organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the enol form of mesotrione: a benzoyl­cyclo­hexa­nedione herbicide

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 30 June 2015; accepted 2 July 2015; online 8 July 2015)

The title compound [systematic name: 3-hy­droxy-2-(4-methyl­sulfonyl-2-nitro­benzo­yl)cyclo­hex-2-enone], C14H13NO7S, is the enol form of a benzoyl­cyclo­hexa­nedione herbicide. As a result of this tautomerization, there is intra­molecular O—H⋯O hydrogen bond enclosing an S(6) ring motif. The cyclo­hexene ring has an envelope conformation, with the central CH2 C atom as the flap. Its mean plane is inclined to the benzene ring by 87.46 (8)°. In the crystal, mol­ecules are linked by a series of C—H⋯O hydrogen bonds, forming a three-dimensional framework.

1. Related literature

For information on the herbicidal properties of the title compound, see: Mitchell et al. (2001[Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K. & Wichert, R. A. (2001). Pest. Manag. Sci. 57, 120-128.]). For related crystal structures, see: Eftekhari-Sis et al. (2012[Eftekhari-Sis, B., Mohajer, S. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2829.]); Liu & Tang (2012[Liu, W. & Tang, L. (2012). Acta Cryst. E68, o2850.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H13NO7S

  • Mr = 339.31

  • Monoclinic, P 21 /c

  • a = 10.4208 (2) Å

  • b = 11.2525 (3) Å

  • c = 12.3550 (3) Å

  • β = 95.370 (1)°

  • V = 1442.39 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.43 × 0.30 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.949

  • 12093 measured reflections

  • 2828 independent reflections

  • 2572 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.04

  • 2828 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O5 0.91 (3) 1.71 (3) 2.524 (2) 148 (2)
C1—H1B⋯O4i 0.98 2.58 3.393 (2) 140
C1—H1B⋯O7ii 0.98 2.58 3.265 (2) 127
C11—H11A⋯O3iii 0.99 2.40 3.135 (2) 131
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Mesotrione, [keto form systematic name: 2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione], is a benzoylcyclohexanedione herbicide and it has been developed for the selective pre- and post-emergence control of a wide range of broad-leaved and grass weeds in maize (Mitchell et al., 2001). However, until now its crystal structure has not been reported.

The title compound crystallized in the enol form (Fig. 1 and Table 1), with an intramolecular O6—H6O···O5 hydrogen bond embedded in an S(6) ring. The cyclohexene ring has an envelope conformation with the central CH2 C-atom, C12, as the flap. Its mean plane is inclined to the benzene ring by 87.46 (8) °.

All bond lengths and bond angles are normal and comparable to those observed in the crystal structures of similar compounds (Eftekhari-Sis et al., 2012; Liu et al., 2012).

In the crystal, molecules are linked by a series of C—H···O hydrogen bonds forming a three-dimensional framework (Fig. 2 and Table 1).

Related literature top

For information on the herbicidal properties of the title compound, see: Mitchell et al. (2001). For related crystal structures, see: Eftekhari-Sis et al. (2012); Liu & Tang (2012).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH3CN gave single crystals suitable for X-ray analysis.

Refinement top

The O-bound H atom was located in a difference Fourier map and freely refined [O—H = 0.91 (3) Å]. The C-bound H atoms were positioned geometrically and refined using a riding model: C-H = 0.95 - 0.99 \%A with Uiso(H) = 1.5Ueq(C) for methyl H atoms and

1.2Ueq(C) for other H atoms.

Structure description top

Mesotrione, [keto form systematic name: 2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione], is a benzoylcyclohexanedione herbicide and it has been developed for the selective pre- and post-emergence control of a wide range of broad-leaved and grass weeds in maize (Mitchell et al., 2001). However, until now its crystal structure has not been reported.

The title compound crystallized in the enol form (Fig. 1 and Table 1), with an intramolecular O6—H6O···O5 hydrogen bond embedded in an S(6) ring. The cyclohexene ring has an envelope conformation with the central CH2 C-atom, C12, as the flap. Its mean plane is inclined to the benzene ring by 87.46 (8) °.

All bond lengths and bond angles are normal and comparable to those observed in the crystal structures of similar compounds (Eftekhari-Sis et al., 2012; Liu et al., 2012).

In the crystal, molecules are linked by a series of C—H···O hydrogen bonds forming a three-dimensional framework (Fig. 2 and Table 1).

For information on the herbicidal properties of the title compound, see: Mitchell et al. (2001). For related crystal structures, see: Eftekhari-Sis et al. (2012); Liu & Tang (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O—H···O hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. The intermolecular C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
3-Hydroxy-2-(4-methylsulfonyl-2-nitrobenzoyl)cyclohex-2-enone top
Crystal data top
C14H13NO7SF(000) = 704
Mr = 339.31Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4208 (2) ÅCell parameters from 7168 reflections
b = 11.2525 (3) Åθ = 2.5–27.5°
c = 12.3550 (3) ŵ = 0.26 mm1
β = 95.370 (1)°T = 173 K
V = 1442.39 (6) Å3Block, colourless
Z = 40.43 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
2572 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.895, Tmax = 0.949h = 1212
12093 measured reflectionsk = 1313
2828 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.7458P]
where P = (Fo2 + 2Fc2)/3
2828 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H13NO7SV = 1442.39 (6) Å3
Mr = 339.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4208 (2) ŵ = 0.26 mm1
b = 11.2525 (3) ÅT = 173 K
c = 12.3550 (3) Å0.43 × 0.30 × 0.20 mm
β = 95.370 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2828 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2572 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.949Rint = 0.025
12093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
2828 reflectionsΔρmin = 0.40 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31056 (3)0.24106 (4)1.11672 (3)0.02141 (13)
O10.24559 (11)0.12877 (11)1.11593 (11)0.0333 (3)
O20.24978 (11)0.33729 (12)1.05544 (10)0.0341 (3)
O30.78663 (13)0.37212 (12)0.87472 (13)0.0461 (4)
O40.59220 (13)0.44028 (12)0.84539 (11)0.0406 (3)
O50.92622 (11)0.18323 (14)1.03272 (11)0.0420 (4)
O61.08825 (11)0.11994 (14)0.90444 (11)0.0387 (3)
H6O1.057 (3)0.151 (2)0.965 (2)0.062 (8)*
O70.64741 (11)0.12478 (13)0.77772 (11)0.0367 (3)
N10.67227 (14)0.37175 (13)0.88940 (12)0.0280 (3)
C10.34825 (16)0.28528 (17)1.25212 (13)0.0279 (4)
H1A0.26850.29951.28630.042*
H1B0.39930.35851.25400.042*
H1C0.39810.22251.29180.042*
C20.46359 (14)0.21719 (14)1.06875 (12)0.0195 (3)
C30.51015 (14)0.30302 (14)1.00287 (12)0.0206 (3)
H30.46240.37330.98470.025*
C40.62836 (15)0.28346 (14)0.96419 (12)0.0213 (3)
C50.70348 (14)0.18398 (15)0.99181 (13)0.0224 (3)
C60.65419 (15)0.09958 (15)1.05868 (13)0.0247 (3)
H60.70350.03091.07920.030*
C70.53315 (15)0.11459 (14)1.09596 (13)0.0234 (3)
H70.49860.05521.13960.028*
C80.83866 (15)0.16470 (15)0.95976 (14)0.0258 (4)
C90.86333 (14)0.11938 (14)0.85403 (13)0.0221 (3)
C100.98924 (15)0.09727 (16)0.83365 (14)0.0268 (4)
C111.02509 (16)0.0464 (2)0.72964 (16)0.0378 (5)
H11A1.10480.00120.74370.045*
H11B1.04280.11170.67950.045*
C120.91933 (17)0.03099 (19)0.67708 (16)0.0368 (4)
H12A0.90990.10270.72200.044*
H12B0.94160.05690.60460.044*
C130.79406 (16)0.03715 (17)0.66546 (14)0.0312 (4)
H13A0.72390.01800.63930.037*
H13B0.79950.09920.60930.037*
C140.75890 (15)0.09568 (15)0.76871 (13)0.0238 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0139 (2)0.0295 (2)0.0211 (2)0.00081 (14)0.00345 (15)0.00020 (15)
O10.0245 (6)0.0388 (7)0.0376 (7)0.0102 (5)0.0082 (5)0.0049 (6)
O20.0242 (6)0.0461 (8)0.0324 (7)0.0129 (5)0.0046 (5)0.0085 (6)
O30.0384 (8)0.0357 (8)0.0693 (10)0.0057 (6)0.0325 (7)0.0051 (7)
O40.0450 (8)0.0374 (8)0.0395 (8)0.0054 (6)0.0042 (6)0.0145 (6)
O50.0205 (6)0.0733 (10)0.0320 (7)0.0026 (6)0.0022 (5)0.0197 (7)
O60.0158 (6)0.0656 (10)0.0350 (7)0.0005 (6)0.0033 (5)0.0182 (7)
O70.0193 (6)0.0557 (9)0.0344 (7)0.0087 (5)0.0007 (5)0.0121 (6)
N10.0321 (8)0.0249 (7)0.0286 (8)0.0075 (6)0.0116 (6)0.0025 (6)
C10.0227 (8)0.0394 (10)0.0222 (8)0.0006 (7)0.0043 (6)0.0043 (7)
C20.0155 (7)0.0250 (8)0.0185 (7)0.0002 (6)0.0035 (6)0.0027 (6)
C30.0196 (7)0.0219 (8)0.0203 (7)0.0000 (6)0.0022 (6)0.0026 (6)
C40.0220 (8)0.0236 (8)0.0190 (7)0.0050 (6)0.0054 (6)0.0028 (6)
C50.0183 (7)0.0282 (9)0.0212 (8)0.0014 (6)0.0039 (6)0.0074 (6)
C60.0219 (7)0.0267 (8)0.0259 (8)0.0047 (6)0.0040 (6)0.0005 (7)
C70.0226 (8)0.0252 (8)0.0228 (8)0.0001 (6)0.0046 (6)0.0027 (6)
C80.0183 (7)0.0318 (9)0.0276 (8)0.0019 (6)0.0042 (6)0.0052 (7)
C90.0181 (7)0.0249 (8)0.0240 (8)0.0010 (6)0.0051 (6)0.0029 (6)
C100.0185 (7)0.0340 (9)0.0283 (8)0.0013 (7)0.0044 (6)0.0047 (7)
C110.0218 (8)0.0590 (13)0.0341 (10)0.0007 (8)0.0103 (7)0.0155 (9)
C120.0304 (9)0.0471 (11)0.0338 (10)0.0009 (8)0.0082 (8)0.0131 (8)
C130.0269 (8)0.0437 (10)0.0227 (8)0.0024 (7)0.0006 (6)0.0060 (7)
C140.0212 (8)0.0268 (8)0.0234 (8)0.0011 (6)0.0026 (6)0.0005 (6)
Geometric parameters (Å, º) top
S1—O11.4331 (13)C5—C61.389 (2)
S1—O21.4343 (12)C5—C81.514 (2)
S1—C11.7543 (17)C6—C71.393 (2)
S1—C21.7730 (15)C6—H60.9500
O3—N11.2222 (19)C7—H70.9500
O4—N11.225 (2)C8—C91.448 (2)
O5—C81.239 (2)C9—C101.382 (2)
O6—C101.314 (2)C9—C141.467 (2)
O6—H6O0.91 (3)C10—C111.486 (2)
O7—C141.222 (2)C11—C121.504 (3)
N1—C41.459 (2)C11—H11A0.9900
C1—H1A0.9800C11—H11B0.9900
C1—H1B0.9800C12—C131.509 (2)
C1—H1C0.9800C12—H12A0.9900
C2—C31.380 (2)C12—H12B0.9900
C2—C71.388 (2)C13—C141.511 (2)
C3—C41.380 (2)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.390 (2)
O1—S1—O2118.50 (8)C2—C7—H7120.4
O1—S1—C1108.66 (8)C6—C7—H7120.4
O2—S1—C1109.73 (8)O5—C8—C9122.34 (14)
O1—S1—C2107.66 (7)O5—C8—C5115.18 (14)
O2—S1—C2107.73 (7)C9—C8—C5122.32 (13)
C1—S1—C2103.51 (7)C10—C9—C8118.67 (14)
C10—O6—H6O107.8 (17)C10—C9—C14119.31 (14)
O3—N1—O4124.40 (15)C8—C9—C14122.01 (14)
O3—N1—C4117.66 (15)O6—C10—C9122.94 (15)
O4—N1—C4117.94 (14)O6—C10—C11113.90 (14)
S1—C1—H1A109.5C9—C10—C11123.15 (15)
S1—C1—H1B109.5C10—C11—C12111.30 (14)
H1A—C1—H1B109.5C10—C11—H11A109.4
S1—C1—H1C109.5C12—C11—H11A109.4
H1A—C1—H1C109.5C10—C11—H11B109.4
H1B—C1—H1C109.5C12—C11—H11B109.4
C3—C2—C7121.38 (14)H11A—C11—H11B108.0
C3—C2—S1117.90 (12)C11—C12—C13109.84 (16)
C7—C2—S1120.72 (12)C11—C12—H12A109.7
C2—C3—C4117.84 (14)C13—C12—H12A109.7
C2—C3—H3121.1C11—C12—H12B109.7
C4—C3—H3121.1C13—C12—H12B109.7
C3—C4—C5122.95 (14)H12A—C12—H12B108.2
C3—C4—N1116.98 (14)C12—C13—C14114.66 (14)
C5—C4—N1120.06 (14)C12—C13—H13A108.6
C6—C5—C4117.75 (14)C14—C13—H13A108.6
C6—C5—C8117.56 (14)C12—C13—H13B108.6
C4—C5—C8124.58 (15)C14—C13—H13B108.6
C5—C6—C7120.71 (15)H13A—C13—H13B107.6
C5—C6—H6119.6O7—C14—C9122.24 (15)
C7—C6—H6119.6O7—C14—C13120.09 (14)
C2—C7—C6119.30 (15)C9—C14—C13117.63 (14)
O1—S1—C2—C3141.94 (12)C6—C5—C8—O573.6 (2)
O2—S1—C2—C313.08 (15)C4—C5—C8—O5102.5 (2)
C1—S1—C2—C3103.11 (13)C6—C5—C8—C9101.98 (19)
O1—S1—C2—C737.36 (15)C4—C5—C8—C981.9 (2)
O2—S1—C2—C7166.22 (13)O5—C8—C9—C100.7 (3)
C1—S1—C2—C777.59 (15)C5—C8—C9—C10175.97 (15)
C7—C2—C3—C40.3 (2)O5—C8—C9—C14178.90 (17)
S1—C2—C3—C4179.00 (11)C5—C8—C9—C143.6 (3)
C2—C3—C4—C52.4 (2)C8—C9—C10—O62.8 (3)
C2—C3—C4—N1176.38 (13)C14—C9—C10—O6177.62 (16)
O3—N1—C4—C3162.96 (15)C8—C9—C10—C11177.56 (17)
O4—N1—C4—C317.2 (2)C14—C9—C10—C112.0 (3)
O3—N1—C4—C518.3 (2)O6—C10—C11—C12151.87 (17)
O4—N1—C4—C5161.57 (15)C9—C10—C11—C1228.4 (3)
C3—C4—C5—C62.0 (2)C10—C11—C12—C1353.4 (2)
N1—C4—C5—C6176.65 (14)C11—C12—C13—C1451.4 (2)
C3—C4—C5—C8174.05 (14)C10—C9—C14—O7172.27 (17)
N1—C4—C5—C87.3 (2)C8—C9—C14—O78.1 (3)
C4—C5—C6—C70.3 (2)C10—C9—C14—C135.5 (2)
C8—C5—C6—C7176.70 (14)C8—C9—C14—C13174.07 (16)
C3—C2—C7—C62.0 (2)C12—C13—C14—O7160.12 (17)
S1—C2—C7—C6178.77 (12)C12—C13—C14—C922.0 (2)
C5—C6—C7—C22.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O50.91 (3)1.71 (3)2.524 (2)148 (2)
C1—H1B···O4i0.982.583.393 (2)140
C1—H1B···O7ii0.982.583.265 (2)127
C11—H11A···O3iii0.992.403.135 (2)131
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O50.91 (3)1.71 (3)2.524 (2)148 (2)
C1—H1B···O4i0.982.583.393 (2)140
C1—H1B···O7ii0.982.583.265 (2)127
C11—H11A···O3iii0.992.403.135 (2)131
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x+2, y1/2, z+3/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEftekhari-Sis, B., Mohajer, S. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2829.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, W. & Tang, L. (2012). Acta Cryst. E68, o2850.  CSD CrossRef IUCr Journals Google Scholar
First citationMitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K. & Wichert, R. A. (2001). Pest. Manag. Sci. 57, 120–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds