organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and absolute configuration of preaustinoid A1

aDepartment of Biological and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA, and bDepartment of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA
*Correspondence e-mail: andrea.stierle@mso.umt.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 July 2015; accepted 16 July 2015; online 22 July 2015)

The absolute structure of the title compound preaustinoid A1 [systematic name: (5aR,7aS,8R,10S,12R,13aR,13bS)-methyl 10-hy­droxy-5,5,7a,10,12,13b-hexa­methyl-14-methyl­ene-3,9,11-trioxohexa­deca­hydro-8,12-methano­cyclo­octa­[3,4]benzo[1,2-c]oxepine-8-carboxyl­ate], C26H36O7, has been determined by resonant scattering using Cu Kα radiation [Flack parameter = 0.07 (15)]. The structure is consistent with that reported previously [Stierle et al. (2011). J. Nat. Prod. 74, 2272–2277], determined by detailed analysis of MS and NMR data. The mol­ecule consists of a fused four-ring arrangement. The seven-membered oxepan-2-one ring has a chair conformation, as do the central cyclo­hexane rings, while the outer cyclo­hexa-1,3-dione ring has a boat conformation. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming helical chains propagating along [100].

1. Related literature

For the structure of the title compound determined by detailed analysis of MS and NMR data, see: Stierle et al. (2011[Stierle, D. B., Stierle, A., Patacini, B., McIntyre, K., Girtsman, T. & Bolstad, E. (2011). J. Nat. Prod. 74, 2273-2277.]). For other details concerning preaustinoid A1, see: Geris dos Santos et al. (2003[Geris dos Santos, R. M. & Rodrigues-Fo, E. (2003). Z. Naturforcsh. Teil C, 58, 663-669.]). For the crystal structure of the closely related compound preaustinoid A, for which the absolute configuration was assigned based solely on the optical rotation of the mol­ecule, see: Maganhi et al. (2009[Maganhi, S. H., Fill, T. P., Rodrigues-Fo, E., Caracelli, I. & Zukerman-Schpector, J. (2009). Acta Cryst. E65, o221.]). For the characterization of preaustinoid A, see: Geris dos Santos et al. (2002[Geris dos Santos, R. M. & Rodrigues-Fo, E. (2002). Phytochemistry, 61, 907-912.]); Stierle et al. (2011[Stierle, D. B., Stierle, A., Patacini, B., McIntyre, K., Girtsman, T. & Bolstad, E. (2011). J. Nat. Prod. 74, 2273-2277.]). For the absolute configuration of a closely related meroterpene, berkeleydione, based on the helicity rule of circular dichroism, see: Stierle et al. (2011[Stierle, D. B., Stierle, A., Patacini, B., McIntyre, K., Girtsman, T. & Bolstad, E. (2011). J. Nat. Prod. 74, 2273-2277.]). For details of its characterization, see: Stierle et al. (2004[Stierle, D. B., Stierle, A. A., Hobbs, J. D., Stokken, J. & Clardy, J. (2004). Org. Lett. 6, 1049-1052.]), and for its crystal structure and absolute configuration determined by resonant scattering, see: Stierle et al. (2015[Stierle, A., Stierle, D. & Decato, D. (2015). Acta Cryst. E71, o248.]). The absolute configuration reported here is consistent with that of related meroterpenes including berkeleydione (Stierle et al., 2015[Stierle, A., Stierle, D. & Decato, D. (2015). Acta Cryst. E71, o248.]), dhirolide A (de Silva et al., 2011[Silva, E. D. de, Williams, D. E., Jayanetti, D. R., Centko, R. M., Patrick, B. O., Wijesundera, R. V. C. & Andersen, R. J. (2011). Org. Lett. 13, 1174-1177.]) and minuteolide A (Iida et al., 2008[Iida, M., Ooi, T., Kito, K., Yoshida, S., Kanoh, K., Shizuri, Y. & Kusumi, T. (2008). Org. Lett. 10, 845-848.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H36O7

  • Mr = 460.55

  • Orthorhombic, P 21 21 21

  • a = 8.3169 (4) Å

  • b = 13.8064 (6) Å

  • c = 19.9243 (9) Å

  • V = 2287.84 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

2.2. Data collection

  • Bruker D8 Venture diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.644, Tmax = 0.753

  • 28885 measured reflections

  • 4008 independent reflections

  • 3740 reflections with I > 2σ(I)

  • Rint = 0.069

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.120

  • S = 1.17

  • 4008 reflections

  • 309 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack x determined using 1409 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.07 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.84 (7) 1.89 (7) 2.723 (5) 168 (6)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

Berkeleydione, preaustinoid A and the title compound, preaustinoid A1, were co-isolated from the organic extract of Penicillium rubrum (Stierle et al. 2011). Colorless crystals of the title compound were grown by vapor diffusion of pentane into a chloro­form solution.

Refinement top

All the H atoms were located in difference Fourier maps and the hydroxyl H atom was freely refined. The C-bound H atoms were finally placed in calculated positions and refined using a riding model: C—H = 0.95 - 1.0 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Comment top

The absolute configuration of the title compound preasutinoid A1, has been determined by X-ray by refinement of the Flack parameter with data collected using Cu Kα radiation. The absolute configuration reported here is consistent with that of related meroterpenes including berkeleydione (Stierle et al., 2015), dhirolide A (de Silva et al., 2011) and minuteolide A (Iida et al., 2008).

The title molecule, Fig. 1, consists of a fused four-ring arrangement. The seven-membered oxepan-2-one ring (O1/C1—C4/C15/C16) has a chair conformation, as do the central cyclo­hexane rings (C4/C5/C12/C15 and C5—C7/C22/C11/C12), while the outer cyclo­hexa-1,3-dione ring (C7—C11/C22) has a boat conformation.

In the crystal, molecules are linked via O—H···O hydrogen bonds forming helices propagating along [100]; see Table 1.

Related literature top

For the structure of the title compound determined by detailed analysis of MS and NMR data, see: Stierle et al. (2011). For other details concerning preaustinoid A1, see: Geris dos Santos et al. (2003). For the crystal structure of the closely related compound preaustinoid A, for which the absolute configuration was assigned based solely on the optical rotation of the molecule, see: Maganhi et al. (2009). For the characterization of preaustinoid A, see: Geris dos Santos et al. (2002); Stierle et al. (2011). For the absolute configuration of a closely related meroterpene, berkeleydione, based on the helicity rule of circular dichroism, see: Stierle et al. (2011). For details of its characterization, see: Stierle et al. (2004), and for its crystal structure and absolute configuration determined by resonant scattering, see: Stierle et al. (2015). The absolute configuration reported here is consistent with that of related meroterpenes including berkeleydione (Stierle et al., 2015), dhirolide A (de Silva et al., 2011) and minuteolide A (Iida et al., 2008).

Structure description top

The absolute configuration of the title compound preasutinoid A1, has been determined by X-ray by refinement of the Flack parameter with data collected using Cu Kα radiation. The absolute configuration reported here is consistent with that of related meroterpenes including berkeleydione (Stierle et al., 2015), dhirolide A (de Silva et al., 2011) and minuteolide A (Iida et al., 2008).

The title molecule, Fig. 1, consists of a fused four-ring arrangement. The seven-membered oxepan-2-one ring (O1/C1—C4/C15/C16) has a chair conformation, as do the central cyclo­hexane rings (C4/C5/C12/C15 and C5—C7/C22/C11/C12), while the outer cyclo­hexa-1,3-dione ring (C7—C11/C22) has a boat conformation.

In the crystal, molecules are linked via O—H···O hydrogen bonds forming helices propagating along [100]; see Table 1.

For the structure of the title compound determined by detailed analysis of MS and NMR data, see: Stierle et al. (2011). For other details concerning preaustinoid A1, see: Geris dos Santos et al. (2003). For the crystal structure of the closely related compound preaustinoid A, for which the absolute configuration was assigned based solely on the optical rotation of the molecule, see: Maganhi et al. (2009). For the characterization of preaustinoid A, see: Geris dos Santos et al. (2002); Stierle et al. (2011). For the absolute configuration of a closely related meroterpene, berkeleydione, based on the helicity rule of circular dichroism, see: Stierle et al. (2011). For details of its characterization, see: Stierle et al. (2004), and for its crystal structure and absolute configuration determined by resonant scattering, see: Stierle et al. (2015). The absolute configuration reported here is consistent with that of related meroterpenes including berkeleydione (Stierle et al., 2015), dhirolide A (de Silva et al., 2011) and minuteolide A (Iida et al., 2008).

Synthesis and crystallization top

Berkeleydione, preaustinoid A and the title compound, preaustinoid A1, were co-isolated from the organic extract of Penicillium rubrum (Stierle et al. 2011). Colorless crystals of the title compound were grown by vapor diffusion of pentane into a chloro­form solution.

Refinement details top

All the H atoms were located in difference Fourier maps and the hydroxyl H atom was freely refined. The C-bound H atoms were finally placed in calculated positions and refined using a riding model: C—H = 0.95 - 1.0 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
(5aR,7aS,8R,10S,12R,13aR,13bS)-Methyl 10-hydroxy-5,5,7a,10,12,13b-hexamethyl-14-methylene-3,9,11-trioxohexadecahydro-8,12-methanocycloocta[3,4]benzo[1,2-c]oxepine-8-carboxylate top
Crystal data top
C26H36O7Dx = 1.337 Mg m3
Mr = 460.55Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9895 reflections
a = 8.3169 (4) Åθ = 3.9–66.6°
b = 13.8064 (6) ŵ = 0.79 mm1
c = 19.9243 (9) ÅT = 100 K
V = 2287.84 (18) Å3Plate, colorless
Z = 40.25 × 0.25 × 0.05 mm
F(000) = 992
Data collection top
Bruker D8 Venture
diffractometer
4008 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµus3740 reflections with I > 2σ(I)
Double Bounce Multilayer Mirror monochromatorRint = 0.069
Detector resolution: 10.5 pixels mm-1θmax = 66.6°, θmin = 3.9°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1616
Tmin = 0.644, Tmax = 0.753l = 2223
28885 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0318P)2 + 2.3628P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.17Δρmax = 0.51 e Å3
4008 reflectionsΔρmin = 0.21 e Å3
309 parametersAbsolute structure: Flack x determined using 1409 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.07 (15)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H36O7V = 2287.84 (18) Å3
Mr = 460.55Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.3169 (4) ŵ = 0.79 mm1
b = 13.8064 (6) ÅT = 100 K
c = 19.9243 (9) Å0.25 × 0.25 × 0.05 mm
Data collection top
Bruker D8 Venture
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3740 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.753Rint = 0.069
28885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120Δρmax = 0.51 e Å3
S = 1.17Δρmin = 0.21 e Å3
4008 reflectionsAbsolute structure: Flack x determined using 1409 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
309 parametersAbsolute structure parameter: 0.07 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2993 (3)0.6369 (2)0.29734 (14)0.0240 (6)
O20.3728 (4)0.7808 (2)0.26743 (16)0.0341 (8)
O30.7964 (5)0.7142 (3)0.56157 (18)0.0472 (10)
O40.6672 (4)0.5863 (2)0.67932 (16)0.0357 (8)
O50.3884 (3)0.5028 (2)0.60306 (15)0.0296 (7)
O60.5590 (4)0.2577 (2)0.58385 (15)0.0299 (7)
O70.5763 (4)0.3582 (2)0.67092 (14)0.0293 (7)
C10.4147 (5)0.7002 (3)0.2841 (2)0.0255 (10)
C20.5872 (5)0.6749 (3)0.2919 (2)0.0267 (10)
H2A0.65300.73270.28150.032*
H2B0.61500.62400.25890.032*
C30.6311 (5)0.6389 (3)0.3623 (2)0.0240 (9)
H3A0.57290.67950.39530.029*
H3B0.74740.65040.36920.029*
C40.5961 (5)0.5318 (3)0.37889 (19)0.0184 (8)
C50.6433 (5)0.5178 (3)0.4548 (2)0.0181 (8)
H50.57700.56590.48010.022*
C60.8199 (5)0.5452 (3)0.4698 (2)0.0255 (9)
H6A0.84230.60990.45040.031*
H6B0.89180.49800.44740.031*
C70.8590 (5)0.5472 (3)0.5463 (2)0.0266 (10)
C80.7589 (6)0.6306 (3)0.5724 (2)0.0322 (11)
C90.6118 (6)0.6076 (3)0.6130 (2)0.0312 (11)
C100.5297 (5)0.5122 (3)0.5936 (2)0.0201 (9)
C110.6330 (5)0.4282 (3)0.5655 (2)0.0188 (9)
C120.6024 (5)0.4176 (3)0.48660 (19)0.0177 (8)
C130.4256 (5)0.3930 (3)0.4717 (2)0.0217 (9)
H13A0.40500.32490.48470.026*
H13B0.35570.43470.49970.026*
C140.3804 (5)0.4064 (3)0.3988 (2)0.0215 (9)
H14A0.26520.39050.39290.026*
H14B0.44360.36070.37100.026*
C150.4109 (5)0.5100 (3)0.3743 (2)0.0186 (8)
H150.35990.55270.40880.022*
C160.3177 (5)0.5300 (3)0.3086 (2)0.0206 (9)
C170.3772 (5)0.4821 (3)0.2451 (2)0.0263 (10)
H17A0.30310.49650.20820.039*
H17B0.38280.41190.25190.039*
H17C0.48450.50680.23410.039*
C180.1390 (5)0.5056 (3)0.3176 (2)0.0264 (10)
H18A0.10070.53250.36020.040*
H18B0.12500.43510.31780.040*
H18C0.07720.53360.28050.040*
C190.7085 (5)0.3349 (3)0.4592 (2)0.0239 (9)
H19A0.68390.32430.41170.036*
H19B0.68700.27540.48450.036*
H19C0.82210.35250.46400.036*
C200.5829 (5)0.3371 (3)0.6056 (2)0.0217 (9)
C210.4904 (7)0.6909 (4)0.6118 (3)0.0409 (13)
H21A0.40270.67690.64320.061*
H21B0.44660.69790.56630.061*
H21C0.54390.75110.62500.061*
C220.8113 (5)0.4504 (3)0.5764 (2)0.0198 (9)
C230.9147 (5)0.3889 (3)0.6029 (2)0.0262 (10)
H23A1.02610.40430.60390.031*
H23B0.87790.32930.62100.031*
C241.0372 (6)0.5727 (4)0.5545 (3)0.0407 (13)
H24A1.10330.52100.53520.061*
H24B1.06230.57970.60230.061*
H24C1.05990.63370.53120.061*
C250.7018 (5)0.4690 (3)0.3313 (2)0.0247 (9)
H25A0.80810.45950.35150.037*
H25B0.71360.50190.28800.037*
H25C0.65030.40590.32440.037*
C260.5265 (6)0.2787 (3)0.7134 (2)0.0325 (11)
H26A0.51140.30210.75940.049*
H26B0.60920.22820.71290.049*
H26C0.42500.25190.69660.049*
H40.726 (7)0.633 (5)0.692 (3)0.055 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (15)0.0203 (14)0.0276 (16)0.0008 (12)0.0005 (12)0.0030 (12)
O20.0386 (19)0.0246 (17)0.0390 (19)0.0014 (14)0.0037 (15)0.0119 (14)
O30.063 (2)0.0293 (19)0.049 (2)0.0072 (18)0.0082 (19)0.0000 (16)
O40.057 (2)0.0309 (17)0.0195 (17)0.0106 (17)0.0101 (16)0.0005 (13)
O50.0208 (16)0.0391 (18)0.0288 (17)0.0086 (14)0.0053 (13)0.0015 (13)
O60.0353 (18)0.0224 (16)0.0319 (18)0.0034 (13)0.0075 (15)0.0039 (13)
O70.0398 (18)0.0251 (15)0.0230 (16)0.0046 (14)0.0054 (13)0.0046 (12)
C10.034 (2)0.025 (2)0.018 (2)0.0053 (19)0.0031 (19)0.0024 (17)
C20.029 (2)0.025 (2)0.026 (2)0.0058 (18)0.003 (2)0.0056 (17)
C30.024 (2)0.025 (2)0.023 (2)0.0084 (18)0.0030 (18)0.0018 (17)
C40.0175 (19)0.0197 (19)0.018 (2)0.0014 (16)0.0006 (16)0.0012 (15)
C50.018 (2)0.017 (2)0.019 (2)0.0016 (15)0.0014 (16)0.0022 (15)
C60.022 (2)0.028 (2)0.026 (2)0.0040 (19)0.0053 (18)0.0052 (18)
C70.022 (2)0.027 (2)0.030 (2)0.0021 (18)0.0088 (18)0.0018 (18)
C80.042 (3)0.027 (3)0.027 (3)0.003 (2)0.007 (2)0.0038 (19)
C90.043 (3)0.029 (2)0.021 (2)0.002 (2)0.009 (2)0.0005 (18)
C100.022 (2)0.024 (2)0.014 (2)0.0053 (17)0.0009 (16)0.0039 (16)
C110.020 (2)0.018 (2)0.018 (2)0.0025 (16)0.0010 (16)0.0003 (15)
C120.0166 (19)0.0178 (19)0.019 (2)0.0021 (17)0.0018 (16)0.0001 (15)
C130.021 (2)0.017 (2)0.027 (2)0.0040 (16)0.0007 (17)0.0026 (16)
C140.0164 (19)0.021 (2)0.027 (2)0.0040 (17)0.0073 (17)0.0030 (16)
C150.0164 (19)0.019 (2)0.021 (2)0.0000 (16)0.0010 (16)0.0025 (15)
C160.023 (2)0.0136 (18)0.025 (2)0.0003 (16)0.0026 (17)0.0027 (16)
C170.029 (2)0.029 (2)0.021 (2)0.0005 (19)0.0030 (18)0.0029 (17)
C180.021 (2)0.027 (2)0.031 (2)0.0015 (18)0.0058 (18)0.0035 (19)
C190.026 (2)0.020 (2)0.025 (2)0.0050 (17)0.0016 (18)0.0048 (17)
C200.016 (2)0.023 (2)0.027 (2)0.0039 (17)0.0050 (17)0.0026 (17)
C210.051 (3)0.031 (3)0.040 (3)0.006 (2)0.001 (2)0.007 (2)
C220.020 (2)0.022 (2)0.018 (2)0.0026 (17)0.0007 (17)0.0036 (16)
C230.021 (2)0.029 (2)0.028 (2)0.0005 (18)0.0060 (18)0.0007 (18)
C240.032 (3)0.044 (3)0.046 (3)0.008 (2)0.014 (2)0.009 (2)
C250.017 (2)0.033 (2)0.024 (2)0.0024 (18)0.0009 (17)0.0032 (18)
C260.038 (3)0.026 (2)0.033 (3)0.005 (2)0.007 (2)0.013 (2)
Geometric parameters (Å, º) top
O1—C11.324 (5)C12—C131.538 (5)
O1—C161.501 (5)C12—C191.542 (5)
O2—C11.213 (5)C13—H13A0.9900
O3—C81.214 (6)C13—H13B0.9900
O4—C91.431 (5)C13—C141.511 (6)
O4—H40.84 (7)C14—H14A0.9900
O5—C101.198 (5)C14—H14B0.9900
O6—C201.196 (5)C14—C151.532 (5)
O7—C201.335 (5)C15—H151.0000
O7—C261.446 (5)C15—C161.547 (6)
C1—C21.485 (6)C16—C171.511 (6)
C2—H2A0.9900C16—C181.534 (6)
C2—H2B0.9900C17—H17A0.9800
C2—C31.532 (6)C17—H17B0.9800
C3—H3A0.9900C17—H17C0.9800
C3—H3B0.9900C18—H18A0.9800
C3—C41.543 (5)C18—H18B0.9800
C4—C51.575 (5)C18—H18C0.9800
C4—C151.572 (5)C19—H19A0.9800
C4—C251.558 (6)C19—H19B0.9800
C5—H51.0000C19—H19C0.9800
C5—C61.546 (5)C21—H21A0.9800
C5—C121.559 (5)C21—H21B0.9800
C6—H6A0.9900C21—H21C0.9800
C6—H6B0.9900C22—C231.319 (6)
C6—C71.559 (6)C23—H23A0.9500
C7—C81.513 (7)C23—H23B0.9500
C7—C221.519 (6)C24—H24A0.9800
C7—C241.532 (6)C24—H24B0.9800
C8—C91.500 (7)C24—H24C0.9800
C9—C101.534 (6)C25—H25A0.9800
C9—C211.530 (7)C25—H25B0.9800
C10—C111.547 (5)C25—H25C0.9800
C11—C121.600 (5)C26—H26A0.9800
C11—C201.547 (6)C26—H26B0.9800
C11—C221.529 (6)C26—H26C0.9800
C1—O1—C16127.2 (3)C14—C13—H13B108.9
C9—O4—H4107 (4)C13—C14—H14A109.2
C20—O7—C26114.6 (3)C13—C14—H14B109.2
O1—C1—C2121.6 (4)C13—C14—C15112.2 (3)
O2—C1—O1116.8 (4)H14A—C14—H14B107.9
O2—C1—C2121.5 (4)C15—C14—H14A109.2
C1—C2—H2A108.8C15—C14—H14B109.2
C1—C2—H2B108.8C4—C15—H15105.2
C1—C2—C3113.8 (4)C14—C15—C4108.8 (3)
H2A—C2—H2B107.7C14—C15—H15105.2
C3—C2—H2A108.8C14—C15—C16110.7 (3)
C3—C2—H2B108.8C16—C15—C4120.4 (3)
C2—C3—H3A107.9C16—C15—H15105.2
C2—C3—H3B107.9O1—C16—C15110.7 (3)
C2—C3—C4117.5 (3)O1—C16—C17109.8 (3)
H3A—C3—H3B107.2O1—C16—C1897.7 (3)
C4—C3—H3A107.9C17—C16—C15117.8 (3)
C4—C3—H3B107.9C17—C16—C18108.6 (4)
C3—C4—C5106.1 (3)C18—C16—C15110.3 (3)
C3—C4—C15110.9 (3)C16—C17—H17A109.5
C3—C4—C25107.3 (3)C16—C17—H17B109.5
C15—C4—C5106.0 (3)C16—C17—H17C109.5
C25—C4—C5112.0 (3)H17A—C17—H17B109.5
C25—C4—C15114.3 (3)H17A—C17—H17C109.5
C4—C5—H5105.3H17B—C17—H17C109.5
C6—C5—C4113.1 (3)C16—C18—H18A109.5
C6—C5—H5105.3C16—C18—H18B109.5
C6—C5—C12110.3 (3)C16—C18—H18C109.5
C12—C5—C4116.4 (3)H18A—C18—H18B109.5
C12—C5—H5105.3H18A—C18—H18C109.5
C5—C6—H6A109.0H18B—C18—H18C109.5
C5—C6—H6B109.0C12—C19—H19A109.5
C5—C6—C7113.0 (3)C12—C19—H19B109.5
H6A—C6—H6B107.8C12—C19—H19C109.5
C7—C6—H6A109.0H19A—C19—H19B109.5
C7—C6—H6B109.0H19A—C19—H19C109.5
C8—C7—C6103.6 (4)H19B—C19—H19C109.5
C8—C7—C22113.0 (4)O6—C20—O7123.1 (4)
C8—C7—C24108.7 (4)O6—C20—C11127.1 (4)
C22—C7—C6108.4 (3)O7—C20—C11109.7 (3)
C22—C7—C24114.4 (4)C9—C21—H21A109.5
C24—C7—C6108.1 (4)C9—C21—H21B109.5
O3—C8—C7121.4 (5)C9—C21—H21C109.5
O3—C8—C9120.4 (5)H21A—C21—H21B109.5
C9—C8—C7118.2 (4)H21A—C21—H21C109.5
O4—C9—C8106.2 (4)H21B—C21—H21C109.5
O4—C9—C10101.5 (3)C7—C22—C11111.9 (3)
O4—C9—C21112.4 (4)C23—C22—C7123.7 (4)
C8—C9—C10114.2 (4)C23—C22—C11124.1 (4)
C8—C9—C21111.7 (4)C22—C23—H23A120.0
C21—C9—C10110.3 (4)C22—C23—H23B120.0
O5—C10—C9119.4 (4)H23A—C23—H23B120.0
O5—C10—C11121.4 (4)C7—C24—H24A109.5
C9—C10—C11119.2 (3)C7—C24—H24B109.5
C10—C11—C12109.6 (3)C7—C24—H24C109.5
C20—C11—C10105.9 (3)H24A—C24—H24B109.5
C20—C11—C12112.9 (3)H24A—C24—H24C109.5
C22—C11—C10109.7 (3)H24B—C24—H24C109.5
C22—C11—C12108.2 (3)C4—C25—H25A109.5
C22—C11—C20110.5 (3)C4—C25—H25B109.5
C5—C12—C11106.4 (3)C4—C25—H25C109.5
C13—C12—C5109.0 (3)H25A—C25—H25B109.5
C13—C12—C11111.2 (3)H25A—C25—H25C109.5
C13—C12—C19108.4 (3)H25B—C25—H25C109.5
C19—C12—C5112.8 (3)O7—C26—H26A109.5
C19—C12—C11109.0 (3)O7—C26—H26B109.5
C12—C13—H13A108.9O7—C26—H26C109.5
C12—C13—H13B108.9H26A—C26—H26B109.5
H13A—C13—H13B107.7H26A—C26—H26C109.5
C14—C13—C12113.3 (3)H26B—C26—H26C109.5
C14—C13—H13A108.9
O1—C1—C2—C356.1 (5)C9—C10—C11—C2212.1 (5)
O2—C1—C2—C3121.3 (4)C10—C11—C12—C557.0 (4)
O3—C8—C9—O499.4 (5)C10—C11—C12—C1361.6 (4)
O3—C8—C9—C10149.6 (4)C10—C11—C12—C19179.0 (3)
O3—C8—C9—C2123.6 (6)C10—C11—C20—O6137.0 (4)
O4—C9—C10—O593.3 (5)C10—C11—C20—O745.9 (4)
O4—C9—C10—C1183.5 (4)C10—C11—C22—C755.2 (4)
O5—C10—C11—C1276.7 (5)C10—C11—C22—C23130.9 (4)
O5—C10—C11—C2045.4 (5)C11—C12—C13—C14165.7 (3)
O5—C10—C11—C22164.7 (4)C12—C5—C6—C756.9 (4)
C1—O1—C16—C1567.1 (5)C12—C11—C20—O617.0 (6)
C1—O1—C16—C1764.7 (5)C12—C11—C20—O7165.8 (3)
C1—O1—C16—C18177.7 (4)C12—C11—C22—C764.3 (4)
C1—C2—C3—C481.5 (5)C12—C11—C22—C23109.6 (5)
C2—C3—C4—C5176.7 (3)C12—C13—C14—C1557.8 (5)
C2—C3—C4—C1562.0 (5)C13—C14—C15—C463.0 (4)
C2—C3—C4—C2563.4 (5)C13—C14—C15—C16162.6 (3)
C3—C4—C5—C657.0 (4)C14—C15—C16—O1160.3 (3)
C3—C4—C5—C12173.8 (3)C14—C15—C16—C1772.2 (4)
C3—C4—C15—C14173.7 (3)C14—C15—C16—C1853.3 (4)
C3—C4—C15—C1657.1 (4)C15—C4—C5—C6174.9 (3)
C4—C5—C6—C7170.8 (3)C15—C4—C5—C1255.8 (4)
C4—C5—C12—C11170.3 (3)C16—O1—C1—O2170.0 (4)
C4—C5—C12—C1350.2 (4)C16—O1—C1—C212.5 (6)
C4—C5—C12—C1970.3 (4)C19—C12—C13—C1474.5 (4)
C4—C15—C16—O171.3 (4)C20—C11—C12—C5174.8 (3)
C4—C15—C16—C1756.2 (5)C20—C11—C12—C1356.1 (4)
C4—C15—C16—C18178.3 (3)C20—C11—C12—C1963.3 (4)
C5—C4—C15—C1459.0 (4)C20—C11—C22—C7171.6 (3)
C5—C4—C15—C16171.8 (3)C20—C11—C22—C2314.5 (6)
C5—C6—C7—C866.2 (4)C21—C9—C10—O526.1 (5)
C5—C6—C7—C2254.1 (5)C21—C9—C10—C11157.1 (4)
C5—C6—C7—C24178.6 (4)C22—C7—C8—O3168.6 (4)
C5—C12—C13—C1448.6 (4)C22—C7—C8—C910.7 (6)
C6—C5—C12—C1159.2 (4)C22—C11—C12—C562.6 (4)
C6—C5—C12—C13179.2 (3)C22—C11—C12—C13178.8 (3)
C6—C5—C12—C1960.3 (4)C22—C11—C12—C1959.4 (4)
C6—C7—C8—O374.3 (5)C22—C11—C20—O6104.3 (5)
C6—C7—C8—C9106.4 (4)C22—C11—C20—O772.9 (4)
C6—C7—C22—C1158.3 (4)C24—C7—C8—O340.5 (6)
C6—C7—C22—C23115.6 (5)C24—C7—C8—C9138.8 (4)
C7—C8—C9—O479.9 (5)C24—C7—C22—C11179.0 (4)
C7—C8—C9—C1031.1 (6)C24—C7—C22—C235.1 (6)
C7—C8—C9—C21157.1 (4)C25—C4—C5—C659.8 (4)
C8—C7—C22—C1155.9 (5)C25—C4—C5—C1269.5 (4)
C8—C7—C22—C23130.2 (4)C25—C4—C15—C1464.9 (4)
C8—C9—C10—O5152.9 (4)C25—C4—C15—C1664.3 (5)
C8—C9—C10—C1130.3 (5)C26—O7—C20—O64.2 (6)
C9—C10—C11—C12106.5 (4)C26—O7—C20—C11178.5 (3)
C9—C10—C11—C20131.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.84 (7)1.89 (7)2.723 (5)168 (6)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.84 (7)1.89 (7)2.723 (5)168 (6)
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by grants from the National Science Foundation (NSF)-MRI (CHE-1337908) and National Institutes of Health (NIH) NIGMS P20GM103546.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeris dos Santos, R. M. & Rodrigues-Fo, E. (2002). Phytochemistry, 61, 907–912.  CrossRef PubMed CAS Google Scholar
First citationGeris dos Santos, R. M. & Rodrigues-Fo, E. (2003). Z. Naturforcsh. Teil C, 58, 663–669.  CAS Google Scholar
First citationIida, M., Ooi, T., Kito, K., Yoshida, S., Kanoh, K., Shizuri, Y. & Kusumi, T. (2008). Org. Lett. 10, 845–848.  CSD CrossRef PubMed CAS Google Scholar
First citationMaganhi, S. H., Fill, T. P., Rodrigues-Fo, E., Caracelli, I. & Zukerman-Schpector, J. (2009). Acta Cryst. E65, o221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, E. D. de, Williams, D. E., Jayanetti, D. R., Centko, R. M., Patrick, B. O., Wijesundera, R. V. C. & Andersen, R. J. (2011). Org. Lett. 13, 1174–1177.  PubMed Google Scholar
First citationStierle, A., Stierle, D. & Decato, D. (2015). Acta Cryst. E71, o248.  CSD CrossRef IUCr Journals Google Scholar
First citationStierle, D. B., Stierle, A. A., Hobbs, J. D., Stokken, J. & Clardy, J. (2004). Org. Lett. 6, 1049–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStierle, D. B., Stierle, A., Patacini, B., McIntyre, K., Girtsman, T. & Bolstad, E. (2011). J. Nat. Prod. 74, 2273–2277.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds