam, A. A. (2011). Molecules, 16, 4764-4774.]). In addition, the piperazine nucleus constitutes the core pharmacophore of several biologically active compounds which display anti­viral (Romero et al., 1994[Romero, D. L., Morge, R. A., Biles, C., Berrios-Pena, N., May, P. D., Palmer, J. R., Johnson, P. D., Smith, H. W., Busso, M., Tan, C.-K., Voorman, R. L., Reusser, F., Althaus, I. W., So, A. G., Resnick, L., Tarpley, W. G. & Aristoff, P. A. (1994). J. Med. Chem. 37, 999-1014.], 1996[Romero, D. L., Olmsted, R. A., Poel, T. J., Morge, R. A., Biles, C., Keiser, B. J., Kopta, L. A., Friis, J. M., Hosley, J. D., Stefanski, K. J., Wishka, D. G., Evans, D. B., Morris, J., Stehle, R. G., Sharma, S. K., Yagi, Y., Voorman, R. L., Adams, W. J., Tarpley, W. G. & Thomas, R. C. (1996). J. Med. Chem. 39, 3769-3789.]), anti­cancer (Fytas et al., 2015[Fytas, C., Zoidis, G., Tsotinis, A., Fytas, G., Khan, M. A., Akhtar, S., Rahman, K. M. & Thurston, D. E. (2015). Eur. J. Med. Chem. 93, 281-290.]; Kamal et al., 2015[Kamal, A., Sreekanth, K., Shankaraiah, N., Sathish, M., Nekkanti, S. & Srinivasulu, V. (2015). Bioorg. Chem. 59, 23-30.]; Arnatt et al., 2014[Arnatt, C. K., Adams, J. L., Zhang, Z., Haney, K. M., Li, G. & Zhang, Y. (2014). Bioorg. Med. Chem. Lett. 24, 2319-2323.]), anti­tubercular and anti­bacterial (Nagesh et al., 2014[Nagesh, H. N., Suresh, A., Sairam, S. D. S. S., Sriram, D., Yogeeswari, P. & Chandra Sekhar, K. V. G. (2014). Eur. J. Med. Chem. 84, 605-613.]; Peng et al., 2015[Peng, C.-T., Gao, C., Wang, N.-Y., You, X.-Y., Zhang, L.-D., Zhu, Y.-X., Xv, Y., Zuo, W.-Q., Ran, K., Deng, H.-X., Lei, Q., Xiao, K.-J. & Yu, L.-T. (2015). Bioorg. Med. Chem. Lett. 25, 1373-1376.]; Kapić et al., 2011[Kapić, S., Paljetak, H. Č., Jakopović, I. P., Fajdetić, A., Ilijaš, M., Štimac, V., Brajša, K., Holmes, D. J., Berge, J. & Alihodžić, S. (2011). Bioorg. Med. Chem. 19, 7281-7298.]; Wang et al., 2014[Wang, S.-F., Yin, Y., Qiao, F., Wu, X., Sha, S., Zhang, L. & Zhu, H.-L. (2014). Bioorg. Med. Chem. 22, 2409-2415.]) and central nervous system activities (Bender et al., 2014[Bender, A. M., Clark, M. J., Agius, M. P., Traynor, J. R. & Mosberg, H. I. (2014). Bioorg. Med. Chem. Lett. 24, 548-551.]; Bali et al., 2010[Bali, A., Sharma, K., Bhalla, A., Bala, S., Reddy, D., Singh, A. & Kumar, A. (2010). Eur. J. Med. Chem. 45, 2656-2662.]).

[Scheme 1]

As a result of the relative acidity of 2,4-dioxo­pyrimidines (Kurinovich & Lee, 2002[Kurinovich, M. A. & Lee, J. K. (2002). J. Am. Soc. Mass Spectrom. 13, 985-995.]; Jang et al., 2001[Jang, Y. H., Sowers, L. C., Çağin, T. & Goddard, W. A. III (2001). J. Phys. Chem. A, 105, 274-280.]; Nguyen et al., 1998[Nguyen, M. T., Chandra, A. K. & Zeegers-Huyskens, T. (1998). J. Chem. Soc. Faraday Trans. 94, 1277-1280.]), the title piperazinium salts were isolated as minor byproducts during the reaction of 1-phenyl­piperazine with 5-alkyl-6-chloro­uracils (Al-Turkistani et al., 2011[Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El-Emam, A. A. (2011). Molecules, 16, 4764-4774.]). In a continuation of our inter­est in the structures of piperazinium salts (Al-Omary et al., 2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245-o246.]), we report herein on the isolation and crystal structures of these two new piperazinium salts, (I)[link] and (II)[link].

2. Structural commentary

The mol­ecular structures of the title salts (I)[link] and (II)[link] are illustrated in Figs. 1[link] and 2[link], respectively. Compound (I)[link] crystallizes with two independent 4-phenyl­piperazin-1-ium cations (A and B) and two independent 6-chloro-5-ethyl-2, 4-dioxopyrimidin-1-ide anions (C and D) in the asymmetric unit. In both compounds, the piperazine rings adopt a distorted chair conformation with a positively charged protonated N atom. In compound (I)[link], the mean plane of the piperazine ring makes a dihedral angle of 34.8 (2)° with the attached phenyl ring in cation A, and 39.7 (2)° in cation B. The equivalent dihedral angle is 39.61 (9)° in the cation of compound (II)[link]. In the uracil anions, the pyrimidine rings are almost planar with r.m.s. deviations of 0.008 Å in both anions (C and D) of compound (I)[link], and 0.024 Å in compound (II)[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], two tetra­nuclear units are formed, involving cation A and anion C, and cation B and anion D, via N—H⋯O and C—H⋯O hydrogen bonds. These units are linked via N—H⋯N hydrogen bonds, forming separate A/B and C/D sheets parallel to the bc plane (Table 1[link] and Fig. 3[link]). The sheets are linked via C—H⋯Cl hydrogen bonds, forming a three-dimensional framework (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.00 2.859 (4) 173
N3—H3A⋯O1ii 0.89 2.83 3.465 (4) 129
N6—H6A⋯O4iii 0.89 1.81 2.681 (5) 165
N7—H7⋯O3iv 0.86 2.02 2.873 (4) 174
N3—H3A⋯N2ii 0.89 1.92 2.808 (4) 174
N6—H6B⋯N8v 0.89 1.92 2.798 (5) 169
C10—H10B⋯O2vi 0.97 2.46 3.355 (5) 154
C26—H26A⋯O3vii 0.97 2.58 3.444 (5) 147
C16—H16⋯Cl2viii 0.93 2.80 3.462 (4) 129
Symmetry codes: (i) -x+1, -y-1, -z+2; (ii) x, y+1, z; (iii) x, y-1, z; (iv) -x+2, -y+1, -z+2; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) -x+2, -y, -z+2; (viii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed along the b axis, showing the most relevant hydrogen bonding (dashed lines; see Table 1[link]).

In the crystal of (II)[link], the cation and anion are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains extending along the b-axis direction. The chains are linked via N—H⋯N hydrogen bonds, forming sheets lying parallel to the ac plane (Table 2[link] and Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N4 0.89 1.93 2.813 (2) 174
N2—H3N⋯O1i 0.89 1.84 2.705 (2) 164
N3—H3⋯O2ii 0.86 1.98 2.834 (2) 174
C3—H3A⋯O2iii 0.97 2.54 3.394 (2) 147
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+2, z].
[Figure 4]
Figure 4
The crystal packing of compound (II)[link], viewed along the b axis, showing the most relevant hydrogen bonding (dashed lines; see Table 2[link]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the anion 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide, present in compound (I)[link], gave no hits, while for the anion 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide, present in compound (II)[link], one hit was obtained, with the cation 4-(2-meth­oxy­phen­yl)piperazin-1-ium (Al-Omary et al., 2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245-o246.]).

5. Synthesis and crystallization

Compound (I): A mixture of 6-chloro-5-ethyl­uracil (349 mg, 2.0 mmol), 1-phenyl­piperazine (325 mg, 2.0 mmol) and anhydrous potassium carbonate (276 mg, 2.0 mmol), in ethanol (8 ml), was heated under reflux for 6 h. On cooling, the precipitate, thus formed was separated by filtration to yield 306 mg (51%) of 5-ethyl-6-(4-phenyl-1-piperazin­yl)uracil. The filtrate was concentrated by vacuum distillation to 5 ml and allowed to stand at room temperature overnight to yield compound (I)[link] as colourless crystals (m.p.: 459–461 K). 1H NMR (DMSO-d6, 500.13 MHz): δ 0.93 (t, 3H, CH3, J = 7.0 Hz), 2.35 (q, 2H, CH2), 3.25 (s, 4H, piperazine-H), 3.45 (s, 4H, piperazine-H), 6.83–6.95 (m, 3H, Ar—H), 7.21 (d, 2H, Ar—H, J = 6.6 Hz), 8.15–8.17 (m, 2H, NH2), 10.83 (s, 1H, NH). 13C NMR (DMSO-d6, 125.76 MHz): δ 13.80 (CH3), 19.55 (CH2), 44.18, 47.86 (piperazine-C), 116.32, 119.62, 128.44, 150.70 (Ar—C), 108.88, 153.90, 155.94, 164.80 (pyrimidine-C),

Compound (II): 6-Chloro-5-iso­propyl­uracil (377 mg, 2.0 mmol), 1-phenyl­piperazine (325 mg, 2.0 mmol) and anhydrous potassium carbonate (276 mg, 2.0 mmol), in ethanol (8 ml), was heated under reflux for 6 h. On cooling, the precipitate thus formed was separated by filtration to yield 566 mg (90%) of 5-isopropyl-6-(4-phenyl-1-piperazin­yl)uracil. The filtrate was concentrated by vacuum distillation to 5 ml and allowed to stand at room temperature overnight to yield compound (II)[link] as colourless crystals (m.p.: 473–475 K). 1H NMR (DMSO-d6, 500.13 MHz): δ 1.20 (d, 6H, CH3, J = 7.8 Hz), 2.52–2.56 (m, 1H, CH), 3.18 (s, 4H, piperazine-H), 3.24 (s, 4H, piperazine-H), 6.88–7.02 (m, 3H, Ar—H), 7.20–7.22 (m, 2H, Ar—H), 8.04–8.08 (m, 2H, NH2), 11.02 (s, 1H, NH). 13C NMR (DMSO-d6, 125.76 MHz): δ 19.98 (CH3), 27.0 (CH), 44.50, 47.98 (piperazine-C), 116.16, 119.80, 129.04, 150.0 (Ar—C), 110.82, 152.30, 154.04, 164.06 (pyrimidine-C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were included in calculated positions and treated as riding atoms: N—H = 0.86–0.90 Å, C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C10H15N2+·C6H6ClN2O2 C10H15N2+·C7H8ClN2O2
Mr 336.82 350.84
Crystal system, space group Monoclinic, P21/c Monoclinic, I2/a
Temperature (K) 293 101
a, b, c (Å) 21.676 (1), 7.6446 (5), 20.5444 (8) 20.5012 (3), 7.4565 (1), 23.1414 (3)
β (°) 95.065 (5) 90.639 (1)
V3) 3391.0 (3) 3537.34 (8)
Z 8 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.12 2.05
Crystal size (mm) 0.17 × 0.08 × 0.06 0.34 × 0.13 × 0.09
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini Agilent Xcalibur Ruby Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.809, 0.880 0.760, 0.828
No. of measured, independent and observed [I > 2σ(I)] reflections 32461, 6532, 3596 13174, 3396, 2926
Rint 0.135 0.069
(sin θ/λ)max−1) 0.612 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.185, 1.01 0.044, 0.122, 1.03
No. of reflections 6457 3346
No. of parameters 415 217
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.36 0.55, −0.56
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) 4-Phenylpiperazin-1-ium 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide top
Crystal data top
C10H15N2+·C6H6ClN2O2F(000) = 1424
Mr = 336.82Dx = 1.319 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 21.676 (1) ÅCell parameters from 2418 reflections
b = 7.6446 (5) Åθ = 4.1–70.3°
c = 20.5444 (8) ŵ = 2.12 mm1
β = 95.065 (5)°T = 293 K
V = 3391.0 (3) Å3Prism, colourless
Z = 80.17 × 0.08 × 0.06 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
6532 independent reflections
Radiation source: Enhance (Cu) X-ray Source3596 reflections with I > 2σ(I)
Detector resolution: 10.2673 pixels mm-1Rint = 0.135
ω scansθmax = 70.7°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2626
Tmin = 0.809, Tmax = 0.880k = 99
32461 measured reflectionsl = 2125
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0563P)2]
where P = (Fo2 + 2Fc2)/3
6457 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl21.13235 (5)0.04012 (14)0.82294 (5)0.0408 (3)
Cl10.65035 (5)0.09582 (15)0.82219 (5)0.0437 (3)
O10.51594 (14)0.6011 (4)0.82514 (13)0.0381 (7)
O20.55114 (13)0.3192 (4)1.02030 (13)0.0344 (7)
O31.04166 (14)0.2995 (4)1.02077 (13)0.0378 (7)
N10.53525 (15)0.4583 (4)0.92238 (15)0.0288 (8)
H10.51190.53220.94010.035*
O41.02351 (14)0.5927 (4)0.82725 (14)0.0415 (8)
N71.03409 (15)0.4421 (4)0.92325 (15)0.0306 (8)
H71.01400.52360.94100.037*
N20.57984 (15)0.3662 (4)0.82841 (15)0.0301 (8)
N81.07502 (16)0.3338 (5)0.82954 (16)0.0330 (8)
N30.56236 (15)0.6236 (4)0.69138 (16)0.0320 (8)
H3A0.56950.61940.73470.038*
H3B0.53380.70530.68170.038*
N40.64335 (15)0.3661 (5)0.64533 (16)0.0330 (8)
N50.86014 (15)0.0992 (4)0.85634 (16)0.0325 (8)
N60.93121 (15)0.1748 (4)0.80703 (16)0.0337 (8)
H6A0.95650.26550.81530.040*
H6B0.92450.16370.76390.040*
C10.54296 (19)0.4798 (5)0.85679 (19)0.0313 (9)
C181.05419 (19)0.3021 (5)0.9626 (2)0.0328 (10)
C171.04364 (19)0.4618 (6)0.85811 (19)0.0313 (9)
C40.60638 (18)0.2374 (5)0.8663 (2)0.0315 (9)
C20.56213 (18)0.3272 (5)0.9617 (2)0.0308 (9)
C201.09503 (18)0.1988 (5)0.8674 (2)0.0309 (9)
C110.68606 (18)0.2301 (5)0.6354 (2)0.0311 (9)
C90.6682 (2)0.5311 (5)0.6731 (2)0.0345 (10)
H9A0.70510.56340.65240.041*
H9B0.67960.51660.71950.041*
C270.82314 (18)0.2433 (5)0.8709 (2)0.0315 (9)
C30.60166 (18)0.2074 (5)0.93082 (19)0.0301 (9)
C250.82936 (19)0.0520 (5)0.8253 (2)0.0341 (10)
H25A0.82010.02960.77890.041*
H25B0.79070.07360.84430.041*
C191.08842 (19)0.1695 (5)0.93181 (19)0.0316 (9)
C230.96153 (19)0.0141 (6)0.8346 (2)0.0357 (10)
H23A0.99820.01040.81230.043*
H23B0.97420.03170.88060.043*
C211.1136 (2)0.0116 (6)0.9694 (2)0.0377 (10)
H21A1.10440.09240.94330.045*
H21B1.09280.00071.00910.045*
C280.7616 (2)0.2637 (6)0.8454 (2)0.0397 (11)
H280.74480.18570.81390.048*
C100.62039 (19)0.6734 (5)0.6625 (2)0.0336 (10)
H10A0.63650.78090.68250.040*
H10B0.61160.69410.61610.040*
C50.6318 (2)0.0569 (5)0.9687 (2)0.0359 (10)
H5A0.67210.03530.95330.043*
H5B0.63810.08931.01450.043*
C70.53832 (19)0.4524 (6)0.6672 (2)0.0378 (10)
H7A0.52480.46100.62110.045*
H7B0.50290.41960.69030.045*
C160.74788 (19)0.2396 (6)0.6587 (2)0.0357 (10)
H160.76180.33340.68490.043*
C150.7893 (2)0.1105 (6)0.6436 (2)0.0412 (11)
H150.83080.11920.65920.049*
C260.87103 (19)0.2105 (6)0.8348 (2)0.0371 (10)
H26A0.87840.23680.88110.044*
H26B0.85110.31100.81320.044*
C120.6660 (2)0.0859 (6)0.5972 (2)0.0369 (10)
H120.62460.07650.58120.044*
C80.58805 (18)0.3138 (5)0.6776 (2)0.0344 (10)
H8A0.59910.29790.72400.041*
H8B0.57240.20330.65970.041*
C320.8473 (2)0.3663 (5)0.9167 (2)0.0374 (10)
H320.88840.35730.93370.045*
C240.91766 (19)0.1391 (6)0.8266 (2)0.0362 (10)
H24A0.93700.24170.84730.043*
H24B0.90830.16450.78050.043*
C290.7254 (2)0.3984 (7)0.8662 (2)0.0480 (12)
H290.68430.40890.84930.058*
C310.8113 (2)0.4999 (6)0.9369 (2)0.0442 (12)
H310.82820.57960.96770.053*
C130.7077 (2)0.0424 (6)0.5832 (2)0.0423 (11)
H130.69380.13840.55820.051*
C221.1830 (2)0.0208 (6)0.9874 (2)0.0433 (11)
H22A1.19630.08261.01110.065*
H22B1.20400.02880.94830.065*
H22C1.19240.12191.01410.065*
C140.7692 (2)0.0311 (6)0.6054 (2)0.0450 (12)
H140.79700.11730.59480.054*
C300.7503 (2)0.5173 (6)0.9120 (2)0.0487 (13)
H300.72610.60820.92590.058*
C60.5943 (2)0.1094 (6)0.9627 (2)0.0529 (13)
H6C0.61580.20020.98780.079*
H6D0.58870.14400.91770.079*
H6E0.55460.08990.97880.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0470 (6)0.0405 (6)0.0359 (6)0.0097 (5)0.0099 (5)0.0029 (5)
Cl10.0503 (7)0.0474 (7)0.0347 (6)0.0174 (5)0.0101 (5)0.0010 (5)
O10.0488 (18)0.0360 (17)0.0301 (16)0.0110 (14)0.0063 (14)0.0051 (13)
O20.0396 (17)0.0410 (17)0.0226 (15)0.0075 (13)0.0030 (13)0.0008 (12)
O30.0446 (18)0.0400 (18)0.0299 (16)0.0085 (14)0.0087 (14)0.0022 (13)
N10.0337 (18)0.0299 (18)0.0231 (17)0.0075 (15)0.0036 (14)0.0018 (14)
O40.0462 (19)0.0444 (19)0.0349 (17)0.0130 (15)0.0087 (14)0.0079 (14)
N70.0323 (18)0.033 (2)0.0266 (18)0.0058 (15)0.0057 (15)0.0034 (15)
N20.0301 (18)0.036 (2)0.0244 (17)0.0008 (15)0.0033 (14)0.0004 (15)
N80.0331 (19)0.036 (2)0.0305 (19)0.0011 (16)0.0053 (15)0.0007 (16)
N30.0349 (19)0.0336 (19)0.0280 (18)0.0064 (15)0.0052 (15)0.0001 (15)
N40.0304 (19)0.033 (2)0.0355 (19)0.0054 (15)0.0046 (15)0.0023 (16)
N50.0297 (18)0.0307 (19)0.038 (2)0.0003 (15)0.0089 (16)0.0023 (16)
N60.038 (2)0.035 (2)0.0287 (19)0.0004 (16)0.0042 (16)0.0002 (15)
C10.032 (2)0.033 (2)0.028 (2)0.0028 (18)0.0043 (18)0.0009 (18)
C180.035 (2)0.032 (2)0.032 (2)0.0007 (18)0.0079 (19)0.0012 (18)
C170.032 (2)0.035 (2)0.028 (2)0.0040 (18)0.0048 (18)0.0007 (18)
C40.027 (2)0.035 (2)0.033 (2)0.0055 (17)0.0018 (18)0.0043 (18)
C20.029 (2)0.031 (2)0.032 (2)0.0002 (17)0.0011 (18)0.0027 (18)
C200.028 (2)0.033 (2)0.032 (2)0.0001 (18)0.0054 (18)0.0055 (18)
C110.029 (2)0.033 (2)0.032 (2)0.0018 (18)0.0075 (18)0.0018 (18)
C90.039 (2)0.029 (2)0.036 (2)0.0052 (19)0.009 (2)0.0006 (19)
C270.031 (2)0.033 (2)0.031 (2)0.0006 (18)0.0070 (18)0.0058 (18)
C30.031 (2)0.033 (2)0.026 (2)0.0006 (17)0.0008 (17)0.0012 (17)
C250.032 (2)0.038 (2)0.032 (2)0.0057 (19)0.0044 (18)0.0012 (19)
C190.034 (2)0.032 (2)0.029 (2)0.0009 (18)0.0051 (18)0.0000 (18)
C230.031 (2)0.039 (3)0.038 (2)0.0023 (19)0.0063 (19)0.006 (2)
C210.042 (3)0.038 (2)0.035 (2)0.006 (2)0.010 (2)0.004 (2)
C280.039 (2)0.044 (3)0.037 (3)0.004 (2)0.006 (2)0.001 (2)
C100.041 (2)0.033 (2)0.027 (2)0.0013 (19)0.0050 (19)0.0011 (18)
C50.041 (2)0.039 (3)0.028 (2)0.009 (2)0.0027 (19)0.0014 (19)
C70.031 (2)0.044 (3)0.038 (2)0.004 (2)0.0009 (19)0.003 (2)
C160.034 (2)0.038 (2)0.036 (2)0.0002 (19)0.0054 (19)0.0014 (19)
C150.036 (2)0.045 (3)0.043 (3)0.006 (2)0.008 (2)0.004 (2)
C260.038 (2)0.039 (3)0.034 (2)0.006 (2)0.007 (2)0.0022 (19)
C120.040 (2)0.037 (2)0.034 (2)0.000 (2)0.0024 (19)0.0026 (19)
C80.035 (2)0.031 (2)0.038 (2)0.0043 (19)0.0045 (19)0.0033 (19)
C320.039 (2)0.033 (2)0.041 (3)0.0047 (19)0.011 (2)0.002 (2)
C240.032 (2)0.041 (3)0.037 (2)0.0063 (19)0.0111 (19)0.002 (2)
C290.044 (3)0.055 (3)0.045 (3)0.015 (2)0.006 (2)0.005 (2)
C310.055 (3)0.037 (3)0.043 (3)0.001 (2)0.017 (2)0.003 (2)
C130.058 (3)0.034 (2)0.037 (3)0.004 (2)0.014 (2)0.006 (2)
C220.042 (3)0.046 (3)0.043 (3)0.005 (2)0.007 (2)0.009 (2)
C140.053 (3)0.037 (3)0.047 (3)0.010 (2)0.017 (2)0.002 (2)
C300.056 (3)0.045 (3)0.047 (3)0.017 (2)0.019 (3)0.005 (2)
C60.065 (3)0.040 (3)0.051 (3)0.002 (2)0.008 (3)0.010 (2)
Geometric parameters (Å, º) top
Cl2—C201.758 (4)C19—C211.509 (6)
Cl1—C41.747 (4)C23—C241.508 (6)
O1—C11.249 (5)C23—H23A0.9700
O2—C21.248 (5)C23—H23B0.9700
O3—C181.249 (5)C21—C221.517 (6)
N1—C11.382 (5)C21—H21A0.9700
N1—C21.384 (5)C21—H21B0.9700
N1—H10.8600C28—C291.386 (6)
O4—C171.243 (5)C28—H280.9300
N7—C171.380 (5)C10—H10A0.9700
N7—C181.388 (5)C10—H10B0.9700
N7—H70.8600C5—C61.508 (6)
N2—C11.347 (5)C5—H5A0.9700
N2—C41.351 (5)C5—H5B0.9700
N8—C201.342 (5)C7—C81.513 (6)
N8—C171.354 (5)C7—H7A0.9700
N3—C71.478 (5)C7—H7B0.9700
N3—C101.487 (5)C16—C151.388 (6)
N3—H3A0.8900C16—H160.9300
N3—H3B0.8900C15—C141.385 (7)
N4—C111.419 (5)C15—H150.9300
N4—C91.467 (5)C26—H26A0.9700
N4—C81.475 (5)C26—H26B0.9700
N5—C271.410 (5)C12—C131.380 (6)
N5—C251.454 (5)C12—H120.9300
N5—C241.468 (5)C8—H8A0.9700
N6—C231.482 (5)C8—H8B0.9700
N6—C261.495 (5)C32—C311.371 (6)
N6—H6A0.8900C32—H320.9300
N6—H6B0.8900C24—H24A0.9700
C18—C191.436 (6)C24—H24B0.9700
C4—C31.359 (6)C29—C301.383 (7)
C2—C31.440 (6)C29—H290.9300
C20—C191.362 (6)C31—C301.383 (7)
C11—C161.385 (6)C31—H310.9300
C11—C121.400 (6)C13—C141.374 (7)
C9—C101.505 (6)C13—H130.9300
C9—H9A0.9700C22—H22A0.9600
C9—H9B0.9700C22—H22B0.9600
C27—C281.398 (6)C22—H22C0.9600
C27—C321.399 (6)C14—H140.9300
C3—C51.505 (6)C30—H300.9300
C25—C261.514 (6)C6—H6C0.9600
C25—H25A0.9700C6—H6D0.9600
C25—H25B0.9700C6—H6E0.9600
C1—N1—C2125.1 (3)H21A—C21—H21B107.8
C1—N1—H1117.5C29—C28—C27121.0 (5)
C2—N1—H1117.5C29—C28—H28119.5
C17—N7—C18125.6 (3)C27—C28—H28119.5
C17—N7—H7117.2N3—C10—C9110.7 (3)
C18—N7—H7117.2N3—C10—H10A109.5
C1—N2—C4117.3 (3)C9—C10—H10A109.5
C20—N8—C17117.0 (3)N3—C10—H10B109.5
C7—N3—C10112.2 (3)C9—C10—H10B109.5
C7—N3—H3A109.2H10A—C10—H10B108.1
C10—N3—H3A109.2C3—C5—C6113.3 (4)
C7—N3—H3B109.2C3—C5—H5A108.9
C10—N3—H3B109.2C6—C5—H5A108.9
H3A—N3—H3B107.9C3—C5—H5B108.9
C11—N4—C9117.6 (3)C6—C5—H5B108.9
C11—N4—C8115.6 (3)H5A—C5—H5B107.7
C9—N4—C8110.1 (3)N3—C7—C8110.3 (3)
C27—N5—C25117.8 (3)N3—C7—H7A109.6
C27—N5—C24116.5 (3)C8—C7—H7A109.6
C25—N5—C24110.9 (3)N3—C7—H7B109.6
C23—N6—C26112.2 (3)C8—C7—H7B109.6
C23—N6—H6A109.2H7A—C7—H7B108.1
C26—N6—H6A109.2C11—C16—C15120.8 (4)
C23—N6—H6B109.2C11—C16—H16119.6
C26—N6—H6B109.2C15—C16—H16119.6
H6A—N6—H6B107.9C14—C15—C16120.3 (4)
O1—C1—N2121.5 (4)C14—C15—H15119.8
O1—C1—N1120.3 (4)C16—C15—H15119.8
N2—C1—N1118.2 (4)N6—C26—C25109.6 (3)
O3—C18—N7119.1 (4)N6—C26—H26A109.8
O3—C18—C19125.1 (4)C25—C26—H26A109.8
N7—C18—C19115.8 (3)N6—C26—H26B109.8
O4—C17—N8121.8 (4)C25—C26—H26B109.8
O4—C17—N7120.4 (4)H26A—C26—H26B108.2
N8—C17—N7117.8 (4)C13—C12—C11120.0 (4)
N2—C4—C3128.3 (4)C13—C12—H12120.0
N2—C4—Cl1112.1 (3)C11—C12—H12120.0
C3—C4—Cl1119.5 (3)N4—C8—C7110.1 (3)
O2—C2—N1119.5 (4)N4—C8—H8A109.6
O2—C2—C3124.5 (4)C7—C8—H8A109.6
N1—C2—C3116.1 (3)N4—C8—H8B109.6
N8—C20—C19129.3 (4)C7—C8—H8B109.6
N8—C20—Cl2111.7 (3)H8A—C8—H8B108.2
C19—C20—Cl2119.0 (3)C31—C32—C27121.1 (4)
C16—C11—C12118.5 (4)C31—C32—H32119.5
C16—C11—N4122.4 (4)C27—C32—H32119.5
C12—C11—N4118.9 (4)N5—C24—C23110.1 (3)
N4—C9—C10109.9 (4)N5—C24—H24A109.6
N4—C9—H9A109.7C23—C24—H24A109.6
C10—C9—H9A109.7N5—C24—H24B109.6
N4—C9—H9B109.7C23—C24—H24B109.6
C10—C9—H9B109.7H24A—C24—H24B108.1
H9A—C9—H9B108.2C30—C29—C28120.1 (5)
C28—C27—C32117.7 (4)C30—C29—H29120.0
C28—C27—N5123.4 (4)C28—C29—H29120.0
C32—C27—N5118.8 (4)C32—C31—C30120.7 (5)
C4—C3—C2115.0 (4)C32—C31—H31119.6
C4—C3—C5124.6 (4)C30—C31—H31119.6
C2—C3—C5120.4 (3)C14—C13—C12121.3 (4)
N5—C25—C26109.5 (4)C14—C13—H13119.3
N5—C25—H25A109.8C12—C13—H13119.3
C26—C25—H25A109.8C21—C22—H22A109.5
N5—C25—H25B109.8C21—C22—H22B109.5
C26—C25—H25B109.8H22A—C22—H22B109.5
H25A—C25—H25B108.2C21—C22—H22C109.5
C20—C19—C18114.5 (4)H22A—C22—H22C109.5
C20—C19—C21124.4 (4)H22B—C22—H22C109.5
C18—C19—C21121.1 (4)C13—C14—C15119.0 (4)
N6—C23—C24110.4 (4)C13—C14—H14120.5
N6—C23—H23A109.6C15—C14—H14120.5
C24—C23—H23A109.6C29—C30—C31119.4 (4)
N6—C23—H23B109.6C29—C30—H30120.3
C24—C23—H23B109.6C31—C30—H30120.3
H23A—C23—H23B108.1C5—C6—H6C109.5
C19—C21—C22113.2 (4)C5—C6—H6D109.5
C19—C21—H21A108.9H6C—C6—H6D109.5
C22—C21—H21A108.9C5—C6—H6E109.5
C19—C21—H21B108.9H6C—C6—H6E109.5
C22—C21—H21B108.9H6D—C6—H6E109.5
C4—N2—C1—O1179.0 (4)N8—C20—C19—C21179.6 (4)
C4—N2—C1—N10.6 (6)Cl2—C20—C19—C212.8 (6)
C2—N1—C1—O1178.9 (4)O3—C18—C19—C20178.5 (4)
C2—N1—C1—N20.7 (6)N7—C18—C19—C201.4 (6)
C17—N7—C18—O3179.1 (4)O3—C18—C19—C210.9 (7)
C17—N7—C18—C190.9 (6)N7—C18—C19—C21179.2 (4)
C20—N8—C17—O4179.6 (4)C26—N6—C23—C2453.9 (5)
C20—N8—C17—N70.8 (6)C20—C19—C21—C2276.2 (6)
C18—N7—C17—O4179.9 (4)C18—C19—C21—C22104.4 (5)
C18—N7—C17—N80.3 (6)C32—C27—C28—C291.8 (6)
C1—N2—C4—C31.1 (7)N5—C27—C28—C29173.5 (4)
C1—N2—C4—Cl1177.7 (3)C7—N3—C10—C954.1 (4)
C1—N1—C2—O2179.0 (4)N4—C9—C10—N356.9 (4)
C1—N1—C2—C31.0 (6)C4—C3—C5—C684.3 (5)
C17—N8—C20—C190.1 (7)C2—C3—C5—C692.5 (5)
C17—N8—C20—Cl2177.9 (3)C10—N3—C7—C853.7 (4)
C9—N4—C11—C168.8 (6)C12—C11—C16—C151.2 (6)
C8—N4—C11—C16124.1 (4)N4—C11—C16—C15174.7 (4)
C9—N4—C11—C12167.1 (4)C11—C16—C15—C140.7 (7)
C8—N4—C11—C1260.0 (5)C23—N6—C26—C2554.9 (5)
C11—N4—C9—C10164.1 (3)N5—C25—C26—N658.0 (4)
C8—N4—C9—C1060.6 (4)C16—C11—C12—C130.4 (6)
C25—N5—C27—C2813.7 (6)N4—C11—C12—C13175.6 (4)
C24—N5—C27—C28121.7 (4)C11—N4—C8—C7163.1 (4)
C25—N5—C27—C32161.5 (4)C9—N4—C8—C760.6 (4)
C24—N5—C27—C3263.1 (5)N3—C7—C8—N456.5 (4)
N2—C4—C3—C21.4 (7)C28—C27—C32—C311.5 (6)
Cl1—C4—C3—C2177.3 (3)N5—C27—C32—C31174.0 (4)
N2—C4—C3—C5178.3 (4)C27—N5—C24—C23161.1 (4)
Cl1—C4—C3—C50.4 (6)C25—N5—C24—C2360.5 (5)
O2—C2—C3—C4178.8 (4)N6—C23—C24—N555.5 (4)
N1—C2—C3—C41.2 (6)C27—C28—C29—C301.2 (7)
O2—C2—C3—C51.7 (6)C27—C32—C31—C300.6 (7)
N1—C2—C3—C5178.3 (4)C11—C12—C13—C140.8 (7)
C27—N5—C25—C26160.5 (3)C12—C13—C14—C151.3 (7)
C24—N5—C25—C2661.7 (4)C16—C15—C14—C130.5 (7)
N8—C20—C19—C181.1 (7)C28—C29—C30—C310.3 (7)
Cl2—C20—C19—C18176.5 (3)C32—C31—C30—C290.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.859 (4)173
N3—H3A···O1ii0.892.833.465 (4)129
N6—H6A···O4iii0.891.812.681 (5)165
N7—H7···O3iv0.862.022.873 (4)174
N3—H3A···N2ii0.891.922.808 (4)174
N6—H6B···N8v0.891.922.798 (5)169
C10—H10B···O2vi0.972.463.355 (5)154
C26—H26A···O3vii0.972.583.444 (5)147
C16—H16···Cl2viii0.932.803.462 (4)129
Symmetry codes: (i) x+1, y1, z+2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+2, y+1, z+2; (v) x+2, y1/2, z+3/2; (vi) x, y+1/2, z1/2; (vii) x+2, y, z+2; (viii) x+2, y+1/2, z+3/2.
(II) 4-Phenylpiperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide top
Crystal data top
C10H15N2+·C7H8ClN2O2F(000) = 1488
Mr = 350.84Dx = 1.318 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.5418 Å
a = 20.5012 (3) ÅCell parameters from 6927 reflections
b = 7.4565 (1) Åθ = 3.8–70.0°
c = 23.1414 (3) ŵ = 2.05 mm1
β = 90.639 (1)°T = 101 K
V = 3537.34 (8) Å3Prism, colourless
Z = 80.34 × 0.13 × 0.09 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2926 reflections with I > 2σ(I)
Detector resolution: 10.2673 pixels mm-1Rint = 0.069
ω scansθmax = 70.6°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2425
Tmin = 0.760, Tmax = 0.828k = 97
13174 measured reflectionsl = 2728
3396 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0585P)2 + 3.6877P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3346 reflectionsΔρmax = 0.55 e Å3
217 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43825 (2)0.80800 (7)0.38729 (2)0.03420 (17)
O10.42855 (6)1.32956 (18)0.26398 (6)0.0286 (3)
O20.23184 (6)1.07264 (19)0.29852 (6)0.0288 (3)
N30.33106 (7)1.1946 (2)0.28125 (6)0.0227 (3)
H30.31241.27110.25870.027*
N40.42771 (7)1.0889 (2)0.32365 (6)0.0228 (3)
N20.56397 (7)1.1049 (2)0.31180 (6)0.0246 (3)
H3N0.57341.02380.28490.029*
H2N0.52081.10870.31520.029*
C110.39765 (9)1.2092 (2)0.28906 (7)0.0228 (4)
N10.60877 (7)1.3622 (2)0.39443 (6)0.0230 (3)
C20.58171 (9)1.1911 (2)0.41332 (8)0.0237 (4)
H2A0.53521.20360.41950.028*
H2B0.60201.15560.44960.028*
C40.58796 (10)1.2834 (3)0.29310 (8)0.0271 (4)
H4A0.56491.32010.25820.032*
H4B0.63411.27600.28450.032*
C140.39071 (9)0.9583 (2)0.34646 (7)0.0236 (4)
C120.29194 (9)1.0666 (3)0.30679 (7)0.0232 (4)
C60.58544 (9)1.4868 (3)0.49109 (8)0.0273 (4)
H60.55811.39060.49920.033*
C130.32496 (9)0.9324 (2)0.34113 (7)0.0231 (4)
C30.59378 (9)1.0490 (3)0.36799 (8)0.0245 (4)
H3A0.64031.03180.36340.029*
H3B0.57500.93610.38020.029*
C100.65511 (9)1.6458 (3)0.42609 (8)0.0272 (4)
H100.67491.65710.39030.033*
C150.28407 (10)0.7802 (3)0.36508 (8)0.0286 (4)
H150.23930.80630.35230.034*
C50.61534 (9)1.4980 (2)0.43717 (8)0.0224 (4)
C80.63624 (10)1.7627 (3)0.52142 (9)0.0341 (5)
H80.64361.85000.54940.041*
C10.57729 (9)1.4207 (3)0.34016 (7)0.0249 (4)
H1A0.59531.53520.32840.030*
H1B0.53091.43650.34620.030*
C70.59623 (10)1.6182 (3)0.53262 (8)0.0332 (5)
H70.57631.60880.56840.040*
C90.66531 (10)1.7757 (3)0.46790 (9)0.0320 (5)
H90.69211.87310.45990.038*
C160.28114 (10)0.7739 (3)0.43025 (8)0.0310 (4)
H16A0.27080.89090.44480.047*
H16B0.24810.69020.44180.047*
H16C0.32270.73650.44560.047*
C170.30027 (12)0.6004 (3)0.33815 (9)0.0394 (5)
H17A0.30150.61250.29690.059*
H17B0.34210.56050.35220.059*
H17C0.26750.51430.34830.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0307 (3)0.0306 (3)0.0413 (3)0.00185 (19)0.0001 (2)0.0141 (2)
O10.0225 (7)0.0278 (7)0.0355 (7)0.0043 (6)0.0020 (5)0.0107 (6)
O20.0210 (6)0.0341 (8)0.0313 (7)0.0042 (6)0.0017 (5)0.0053 (6)
N30.0210 (7)0.0233 (8)0.0238 (7)0.0013 (6)0.0012 (6)0.0032 (6)
N40.0233 (7)0.0211 (8)0.0239 (7)0.0003 (6)0.0022 (6)0.0025 (6)
N20.0227 (7)0.0256 (8)0.0255 (7)0.0009 (7)0.0023 (6)0.0055 (6)
C110.0238 (9)0.0216 (9)0.0231 (8)0.0010 (7)0.0033 (7)0.0021 (7)
N10.0261 (8)0.0203 (8)0.0225 (7)0.0005 (6)0.0007 (6)0.0002 (6)
C20.0254 (9)0.0221 (9)0.0235 (8)0.0009 (7)0.0020 (7)0.0010 (7)
C40.0302 (10)0.0284 (10)0.0226 (9)0.0025 (8)0.0023 (7)0.0003 (8)
C140.0295 (9)0.0207 (9)0.0206 (8)0.0023 (8)0.0024 (7)0.0001 (7)
C120.0255 (9)0.0244 (9)0.0198 (8)0.0036 (8)0.0043 (7)0.0030 (7)
C60.0300 (10)0.0248 (10)0.0273 (9)0.0002 (8)0.0003 (8)0.0004 (8)
C130.0287 (9)0.0209 (9)0.0198 (8)0.0031 (8)0.0042 (7)0.0022 (7)
C30.0231 (9)0.0221 (9)0.0284 (9)0.0017 (7)0.0017 (7)0.0005 (7)
C100.0241 (9)0.0254 (10)0.0322 (10)0.0019 (8)0.0017 (7)0.0005 (8)
C150.0317 (10)0.0262 (10)0.0279 (9)0.0059 (8)0.0039 (8)0.0007 (8)
C50.0201 (8)0.0211 (9)0.0260 (9)0.0053 (7)0.0028 (7)0.0015 (7)
C80.0376 (11)0.0290 (11)0.0354 (10)0.0050 (9)0.0084 (9)0.0106 (9)
C10.0284 (9)0.0236 (9)0.0227 (8)0.0002 (8)0.0006 (7)0.0016 (7)
C70.0385 (11)0.0350 (11)0.0260 (9)0.0066 (9)0.0012 (8)0.0053 (8)
C90.0273 (10)0.0241 (10)0.0445 (11)0.0005 (8)0.0056 (8)0.0034 (9)
C160.0318 (10)0.0306 (11)0.0309 (10)0.0049 (9)0.0092 (8)0.0003 (8)
C170.0492 (13)0.0299 (11)0.0396 (11)0.0130 (10)0.0139 (10)0.0048 (9)
Geometric parameters (Å, º) top
Cl1—C141.7544 (18)C6—C71.389 (3)
O1—C111.246 (2)C6—C51.399 (3)
O2—C121.246 (2)C6—H60.9300
N3—C111.379 (2)C13—C151.519 (3)
N3—C121.383 (2)C3—H3A0.9700
N3—H30.8600C3—H3B0.9700
N4—N40.000 (5)C10—C91.383 (3)
N4—C141.346 (2)C10—C51.397 (3)
N4—C111.347 (2)C10—H100.9300
N2—C41.485 (2)C15—C161.511 (3)
N2—C31.490 (2)C15—C171.517 (3)
N2—H3N0.8900C15—H150.9800
N2—H2N0.8900C8—C71.380 (3)
C11—N41.347 (2)C8—C91.384 (3)
N1—C51.421 (2)C8—H80.9300
N1—C21.460 (2)C1—H1A0.9700
N1—C11.472 (2)C1—H1B0.9700
C2—C31.513 (2)C7—H70.9300
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C16—H16A0.9600
C4—C11.512 (3)C16—H16B0.9600
C4—H4A0.9700C16—H16C0.9600
C4—H4B0.9700C17—H17A0.9600
C14—N41.346 (2)C17—H17B0.9600
C14—C131.366 (3)C17—H17C0.9600
C12—C131.442 (3)
C11—N3—C12125.17 (16)C12—C13—C15117.51 (16)
C11—N3—H3117.4N2—C3—C2109.92 (15)
C12—N3—H3117.4N2—C3—H3A109.7
N4—N4—C140 (10)C2—C3—H3A109.7
N4—N4—C110 (10)N2—C3—H3B109.7
C14—N4—C11117.31 (15)C2—C3—H3B109.7
C4—N2—C3111.77 (14)H3A—C3—H3B108.2
C4—N2—H3N109.3C9—C10—C5120.54 (18)
C3—N2—H3N109.3C9—C10—H10119.7
C4—N2—H2N109.3C5—C10—H10119.7
C3—N2—H2N109.3C16—C15—C17113.20 (18)
H3N—N2—H2N107.9C16—C15—C13114.57 (16)
O1—C11—N4121.67 (16)C17—C15—C13112.72 (16)
O1—C11—N4121.67 (16)C16—C15—H15105.1
N4—C11—N40.00 (14)C17—C15—H15105.1
O1—C11—N3120.23 (17)C13—C15—H15105.1
N4—C11—N3118.10 (16)C10—C5—C6118.26 (17)
N4—C11—N3118.10 (16)C10—C5—N1119.06 (16)
C5—N1—C2116.59 (14)C6—C5—N1122.64 (17)
C5—N1—C1114.83 (15)C7—C8—C9119.04 (19)
C2—N1—C1110.50 (14)C7—C8—H8120.5
N1—C2—C3109.78 (14)C9—C8—H8120.5
N1—C2—H2A109.7N1—C1—C4110.37 (15)
C3—C2—H2A109.7N1—C1—H1A109.6
N1—C2—H2B109.7C4—C1—H1A109.6
C3—C2—H2B109.7N1—C1—H1B109.6
H2A—C2—H2B108.2C4—C1—H1B109.6
N2—C4—C1110.25 (15)H1A—C1—H1B108.1
N2—C4—H4A109.6C8—C7—C6120.75 (19)
C1—C4—H4A109.6C8—C7—H7119.6
N2—C4—H4B109.6C6—C7—H7119.6
C1—C4—H4B109.6C10—C9—C8120.9 (2)
H4A—C4—H4B108.1C10—C9—H9119.5
N4—C14—N40.00 (17)C8—C9—H9119.5
N4—C14—C13128.81 (17)C15—C16—H16A109.5
N4—C14—C13128.81 (17)C15—C16—H16B109.5
N4—C14—Cl1111.18 (13)H16A—C16—H16B109.5
N4—C14—Cl1111.18 (13)C15—C16—H16C109.5
C13—C14—Cl1120.01 (14)H16A—C16—H16C109.5
O2—C12—N3119.11 (17)H16B—C16—H16C109.5
O2—C12—C13124.56 (17)C15—C17—H17A109.5
N3—C12—C13116.32 (16)C15—C17—H17B109.5
C7—C6—C5120.48 (19)H17A—C17—H17B109.5
C7—C6—H6119.8C15—C17—H17C109.5
C5—C6—H6119.8H17A—C17—H17C109.5
C14—C13—C12114.11 (16)H17B—C17—H17C109.5
C14—C13—C15128.36 (17)
N4—N4—C11—O10.0 (5)N3—C12—C13—C144.0 (2)
C14—N4—C11—O1176.64 (16)O2—C12—C13—C154.8 (3)
C14—N4—C11—N40 (100)N3—C12—C13—C15174.41 (15)
N4—N4—C11—N30.0 (4)C4—N2—C3—C255.49 (19)
C14—N4—C11—N32.5 (2)N1—C2—C3—N258.11 (19)
C12—N3—C11—O1179.96 (16)C14—C13—C15—C1665.7 (3)
C12—N3—C11—N40.8 (3)C12—C13—C15—C16116.20 (19)
C12—N3—C11—N40.8 (3)C14—C13—C15—C1765.7 (3)
C5—N1—C2—C3165.61 (15)C12—C13—C15—C17112.4 (2)
C1—N1—C2—C360.88 (19)C9—C10—C5—C61.1 (3)
C3—N2—C4—C154.5 (2)C9—C10—C5—N1176.58 (17)
C11—N4—C14—N40 (100)C7—C6—C5—C101.1 (3)
N4—N4—C14—C130.0 (3)C7—C6—C5—N1176.42 (17)
C11—N4—C14—C132.5 (3)C2—N1—C5—C10164.11 (16)
N4—N4—C14—Cl10.0 (3)C1—N1—C5—C1064.4 (2)
C11—N4—C14—Cl1177.09 (13)C2—N1—C5—C613.4 (2)
C11—N3—C12—O2176.56 (16)C1—N1—C5—C6118.11 (19)
C11—N3—C12—C134.2 (3)C5—N1—C1—C4165.63 (15)
N4—C14—C13—C120.9 (3)C2—N1—C1—C459.98 (19)
N4—C14—C13—C120.9 (3)N2—C4—C1—N156.0 (2)
Cl1—C14—C13—C12179.55 (12)C9—C8—C7—C60.4 (3)
N4—C14—C13—C15177.27 (17)C5—C6—C7—C80.4 (3)
N4—C14—C13—C15177.27 (17)C5—C10—C9—C80.3 (3)
Cl1—C14—C13—C152.3 (3)C7—C8—C9—C100.5 (3)
O2—C12—C13—C14176.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N40.891.932.813 (2)174
N2—H3N···O1i0.891.842.705 (2)164
N3—H3···O2ii0.861.982.834 (2)174
C3—H3A···O2iii0.972.543.394 (2)147
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+5/2, z+1/2; (iii) x+1/2, y+2, z.
 

Acknowledgements

The authors are grateful to the Deanship of Scientific Research at King Saud University for funding this study through the research group project No. PRG-1436-23. We also acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO-13-MAT2013-40950-R, FPI grant BES-2011-046948 to MSMA).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245–o246.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El-Emam, A. A. (2011). Molecules, 16, 4764–4774.  Web of Science CAS PubMed Google Scholar
First citationArnatt, C. K., Adams, J. L., Zhang, Z., Haney, K. M., Li, G. & Zhang, Y. (2014). Bioorg. Med. Chem. Lett. 24, 2319–2323.  CrossRef CAS PubMed Google Scholar
First citationBali, A., Sharma, K., Bhalla, A., Bala, S., Reddy, D., Singh, A. & Kumar, A. (2010). Eur. J. Med. Chem. 45, 2656–2662.  CrossRef CAS PubMed Google Scholar
First citationBender, A. M., Clark, M. J., Agius, M. P., Traynor, J. R. & Mosberg, H. I. (2014). Bioorg. Med. Chem. Lett. 24, 548–551.  CrossRef CAS PubMed Google Scholar
First citationBlokhina, N. G., Vozny, E. K. & Garin, A. M. (1972). Cancer, 30, 390–392.  CrossRef CAS PubMed Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991–996.  CAS Google Scholar
First citationFytas, C., Zoidis, G., Tsotinis, A., Fytas, G., Khan, M. A., Akhtar, S., Rahman, K. M. & Thurston, D. E. (2015). Eur. J. Med. Chem. 93, 281–290.  CrossRef CAS PubMed Google Scholar
First citationGhoshal, K. & Jacob, S. T. (1997). Biochem. Pharmacol. 53, 1569–1575.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJang, Y. H., Sowers, L. C., Çağin, T. & Goddard, W. A. III (2001). J. Phys. Chem. A, 105, 274–280.  Web of Science CrossRef CAS Google Scholar
First citationKamal, A., Sreekanth, K., Shankaraiah, N., Sathish, M., Nekkanti, S. & Srinivasulu, V. (2015). Bioorg. Chem. 59, 23–30.  CrossRef CAS PubMed Google Scholar
First citationKapić, S., Paljetak, H. Č., Jakopović, I. P., Fajdetić, A., Ilijaš, M., Štimac, V., Brajša, K., Holmes, D. J., Berge, J. & Alihodžić, S. (2011). Bioorg. Med. Chem. 19, 7281–7298.  PubMed Google Scholar
First citationKurinovich, M. A. & Lee, J. K. (2002). J. Am. Soc. Mass Spectrom. 13, 985–995.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNagesh, H. N., Suresh, A., Sairam, S. D. S. S., Sriram, D., Yogeeswari, P. & Chandra Sekhar, K. V. G. (2014). Eur. J. Med. Chem. 84, 605–613.  CrossRef CAS PubMed Google Scholar
First citationNguyen, M. T., Chandra, A. K. & Zeegers-Huyskens, T. (1998). J. Chem. Soc. Faraday Trans. 94, 1277–1280.  CAS Google Scholar
First citationPeng, C.-T., Gao, C., Wang, N.-Y., You, X.-Y., Zhang, L.-D., Zhu, Y.-X., Xv, Y., Zuo, W.-Q., Ran, K., Deng, H.-X., Lei, Q., Xiao, K.-J. & Yu, L.-T. (2015). Bioorg. Med. Chem. Lett. 25, 1373–1376.  CrossRef CAS PubMed Google Scholar
First citationRomero, D. L., Morge, R. A., Biles, C., Berrios-Pena, N., May, P. D., Palmer, J. R., Johnson, P. D., Smith, H. W., Busso, M., Tan, C.-K., Voorman, R. L., Reusser, F., Althaus, I. W., So, A. G., Resnick, L., Tarpley, W. G. & Aristoff, P. A. (1994). J. Med. Chem. 37, 999–1014.  CrossRef CAS PubMed Google Scholar
First citationRomero, D. L., Olmsted, R. A., Poel, T. J., Morge, R. A., Biles, C., Keiser, B. J., Kopta, L. A., Friis, J. M., Hosley, J. D., Stefanski, K. J., Wishka, D. G., Evans, D. B., Morris, J., Stehle, R. G., Sharma, S. K., Yagi, Y., Voorman, R. L., Adams, W. J., Tarpley, W. G. & Thomas, R. C. (1996). J. Med. Chem. 39, 3769–3789.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpáčilová, L., Džubák, P., Hajdúch, M., Křupková, S., Hradil, P. & Hlaváč, J. (2007). Bioorg. Med. Chem. Lett. 17, 6647–6650.  PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, S.-F., Yin, Y., Qiao, F., Wu, X., Sha, S., Zhang, L. & Zhu, H.-L. (2014). Bioorg. Med. Chem. 22, 2409–2415.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds