research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-dihy­dr­oxy-2-(hy­dr­oxy­meth­yl)propan-2-aminium 2-(4-iso­butyl­phen­yl)propano­ate: a simple organic salt of racemic ibuprofen

aDepartment of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
*Correspondence e-mail: lby@mju.edu.cn

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 27 June 2015; accepted 6 July 2015; online 11 July 2015)

In the title organic salt of ibuprofen with trometamol, C4H12NO3+·C13H17O2, the carb­oxy­lic acid group of ibuprofen has transferred its proton to the amino N atom of trometamol. In the crystal, the trometamol cations are linked via N—H⋯O hydrogen bonds, forming chains along [001]. To these chains are attached the ibuprofen anions via O—H⋯O and N—H⋯O hydrogen bonds. The chains are linked via further N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to (100). Two C atoms of the propano­ate substituent in the ibuprofen anion are disordered over two sets of sites and were refined with a fixed occupancy ratio of 0.7:0.3.

1. Chemical context

Salt formation is an effective approach for modifying the properties of active pharmaceutical ingredients (APIs) (Childs et al., 2007[Childs, L. S., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]). Tris(hy­droxy­meth­yl)amino methane, commonly called trometamol, has been successfully exploited for improving the properties of APIs such as ketoprofen (Zippel & Wagenitz, 2006[Zippel, H. & Wagenitz, A. (2006). Clin. Drug. Investig. 26, 517-528.]). In this study, trometamol was employed to crystallize with ibuprofen, giving rise to a new crystalline form, whose crystal structure is reported on herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title mol­ecular salt is shown in Fig. 1[link]. From difference Fourier maps, it was shown that the carb­oxy­lic group of ibuprofen has transferred its proton to the amino N atom of trometamol. This is supported by the C—O bond distances of the carboxyl­ate group of the ibuprofen anion, which are 1.252 (2) and 1.251 (2) Å for C1—O1 and C1—O2, respectively. The carboxyl­ate anion inter­acts with one hydroxyl group of the trometamol cation through a strong hydrogen bond [O5⋯O2 = 2.730 (2) Å; Table 1[link]]. There also exist hydrogen-bonding inter­actions between the carboxyl­ate anion and aminium H atoms of the cation [N1⋯O1 = 2.763 (2) Å; Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.90 (3) 1.84 (3) 2.725 (2) 167 (2)
O4—H4⋯O1ii 0.79 (2) 1.92 (3) 2.689 (2) 163.7 (18)
O5—H5A⋯O1 0.86 (2) 2.57 (2) 3.0825 (19) 119.5 (17)
O5—H5A⋯O2 0.86 (2) 1.88 (2) 2.730 (2) 168.1 (18)
N1—H1A⋯O1 0.94 (2) 1.85 (2) 2.763 (2) 162.9 (18)
N1—H1B⋯O4iii 0.94 (2) 2.09 (2) 2.9224 (19) 146.7 (16)
N1—H1C⋯O5iv 0.91 (2) 1.97 (2) 2.806 (2) 152.1 (18)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+2; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details). The minor components of the disordered atoms (viz. C2 and C3) have been omitted for clarity in all three figures.

3. Supra­molecular features

In the crystal, the trometamol cations are linked via N—H⋯O hydrogen bonds, forming chains along [010]; Table 1[link] and Fig. 2[link]. To these chains are attached the ibuprofen anions via N—H⋯O and O—H⋯O hydrogen bonds. The chains are linked via further O—H⋯O and N—H⋯O hydrogen bonds, forming sheets parallel to (100); Table 1[link] and Fig. 3[link].

[Figure 2]
Figure 2
Part of the crystal structure of the title salt, viewed along the c axis, showing the hydrogen bonds (dashed lines) forming chains along [001]; see Table 1[link] for details.
[Figure 3]
Figure 3
Part of the crystal structure of the title salt, viewed along the b axis, showing the sheets parallel to (100) formed by hydrogen bonding (dashed lines; see Table 1[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed only one hit for organic salts of racemic ibuprofen, viz. benzyl­ammonium 2-(4-iso­butyl­phen­yl)propionate 2-(4-iso­butyl­phen­yl)propionic acid (refcode VUCHUX; Molnár et al., 2009[Molnár, P., Bombicz, P., Varga, C., Bereczki, L., Székely, E., Pokol, G., Fogassy, E. & Simándi, B. (2009). Chirality, 21, 628-636.]). In fact, it is a salt co-crystal based on ibuprofen and the organic salt (Sun, 2013[Sun, C. C. (2013). Expert Opin. Drug Deliv. 10, 201-213.]). The title compound is the first crystal structure of a simple organic salt of racemic ibuprofen.

5. Synthesis and crystallization

Ibuprofen (206 mg, 1 mmol) and trometamol (121 mg, 1 mmol) were dissolved in methanol (15 mL). The resulting solution was kept in air and after several days colorless plate-like crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl and and aminium H atoms were located in difference Fourier maps and freely refined. Two C atoms, C3 and C2, of the propano­ate substit­uent in the ibuprofen anion are disordered over two sets of sites (C3/C3′and C2/C2′) and were refined with a fixed occupancy ratio of 0.7:0.3. H atoms H2 and H2′ were refined with distance restraints C—H = 0.98 (2) Å with Uiso(H) = 1.2Ueq(C). The remainder of the C-bound H atoms were positioned geometrically and refined as riding atoms: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C4H12NO3+·C13H17O2
Mr 327.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 17.523 (7), 10.400 (4), 9.976 (4)
β (°) 97.032 (7)
V3) 1804.3 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.29 × 0.22 × 0.04
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.914, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13747, 4096, 3391
Rint 0.028
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.148, 1.11
No. of reflections 4096
No. of parameters 260
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.23
Computer programs: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

1,3-Dihydroxy-2-(hydroxymethyl)propan-2-aminium 2-(4-isobutylphenyl)propanoate top
Crystal data top
C4H12NO3+·C13H17O2F(000) = 712
Mr = 327.41Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.523 (7) ÅCell parameters from 4551 reflections
b = 10.400 (4) Åθ = 2.8–27.5°
c = 9.976 (4) ŵ = 0.09 mm1
β = 97.032 (7)°T = 173 K
V = 1804.3 (12) Å3Plate, colorless
Z = 40.29 × 0.22 × 0.04 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4096 independent reflections
Radiation source: fine-focus sealed tube3391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.3°
CCD_Profile_fitting scansh = 2222
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1313
Tmin = 0.914, Tmax = 1.000l = 1212
13747 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4122P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
4096 reflectionsΔρmax = 0.22 e Å3
260 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.11773 (7)0.77640 (11)0.78429 (13)0.0439 (3)
O20.13430 (7)0.58002 (12)0.71039 (15)0.0544 (4)
C10.15768 (10)0.67741 (15)0.7767 (2)0.0422 (4)
C20.23375 (17)0.6782 (3)0.8754 (4)0.0408 (6)0.7
H20.2182 (17)0.670 (3)0.966 (2)0.049*0.7
C30.28440 (19)0.5630 (3)0.8537 (4)0.0610 (9)0.7
H3A0.29920.56600.76220.091*0.7
H3B0.25590.48350.86520.091*0.7
H3C0.33070.56540.91970.091*0.7
C2'0.2464 (4)0.6735 (7)0.8061 (9)0.0417 (16)0.3
H2'0.271 (3)0.616 (2)0.746 (6)0.050*0.3
C3'0.2585 (5)0.5894 (9)0.9312 (11)0.070 (2)0.3
H3'10.31150.59890.97440.105*0.3
H3'20.24900.49930.90550.105*0.3
H3'30.22280.61560.99450.105*0.3
C40.27435 (10)0.80792 (18)0.8575 (2)0.0542 (5)
C50.26039 (11)0.9010 (2)0.9485 (2)0.0540 (5)
H50.22810.88171.01570.065*
C60.29208 (11)1.0220 (2)0.9450 (2)0.0548 (5)
H60.28251.08301.01180.066*
C70.32041 (12)0.8410 (2)0.7599 (3)0.0667 (6)
H70.33150.77850.69550.080*
C80.35065 (13)0.9638 (2)0.7543 (3)0.0682 (6)
H80.38130.98430.68500.082*
C90.33732 (11)1.05711 (19)0.8470 (2)0.0549 (5)
C100.37079 (14)1.1906 (2)0.8433 (3)0.0768 (7)
H10A0.33441.25220.87680.092*
H10B0.37551.21310.74820.092*
C110.44861 (14)1.2067 (2)0.9256 (3)0.0768 (7)
H110.44381.17541.01900.092*
C120.4706 (2)1.3480 (3)0.9369 (4)0.1136 (12)
H12A0.47101.38420.84630.170*
H12B0.52191.35650.98780.170*
H12C0.43311.39450.98390.170*
C130.51137 (16)1.1303 (3)0.8743 (4)0.0991 (10)
H13A0.51861.16000.78340.149*
H13B0.49731.03910.87080.149*
H13C0.55931.14190.93480.149*
O30.15157 (8)0.82574 (12)0.84440 (14)0.0511 (4)
H30.1538 (14)0.910 (2)0.825 (2)0.081 (8)*
O40.08544 (7)0.44727 (12)0.91701 (13)0.0419 (3)
H40.0903 (12)0.387 (2)0.868 (2)0.066 (7)*
O50.00842 (7)0.64538 (11)0.58848 (12)0.0397 (3)
H5A0.0387 (12)0.6268 (18)0.616 (2)0.059 (6)*
N10.01557 (8)0.68283 (13)0.87045 (14)0.0313 (3)
H1A0.0234 (12)0.7199 (19)0.826 (2)0.049 (5)*
H1B0.0080 (11)0.6126 (19)0.9193 (19)0.044 (5)*
H1C0.0290 (11)0.745 (2)0.927 (2)0.046 (5)*
C140.13080 (10)0.75903 (15)0.73082 (18)0.0411 (4)
H14A0.09970.81570.67900.049*
H14B0.17760.73350.67100.049*
C150.13077 (9)0.55121 (15)0.85901 (17)0.0367 (4)
H15A0.15070.60120.93170.044*
H15B0.17530.51680.79910.044*
C160.05760 (10)0.56874 (15)0.65824 (17)0.0370 (4)
H16A0.03000.48950.69100.044*
H16B0.10300.54300.59500.044*
C170.08440 (9)0.63973 (14)0.77797 (16)0.0310 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0357 (6)0.0295 (6)0.0647 (8)0.0003 (5)0.0012 (6)0.0038 (6)
O20.0452 (7)0.0361 (7)0.0795 (10)0.0024 (5)0.0018 (7)0.0067 (6)
C10.0332 (8)0.0296 (8)0.0625 (12)0.0022 (6)0.0010 (8)0.0099 (8)
C20.0370 (15)0.0368 (14)0.047 (2)0.0024 (11)0.0000 (14)0.0053 (15)
C30.0481 (18)0.0458 (16)0.084 (3)0.0132 (13)0.0108 (17)0.0029 (18)
C2'0.038 (3)0.042 (3)0.046 (4)0.001 (2)0.007 (3)0.006 (3)
C3'0.054 (5)0.063 (5)0.087 (7)0.001 (4)0.009 (4)0.022 (5)
C40.0293 (8)0.0450 (10)0.0838 (15)0.0027 (7)0.0115 (9)0.0023 (10)
C50.0395 (10)0.0578 (12)0.0636 (13)0.0034 (8)0.0025 (9)0.0059 (10)
C60.0416 (10)0.0551 (11)0.0667 (14)0.0019 (9)0.0028 (9)0.0108 (10)
C70.0480 (12)0.0656 (13)0.0859 (17)0.0039 (10)0.0058 (11)0.0294 (12)
C80.0493 (12)0.0800 (16)0.0777 (16)0.0129 (11)0.0180 (11)0.0067 (13)
C90.0368 (9)0.0496 (11)0.0763 (15)0.0067 (8)0.0007 (9)0.0016 (10)
C100.0570 (13)0.0523 (13)0.119 (2)0.0110 (10)0.0007 (13)0.0100 (13)
C110.0639 (15)0.0552 (13)0.112 (2)0.0196 (11)0.0132 (14)0.0071 (13)
C120.097 (2)0.0659 (17)0.177 (4)0.0342 (16)0.015 (2)0.016 (2)
C130.0588 (16)0.094 (2)0.143 (3)0.0092 (14)0.0058 (17)0.006 (2)
O30.0624 (9)0.0323 (6)0.0598 (9)0.0120 (6)0.0124 (7)0.0012 (6)
O40.0542 (8)0.0286 (6)0.0411 (7)0.0050 (5)0.0013 (6)0.0064 (5)
O50.0401 (7)0.0417 (6)0.0372 (7)0.0026 (5)0.0048 (5)0.0080 (5)
N10.0359 (7)0.0243 (6)0.0330 (8)0.0003 (5)0.0014 (6)0.0004 (6)
C140.0453 (10)0.0324 (8)0.0439 (10)0.0046 (7)0.0021 (8)0.0023 (7)
C150.0387 (8)0.0306 (8)0.0406 (10)0.0046 (6)0.0043 (7)0.0025 (7)
C160.0453 (9)0.0310 (8)0.0344 (9)0.0065 (7)0.0041 (7)0.0010 (7)
C170.0331 (8)0.0258 (7)0.0331 (8)0.0017 (6)0.0006 (6)0.0005 (6)
Geometric parameters (Å, º) top
O1—C11.252 (2)C10—H10B0.9900
O2—C11.251 (2)C11—C131.497 (4)
C1—C2'1.547 (7)C11—C121.520 (3)
C1—C21.558 (4)C11—H111.0000
C2—C31.522 (4)C12—H12A0.9800
C2—C41.546 (4)C12—H12B0.9800
C2—H20.983 (17)C12—H12C0.9800
C3—H3A0.9800C13—H13A0.9800
C3—H3B0.9800C13—H13B0.9800
C3—H3C0.9800C13—H13C0.9800
C2'—C3'1.518 (11)O3—C141.414 (2)
C2'—C41.548 (8)O3—H30.90 (3)
C2'—H2'0.98 (2)O4—C151.422 (2)
C3'—H3'10.9800O4—H40.79 (2)
C3'—H3'20.9800O5—C161.4174 (19)
C3'—H3'30.9800O5—H5A0.86 (2)
C4—C51.369 (3)N1—C171.495 (2)
C4—C71.383 (3)N1—H1A0.94 (2)
C5—C61.377 (3)N1—H1B0.94 (2)
C5—H50.9500N1—H1C0.91 (2)
C6—C91.381 (3)C14—C171.526 (2)
C6—H60.9500C14—H14A0.9900
C7—C81.387 (3)C14—H14B0.9900
C7—H70.9500C15—C171.524 (2)
C8—C91.380 (3)C15—H15A0.9900
C8—H80.9500C15—H15B0.9900
C9—C101.509 (3)C16—C171.526 (2)
C10—C111.513 (4)C16—H16A0.9900
C10—H10A0.9900C16—H16B0.9900
O2—C1—O1123.26 (16)C11—C10—H10B108.6
O2—C1—C2'109.6 (3)H10A—C10—H10B107.6
O1—C1—C2'124.5 (3)C13—C11—C10114.0 (2)
O2—C1—C2122.54 (17)C13—C11—C12110.4 (2)
O1—C1—C2113.51 (18)C10—C11—C12110.5 (2)
C3—C2—C4112.7 (3)C13—C11—H11107.2
C3—C2—C1112.0 (3)C10—C11—H11107.2
C4—C2—C1107.6 (2)C12—C11—H11107.2
C3—C2—H2107.2 (18)C11—C12—H12A109.5
C4—C2—H2111.5 (17)C11—C12—H12B109.5
C1—C2—H2105.7 (18)H12A—C12—H12B109.5
C2—C3—H3A109.5C11—C12—H12C109.5
C2—C3—H3B109.5H12A—C12—H12C109.5
H3A—C3—H3B109.5H12B—C12—H12C109.5
C2—C3—H3C109.5C11—C13—H13A109.5
H3A—C3—H3C109.5C11—C13—H13B109.5
H3B—C3—H3C109.5H13A—C13—H13B109.5
C3'—C2'—C1101.9 (6)C11—C13—H13C109.5
C3'—C2'—C4103.9 (7)H13A—C13—H13C109.5
C1—C2'—C4108.0 (4)H13B—C13—H13C109.5
C3'—C2'—H2'97 (3)C14—O3—H3108.7 (12)
C1—C2'—H2'114 (4)C15—O4—H4109.7 (13)
C4—C2'—H2'127.3 (18)C16—O5—H5A109.7 (11)
C2'—C3'—H3'1109.5C17—N1—H1A114.1 (12)
C2'—C3'—H3'2109.5C17—N1—H1B110.8 (12)
H3'1—C3'—H3'2109.5H1A—N1—H1B105.3 (16)
C2'—C3'—H3'3109.5C17—N1—H1C110.3 (13)
H3'1—C3'—H3'3109.5H1A—N1—H1C104.9 (17)
H3'2—C3'—H3'3109.5H1B—N1—H1C111.3 (17)
C5—C4—C7117.28 (18)O3—C14—C17109.37 (14)
C5—C4—C2114.7 (2)O3—C14—H14A109.8
C7—C4—C2128.0 (2)C17—C14—H14A109.8
C5—C4—C2'141.6 (3)O3—C14—H14B109.8
C7—C4—C2'100.3 (3)C17—C14—H14B109.8
C4—C5—C6121.6 (2)H14A—C14—H14B108.2
C4—C5—H5119.2O4—C15—C17111.56 (13)
C6—C5—H5119.2O4—C15—H15A109.3
C5—C6—C9121.9 (2)C17—C15—H15A109.3
C5—C6—H6119.1O4—C15—H15B109.3
C9—C6—H6119.1C17—C15—H15B109.3
C4—C7—C8121.1 (2)H15A—C15—H15B108.0
C4—C7—H7119.5O5—C16—C17112.09 (12)
C8—C7—H7119.5O5—C16—H16A109.2
C9—C8—C7121.6 (2)C17—C16—H16A109.2
C9—C8—H8119.2O5—C16—H16B109.2
C7—C8—H8119.2C17—C16—H16B109.2
C8—C9—C6116.57 (19)H16A—C16—H16B107.9
C8—C9—C10122.1 (2)N1—C17—C15107.22 (13)
C6—C9—C10121.3 (2)N1—C17—C14107.80 (12)
C9—C10—C11114.6 (2)C15—C17—C14110.87 (13)
C9—C10—H10A108.6N1—C17—C16109.01 (13)
C11—C10—H10A108.6C15—C17—C16110.98 (12)
C9—C10—H10B108.6C14—C17—C16110.83 (14)
O2—C1—C2—C314.9 (4)C2—C4—C7—C8177.6 (2)
O1—C1—C2—C3174.3 (3)C2'—C4—C7—C8171.4 (3)
O2—C1—C2—C4139.3 (2)C4—C7—C8—C91.2 (4)
O1—C1—C2—C450.0 (3)C7—C8—C9—C60.3 (3)
O2—C1—C2'—C3'83.9 (6)C7—C8—C9—C10179.1 (2)
O1—C1—C2'—C3'114.1 (6)C5—C6—C9—C81.4 (3)
O2—C1—C2'—C4167.0 (4)C5—C6—C9—C10179.2 (2)
O1—C1—C2'—C45.0 (7)C8—C9—C10—C1190.4 (3)
C3—C2—C4—C5140.2 (3)C6—C9—C10—C1189.0 (3)
C1—C2—C4—C595.8 (3)C9—C10—C11—C1365.5 (3)
C3—C2—C4—C741.7 (4)C9—C10—C11—C12169.5 (3)
C1—C2—C4—C782.2 (3)O4—C15—C17—N155.72 (17)
C3'—C2'—C4—C559.3 (7)O4—C15—C17—C14173.15 (14)
C1—C2'—C4—C548.5 (8)O4—C15—C17—C1663.24 (18)
C3'—C2'—C4—C7132.5 (5)O3—C14—C17—N158.01 (17)
C1—C2'—C4—C7119.7 (4)O3—C14—C17—C1559.06 (18)
C7—C4—C5—C61.3 (3)O3—C14—C17—C16177.23 (13)
C2—C4—C5—C6179.6 (2)O5—C16—C17—N156.68 (17)
C2'—C4—C5—C6168.2 (5)O5—C16—C17—C15174.56 (13)
C4—C5—C6—C92.3 (3)O5—C16—C17—C1461.80 (18)
C5—C4—C7—C80.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.90 (3)1.84 (3)2.725 (2)167 (2)
O4—H4···O1ii0.79 (2)1.92 (3)2.689 (2)163.7 (18)
O5—H5A···O10.86 (2)2.57 (2)3.0825 (19)119.5 (17)
O5—H5A···O20.86 (2)1.88 (2)2.730 (2)168.1 (18)
N1—H1A···O10.94 (2)1.85 (2)2.763 (2)162.9 (18)
N1—H1B···O4iii0.94 (2)2.09 (2)2.9224 (19)146.7 (16)
N1—H1C···O5iv0.91 (2)1.97 (2)2.806 (2)152.1 (18)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2; (iii) x, y+1, z+2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

The author is grateful for grants from the Research Project for Young and Middle-aged Faculty of Fujian Province (JA14250) and the Natural Science Foundation of Fujian Province (2015 J01599).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationChilds, L. S., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolnár, P., Bombicz, P., Varga, C., Bereczki, L., Székely, E., Pokol, G., Fogassy, E. & Simándi, B. (2009). Chirality, 21, 628–636.  Web of Science PubMed Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, C. C. (2013). Expert Opin. Drug Deliv. 10, 201–213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZippel, H. & Wagenitz, A. (2006). Clin. Drug. Investig. 26, 517–528.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds