organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,2,4-tri­methyl-2,3,4,5-tetra­hydro-1H-benzo[b][1,4]diazepine hemihydrate

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bPG and Research Department of Chemistry, Government Arts College, Coimbatore-18, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 June 2015; accepted 9 July 2015; online 15 July 2015)

The title compound, C12H18N2·0.5H2O, crystallizes with two independent organic mol­ecules (A and B) in the asymmetric unit, together with a water mol­ecule of crystallization. The diazepine rings in each mol­ecule have a chair conformation. The dihedral angle between benzene ring and the mean plane of the diazepine ring is 21.15 (12)° in mol­ecule A and 17.42 (11)° in mol­ecule B. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯N hydrogen bonds, forming zigzag chains propagating along [001].

1. Related literature

For examples of biological activities of benzodiazepines, see: De Baun et al. (1976[De Baun, J. R., Pallos, F. M. & Baker, D. R. (1976). U. S. Patent 3, 978, 227, Chem. Abstr. (1977), 86, 5498d.]). For the use of benzodiazepine derivatives as dyes for acrylic fibres, see: Harris & Straley (1968[Harris, R. C. & Straley, J. M. (1968). U. S. Patent 1, 537, 757, Chem. Abstr. (1970), 73, 100054w.]). For related structures, see: Thiruselvam et al. (2013[Thiruselvam, V., Rajakumari, D. D., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o874.]); Lamkaddem et al. (2015[Lamkaddem, A., Harcharras, M., Shaim, A., Zouihri, H., Echchahed, B. & Bi, W. (2015). Acta Cryst. E71, o83.]); Ponnuswamy et al. (2006[Ponnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathy, V. (2006). Indian J. Chem. 45B, 2059-2070.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H18N2·0.5H2O

  • Mr = 199.29

  • Monoclinic, P 21 /c

  • a = 9.0548 (10) Å

  • b = 23.246 (2) Å

  • c = 11.5613 (14) Å

  • β = 100.483 (3)°

  • V = 2392.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.986

  • 22443 measured reflections

  • 4161 independent reflections

  • 2416 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.03

  • 4161 reflections

  • 293 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.33 (2) 3.122 (3) 159 (2)
O1—H1W⋯N4ii 0.84 (4) 2.14 (4) 2.976 (4) 175 (3)
O1—H2W⋯N2 0.86 (4) 2.09 (4) 2.930 (3) 167 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014/6 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Benzodiazepines have attracted attention as an important class of heterocyclic compounds in the field of drug design and pharmaceuticals. These compounds are widely used as anti­convulsant, anti-anxiety, analgesic, sedative, anti-depressive and hypnotic agents as well as anti-inflammatory agents (De Baun et al., 1976). In addition to their potent biological activities, benzodiazepine derivatives are also used commercially as dyes for acrylic fibres (Harris & Straley, 1968).

Structural commentary top

The title compound, crystallized with two independent organic molecules (A and B) in the asymmetric unit (Fig. 1). The C—C and C—N bond distances are normal and in good agreement with those reported for similar structures (Lamkaddem et al., 2015; Ponnuswamy et al., 2006; Thiruselvam et al., 2013).

The diazepine rings each have a chair conformation. The dihedral angle between benzene ring and the mean plane of the diazepine ring is 21.15 (11)° in molecule A and and 17.42 (1)° in molecule B.

In the crystal of the title compound, molecules are linked through N—H···O and O—H···N hydrogen bonds, involving the water molecule, forming zigzag chains propagating along the c axis direction (Table 1 and Fig. 2).

Synthesis and crystallization top

2,3-Di­hydro-2,2,4-tri­methyl-1H-tetra­hydro-1,5-benzodiazepine (9.10 mmol) was dissolved in methanol (40 ml) and stirred with a magnetic stirrer. Sodium borohydride (8.38 mmol) was added in three portions over a period of 1 h while maintaining the temperature at 318-323 K. After the addition was complete the solution was maintained at 323 K for 2 h. Methanol was evaporated partially and the reaction mass was poured into water and extracted with chloro­form several times. The organic extractions were combined, dried with anhydrous sulphate and then evaporated. The yellow oil obtained was purified by recrystallization from aqueous ethanol and afforded colourless crystals of the title compound (M.p.: 329-330 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and water H atoms were located in difference Fourier maps. The water H atoms were freely refined and the NH H atoms were refined with distance restraints; N–H = 0.86 (2) Å. The C-bound H atoms were positioned geometrically and treated as riding: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For examples of biological activities of benzodiazepines, see: De Baun et al. (1976). For the use of benzodiazepine derivatives as dyes for acrylic fibres, see: Harris & Straley (1968). For related structures, see: Thiruselvam et al. (2013); Lamkaddem et al. (2015); Ponnuswamy et al. (2006).

Structure description top

Benzodiazepines have attracted attention as an important class of heterocyclic compounds in the field of drug design and pharmaceuticals. These compounds are widely used as anti­convulsant, anti-anxiety, analgesic, sedative, anti-depressive and hypnotic agents as well as anti-inflammatory agents (De Baun et al., 1976). In addition to their potent biological activities, benzodiazepine derivatives are also used commercially as dyes for acrylic fibres (Harris & Straley, 1968).

The title compound, crystallized with two independent organic molecules (A and B) in the asymmetric unit (Fig. 1). The C—C and C—N bond distances are normal and in good agreement with those reported for similar structures (Lamkaddem et al., 2015; Ponnuswamy et al., 2006; Thiruselvam et al., 2013).

The diazepine rings each have a chair conformation. The dihedral angle between benzene ring and the mean plane of the diazepine ring is 21.15 (11)° in molecule A and and 17.42 (1)° in molecule B.

In the crystal of the title compound, molecules are linked through N—H···O and O—H···N hydrogen bonds, involving the water molecule, forming zigzag chains propagating along the c axis direction (Table 1 and Fig. 2).

For examples of biological activities of benzodiazepines, see: De Baun et al. (1976). For the use of benzodiazepine derivatives as dyes for acrylic fibres, see: Harris & Straley (1968). For related structures, see: Thiruselvam et al. (2013); Lamkaddem et al. (2015); Ponnuswamy et al. (2006).

Synthesis and crystallization top

2,3-Di­hydro-2,2,4-tri­methyl-1H-tetra­hydro-1,5-benzodiazepine (9.10 mmol) was dissolved in methanol (40 ml) and stirred with a magnetic stirrer. Sodium borohydride (8.38 mmol) was added in three portions over a period of 1 h while maintaining the temperature at 318-323 K. After the addition was complete the solution was maintained at 323 K for 2 h. Methanol was evaporated partially and the reaction mass was poured into water and extracted with chloro­form several times. The organic extractions were combined, dried with anhydrous sulphate and then evaporated. The yellow oil obtained was purified by recrystallization from aqueous ethanol and afforded colourless crystals of the title compound (M.p.: 329-330 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and water H atoms were located in difference Fourier maps. The water H atoms were freely refined and the NH H atoms were refined with distance restraints; N–H = 0.86 (2) Å. The C-bound H atoms were positioned geometrically and treated as riding: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The dashed lines indicate the hydrogen bonds (see Table 1 for details; molecule A red, molecule B blue).
2,2,4-Trimethyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine hemihydrate top
Crystal data top
C12H18N2·0.5H2OF(000) = 872
Mr = 199.29Dx = 1.106 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0548 (10) Åθ = 1.8–24.9°
b = 23.246 (2) ŵ = 0.07 mm1
c = 11.5613 (14) ÅT = 293 K
β = 100.483 (3)°Block, colorless
V = 2392.9 (4) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4161 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and φ scanθmax = 24.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.980, Tmax = 0.986k = 2726
22443 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.8577P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.48 e Å3
4161 reflectionsΔρmin = 0.20 e Å3
293 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.0040 (10)
Crystal data top
C12H18N2·0.5H2OV = 2392.9 (4) Å3
Mr = 199.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.0548 (10) ŵ = 0.07 mm1
b = 23.246 (2) ÅT = 293 K
c = 11.5613 (14) Å0.30 × 0.25 × 0.20 mm
β = 100.483 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4161 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2416 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.042
22443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
4161 reflectionsΔρmin = 0.20 e Å3
293 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7167 (2)0.31832 (9)0.7595 (2)0.0571 (6)
H1N0.736 (3)0.3010 (10)0.7008 (18)0.057 (8)*
N20.7489 (2)0.37679 (9)0.97935 (19)0.0501 (5)
H2N0.781 (2)0.3936 (9)1.0446 (16)0.045 (7)*
C130.8453 (2)0.38831 (9)0.8995 (2)0.0428 (6)
C140.8286 (2)0.36004 (10)0.7919 (2)0.0452 (6)
C150.9343 (3)0.36978 (12)0.7212 (2)0.0594 (7)
H150.92140.35250.64750.071*
C161.0578 (3)0.40420 (12)0.7569 (3)0.0630 (7)
H161.12900.40890.70900.076*
C171.0752 (3)0.43161 (12)0.8637 (3)0.0620 (7)
H171.15830.45490.88910.074*
C180.9676 (3)0.42414 (10)0.9325 (2)0.0552 (7)
H180.97740.44381.00350.066*
C190.5856 (3)0.38711 (10)0.9469 (2)0.0545 (7)
C200.5126 (3)0.33939 (11)0.8667 (2)0.0594 (7)
H20A0.53300.30320.90850.071*
H20B0.40480.34530.85360.071*
C210.5583 (3)0.33282 (12)0.7482 (2)0.0614 (7)
H210.53910.36910.70470.074*
C220.4666 (4)0.28509 (16)0.6785 (3)0.0966 (11)
H22A0.49460.28170.60260.145*
H22B0.36170.29420.66890.145*
H22C0.48580.24930.72010.145*
C230.5232 (4)0.38475 (14)1.0604 (3)0.0832 (9)
H23A0.56730.41491.11220.125*
H23B0.54670.34821.09780.125*
H23C0.41620.38971.04290.125*
C240.5541 (4)0.44577 (13)0.8872 (3)0.0859 (10)
H24A0.59980.47550.93940.129*
H24B0.44770.45200.86840.129*
H24C0.59520.44660.81630.129*
N30.9623 (2)0.08032 (10)0.75961 (19)0.0552 (6)
H3N0.959 (3)0.0442 (8)0.738 (2)0.060 (8)*
N40.9115 (2)0.19484 (10)0.8412 (2)0.0564 (6)
H4N0.878 (3)0.2259 (9)0.867 (2)0.071 (9)*
C10.8201 (3)0.14813 (10)0.8611 (2)0.0485 (6)
C20.6969 (3)0.15719 (13)0.9136 (2)0.0608 (7)
H20.67890.19400.93920.073*
C30.6004 (3)0.11377 (14)0.9293 (3)0.0703 (8)
H30.51720.12140.96360.084*
C40.6268 (3)0.05903 (14)0.8944 (3)0.0698 (8)
H40.56260.02910.90560.084*
C50.7493 (3)0.04893 (11)0.8427 (2)0.0600 (7)
H50.76740.01170.81950.072*
C60.8469 (3)0.09240 (11)0.8238 (2)0.0480 (6)
C71.1215 (3)0.09048 (12)0.8137 (2)0.0566 (7)
C81.1544 (3)0.15471 (13)0.8175 (3)0.0656 (8)
H8A1.26140.15960.84520.079*
H8B1.13240.16900.73740.079*
C91.0732 (3)0.19262 (11)0.8915 (3)0.0605 (7)
H91.08630.17670.97130.073*
C101.2146 (3)0.06159 (16)0.7333 (3)0.0893 (11)
H10A1.19370.02110.72960.134*
H10B1.31940.06760.76360.134*
H10C1.18960.07780.65580.134*
C111.1571 (3)0.06352 (13)0.9354 (3)0.0776 (9)
H11A1.14520.02250.92880.116*
H11B1.08990.07860.98330.116*
H11C1.25880.07240.97100.116*
C121.1335 (3)0.25374 (14)0.8980 (3)0.0984 (12)
H12A1.07940.27680.94520.148*
H12B1.12090.26960.82010.148*
H12C1.23820.25350.93270.148*
O10.8427 (3)0.26647 (10)1.0918 (3)0.0817 (7)
H1W0.861 (4)0.2794 (15)1.161 (3)0.098 (14)*
H2W0.809 (4)0.2957 (17)1.050 (3)0.114 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0624 (15)0.0558 (13)0.0550 (15)0.0084 (11)0.0155 (12)0.0159 (11)
N20.0565 (13)0.0543 (13)0.0407 (13)0.0018 (10)0.0117 (11)0.0061 (11)
C130.0454 (14)0.0404 (13)0.0432 (15)0.0044 (11)0.0098 (11)0.0019 (11)
C140.0455 (14)0.0449 (14)0.0450 (15)0.0016 (11)0.0078 (11)0.0002 (11)
C150.0599 (17)0.0710 (18)0.0489 (16)0.0039 (14)0.0142 (13)0.0050 (13)
C160.0556 (17)0.0743 (18)0.0628 (19)0.0033 (14)0.0206 (14)0.0047 (16)
C170.0502 (16)0.0662 (18)0.068 (2)0.0099 (13)0.0071 (14)0.0016 (15)
C180.0579 (16)0.0551 (16)0.0511 (17)0.0044 (13)0.0058 (13)0.0073 (12)
C190.0508 (15)0.0552 (16)0.0618 (18)0.0055 (12)0.0216 (13)0.0000 (13)
C200.0494 (15)0.0621 (17)0.0684 (19)0.0023 (12)0.0150 (13)0.0008 (14)
C210.0542 (16)0.0690 (18)0.0604 (19)0.0100 (13)0.0086 (13)0.0041 (14)
C220.080 (2)0.120 (3)0.088 (3)0.040 (2)0.0105 (18)0.031 (2)
C230.082 (2)0.097 (2)0.080 (2)0.0006 (18)0.0405 (18)0.0111 (18)
C240.079 (2)0.069 (2)0.113 (3)0.0140 (16)0.0257 (19)0.0008 (18)
N30.0463 (13)0.0679 (16)0.0517 (14)0.0055 (11)0.0100 (10)0.0027 (12)
N40.0496 (13)0.0521 (14)0.0662 (16)0.0015 (11)0.0073 (11)0.0007 (11)
C10.0411 (14)0.0554 (16)0.0462 (15)0.0010 (12)0.0006 (11)0.0032 (12)
C20.0429 (15)0.0755 (19)0.0633 (18)0.0046 (14)0.0081 (13)0.0101 (14)
C30.0455 (16)0.095 (2)0.073 (2)0.0023 (16)0.0178 (14)0.0012 (17)
C40.0516 (17)0.080 (2)0.079 (2)0.0084 (15)0.0143 (15)0.0148 (17)
C50.0556 (16)0.0565 (16)0.0675 (19)0.0021 (13)0.0100 (14)0.0074 (13)
C60.0399 (14)0.0614 (16)0.0418 (15)0.0022 (12)0.0052 (11)0.0058 (12)
C70.0438 (15)0.0738 (19)0.0522 (17)0.0099 (13)0.0087 (12)0.0064 (14)
C80.0404 (14)0.090 (2)0.0657 (19)0.0016 (14)0.0076 (13)0.0205 (16)
C90.0480 (15)0.0640 (18)0.0665 (19)0.0068 (13)0.0027 (13)0.0078 (14)
C100.0529 (18)0.131 (3)0.086 (2)0.0169 (18)0.0190 (16)0.014 (2)
C110.0698 (19)0.084 (2)0.075 (2)0.0150 (15)0.0010 (16)0.0181 (17)
C120.069 (2)0.074 (2)0.145 (3)0.0189 (17)0.001 (2)0.008 (2)
O10.120 (2)0.0592 (14)0.0643 (16)0.0014 (13)0.0126 (14)0.0038 (13)
Geometric parameters (Å, º) top
N1—C141.404 (3)N3—C71.482 (3)
N1—C211.455 (3)N3—H3N0.874 (16)
N1—H1N0.835 (16)N4—C11.410 (3)
N2—C131.406 (3)N4—C91.475 (3)
N2—C191.477 (3)N4—H4N0.856 (17)
N2—H2N0.852 (16)C1—C21.380 (3)
C13—C181.382 (3)C1—C61.400 (3)
C13—C141.391 (3)C2—C31.368 (4)
C14—C151.386 (3)C2—H20.9300
C15—C161.376 (4)C3—C41.369 (4)
C15—H150.9300C3—H30.9300
C16—C171.372 (4)C4—C51.373 (4)
C16—H160.9300C4—H40.9300
C17—C181.377 (4)C5—C61.386 (3)
C17—H170.9300C5—H50.9300
C18—H180.9300C7—C101.520 (4)
C19—C201.518 (4)C7—C111.520 (4)
C19—C231.521 (4)C7—C81.522 (4)
C19—C241.532 (4)C8—C91.510 (4)
C20—C211.510 (4)C8—H8A0.9700
C20—H20A0.9700C8—H8B0.9700
C20—H20B0.9700C9—C121.519 (4)
C21—C221.525 (4)C9—H90.9800
C21—H210.9800C10—H10A0.9600
C22—H22A0.9600C10—H10B0.9600
C22—H22B0.9600C10—H10C0.9600
C22—H22C0.9600C11—H11A0.9600
C23—H23A0.9600C11—H11B0.9600
C23—H23B0.9600C11—H11C0.9600
C23—H23C0.9600C12—H12A0.9600
C24—H24A0.9600C12—H12B0.9600
C24—H24B0.9600C12—H12C0.9600
C24—H24C0.9600O1—H1W0.84 (4)
N3—C61.415 (3)O1—H2W0.86 (4)
C14—N1—C21121.0 (2)C6—N3—H3N110.3 (17)
C14—N1—H1N107.4 (18)C7—N3—H3N104.9 (17)
C21—N1—H1N113.0 (18)C1—N4—C9118.6 (2)
C13—N2—C19121.0 (2)C1—N4—H4N109.9 (18)
C13—N2—H2N109.9 (16)C9—N4—H4N106.1 (19)
C19—N2—H2N108.4 (15)C2—C1—C6118.4 (2)
C18—C13—C14118.9 (2)C2—C1—N4120.0 (2)
C18—C13—N2119.7 (2)C6—C1—N4121.5 (2)
C14—C13—N2121.2 (2)C3—C2—C1122.2 (3)
C15—C14—C13118.4 (2)C3—C2—H2118.9
C15—C14—N1119.9 (2)C1—C2—H2118.9
C13—C14—N1121.4 (2)C2—C3—C4119.8 (3)
C16—C15—C14121.9 (3)C2—C3—H3120.1
C16—C15—H15119.0C4—C3—H3120.1
C14—C15—H15119.0C3—C4—C5119.0 (3)
C17—C16—C15119.6 (3)C3—C4—H4120.5
C17—C16—H16120.2C5—C4—H4120.5
C15—C16—H16120.2C4—C5—C6122.2 (3)
C16—C17—C18118.9 (3)C4—C5—H5118.9
C16—C17—H17120.5C6—C5—H5118.9
C18—C17—H17120.5C5—C6—C1118.3 (2)
C17—C18—C13122.1 (2)C5—C6—N3119.4 (2)
C17—C18—H18118.9C1—C6—N3122.1 (2)
C13—C18—H18118.9N3—C7—C10106.1 (2)
N2—C19—C20109.9 (2)N3—C7—C11110.6 (2)
N2—C19—C23106.7 (2)C10—C7—C11109.6 (2)
C20—C19—C23108.2 (2)N3—C7—C8109.8 (2)
N2—C19—C24110.8 (2)C10—C7—C8108.9 (2)
C20—C19—C24110.5 (2)C11—C7—C8111.7 (2)
C23—C19—C24110.7 (2)C9—C8—C7118.4 (2)
C21—C20—C19117.9 (2)C9—C8—H8A107.7
C21—C20—H20A107.8C7—C8—H8A107.7
C19—C20—H20A107.8C9—C8—H8B107.7
C21—C20—H20B107.8C7—C8—H8B107.7
C19—C20—H20B107.8H8A—C8—H8B107.1
H20A—C20—H20B107.2N4—C9—C8110.3 (2)
N1—C21—C20111.7 (2)N4—C9—C12108.0 (2)
N1—C21—C22108.2 (2)C8—C9—C12111.5 (2)
C20—C21—C22109.9 (2)N4—C9—H9109.0
N1—C21—H21109.0C8—C9—H9109.0
C20—C21—H21109.0C12—C9—H9109.0
C22—C21—H21109.0C7—C10—H10A109.5
C21—C22—H22A109.5C7—C10—H10B109.5
C21—C22—H22B109.5H10A—C10—H10B109.5
H22A—C22—H22B109.5C7—C10—H10C109.5
C21—C22—H22C109.5H10A—C10—H10C109.5
H22A—C22—H22C109.5H10B—C10—H10C109.5
H22B—C22—H22C109.5C7—C11—H11A109.5
C19—C23—H23A109.5C7—C11—H11B109.5
C19—C23—H23B109.5H11A—C11—H11B109.5
H23A—C23—H23B109.5C7—C11—H11C109.5
C19—C23—H23C109.5H11A—C11—H11C109.5
H23A—C23—H23C109.5H11B—C11—H11C109.5
H23B—C23—H23C109.5C9—C12—H12A109.5
C19—C24—H24A109.5C9—C12—H12B109.5
C19—C24—H24B109.5H12A—C12—H12B109.5
H24A—C24—H24B109.5C9—C12—H12C109.5
C19—C24—H24C109.5H12A—C12—H12C109.5
H24A—C24—H24C109.5H12B—C12—H12C109.5
H24B—C24—H24C109.5H1W—O1—H2W104 (3)
C6—N3—C7120.1 (2)
C19—N2—C13—C18125.4 (2)C9—N4—C1—C2123.2 (3)
C19—N2—C13—C1460.9 (3)C9—N4—C1—C659.8 (3)
C18—C13—C14—C151.1 (3)C6—C1—C2—C30.5 (4)
N2—C13—C14—C15174.8 (2)N4—C1—C2—C3176.6 (2)
C18—C13—C14—N1172.8 (2)C1—C2—C3—C41.3 (4)
N2—C13—C14—N11.0 (3)C2—C3—C4—C50.8 (4)
C21—N1—C14—C15125.1 (3)C3—C4—C5—C60.4 (4)
C21—N1—C14—C1361.1 (3)C4—C5—C6—C11.2 (4)
C13—C14—C15—C163.1 (4)C4—C5—C6—N3173.7 (2)
N1—C14—C15—C16170.8 (2)C2—C1—C6—C50.7 (3)
C14—C15—C16—C172.4 (4)N4—C1—C6—C5177.8 (2)
C15—C16—C17—C180.3 (4)C2—C1—C6—N3174.1 (2)
C16—C17—C18—C132.3 (4)N4—C1—C6—N33.0 (4)
C14—C13—C18—C171.6 (4)C7—N3—C6—C5122.3 (3)
N2—C13—C18—C17172.2 (2)C7—N3—C6—C163.0 (3)
C13—N2—C19—C2076.8 (3)C6—N3—C7—C10168.2 (2)
C13—N2—C19—C23166.1 (2)C6—N3—C7—C1149.4 (3)
C13—N2—C19—C2445.6 (3)C6—N3—C7—C874.3 (3)
N2—C19—C20—C2163.4 (3)N3—C7—C8—C963.8 (3)
C23—C19—C20—C21179.5 (2)C10—C7—C8—C9179.5 (2)
C24—C19—C20—C2159.2 (3)C11—C7—C8—C959.3 (3)
C14—N1—C21—C2075.5 (3)C1—N4—C9—C878.6 (3)
C14—N1—C21—C22163.4 (2)C1—N4—C9—C12159.3 (3)
C19—C20—C21—N163.1 (3)C7—C8—C9—N467.3 (3)
C19—C20—C21—C22176.8 (2)C7—C8—C9—C12172.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.33 (2)3.122 (3)159 (2)
O1—H1W···N4ii0.84 (4)2.14 (4)2.976 (4)175 (3)
O1—H2W···N20.86 (4)2.09 (4)2.930 (3)167 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.835 (16)2.328 (18)3.122 (3)159 (2)
O1—H1W···N4ii0.84 (4)2.14 (4)2.976 (4)175 (3)
O1—H2W···N20.86 (4)2.09 (4)2.930 (3)167 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for providing the X-ray data collection facility. SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Baun, J. R., Pallos, F. M. & Baker, D. R. (1976). U. S. Patent 3, 978, 227, Chem. Abstr. (1977), 86, 5498d.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarris, R. C. & Straley, J. M. (1968). U. S. Patent 1, 537, 757, Chem. Abstr. (1970), 73, 100054w.  Google Scholar
First citationLamkaddem, A., Harcharras, M., Shaim, A., Zouihri, H., Echchahed, B. & Bi, W. (2015). Acta Cryst. E71, o83.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPonnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathy, V. (2006). Indian J. Chem. 45B, 2059–2070.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruselvam, V., Rajakumari, D. D., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o874.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds