organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-1-{2-[4-(di­methyl­amino)­phen­yl]eth­yl}-4-[2-(pyren-1-yl)eth­yl]cyclo­hexa­ne

aFS–SCS, Deutsches Elecktronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany, and bMax Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
*Correspondence e-mail: sreevidya.thekku.veedu@desy.de, simone.techert@desy.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 July 2015; accepted 20 July 2015; online 31 July 2015)

The title compound, C34H37N, is a pyrene derivative in which the pyrene ring system is linked to an ethyl­cyclo­hexane unit which, in turn, carries a [4-(di­methyl­amino)­phen­yl]ethyl substituent in the para position. The central cyclo­hexane ring has a chair conformation, with the exocyclic C—C bonds in equatorial orientations. The benzene ring is inclined to the mean plane of the pyrene ring system [maximum deviation = 0.038 (4) Å] by 14.84 (15)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains propagating along [010]. The crystal was refined as a non-merohedral twin [domain ratio = 0.9989 (4):0.0011 (4)].

1. Related literature

For charge transfer in donor–acceptor systems, see: Wasielewski (1992[Wasielewski, M. R. (1992). Chem. Rev. 92, 435-461.]); Willemse et al. (2000[Willemse, R. J., Piet, J. J., Warman, J. M., Hartl, F., Verhoeven, J. W. & Brouwer, A. M. (2000). J. Am. Chem. Soc. 122, 3721-3730.]); Thekku Veedu et al. (2014a[Thekku Veedu, S., Raiser, D., Kia, R., Scholz, M. & Techert, S. (2014a). J. Phys. Chem. B, 118, 3291-3297.]). For related structures, see: Thekku Veedu et al. (2014b[Thekku Veedu, S., Scholz, M., Kia, R., Paulmann, C. & Techert, S. (2014b). Acta Cryst. E70, o16.]); Wang et al. (2010[Wang, Z.-Q., Zhang, R., Sun, X.-J., Zhang, Y.-P., Xu, Y. & Xu, C. (2010). Z. Kristallogr. New Cryst. Struct. 225, 573-575.]). For the synthesis of the title compound, see: Dewar & Mole (1956[Dewar, M. J. S. & Mole, T. (1956). J. Chem. Soc. pp. 1441-1443.]); Norman et al. (1958[Norman, R. O. C., Thompson, G. A. & Waters, W. A. (1958). J. Chem. Soc. pp. 175-179.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C34H37N

  • Mr = 459.64

  • Monoclinic, P 21 /n

  • a = 7.1927 (4) Å

  • b = 10.4082 (6) Å

  • c = 33.399 (2) Å

  • β = 91.473 (4)°

  • V = 2499.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.15 mm

2.2. Data collection

  • Bruker SMART APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.990

  • 38082 measured reflections

  • 38082 independent reflections

  • 23477 reflections with I > 2σ(I)

  • Rint = 0.087

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.195

  • S = 1.07

  • 38082 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C20–C23/C32/C31 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯Cg1i 0.95 2.60 3.4927 (15) 156
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Electron-transfer reactions are fundamental processes in chemistry and also in biology. Going back to nature, photo-induced electron transfer (PI—ET) is the key step in photosynthesis where light harvesting complexes are functional centers in plants which converts solar energy into chemical energy. In the past decades, to gain more insight into electron transfer processes extensive studies have been carried out on the optical behaviour of systems consisting of donor acceptor groups linked by different bridges (Thekku Veedu et al., 2014a; Wasielewski, 1992; Willemse et al., 2000). These molecules are also ideal systems for studying solvation dynamics and non-linear optical properties. In the title compound (PyDMAD), the electron donor N,N'-di­methyl­aniline (DMA) unit is covalently linked to the electron acceptor pyrene by an extended di­ethyl­cyclo­hexane bridge between the donor and acceptor.

The molecular structure of the title pyrene derivative is illustrated in Fig. 1. Pyrene is linked to an ethyl­cyclo­hexane ring which in turn carries a 4-di­methyl­amino­phenyl­ethyl substituent in the para-position. The bond lengths and angles are within normal ranges and are comparable to those reported for similar structures (Thekku Veedu et al., 2014b; Wang et al., 2010). The cyclo­hexane ring (C9—C14) has a chair conformation. The benzene ring (C1—C6) is inclined to the mean plane of the pyrene ring system (maximum devation = 0.038 (4) Å for atom C29), by 14.84 (15) °. The various hetero atoms of the di­methyl­amino group are displaced from the benzene ring by 0.078 (4) Å for N1, 0.102 (4) Å for C33, but 0.549 (4) Å for atom C34.

In the crystal, molecules are linked via C—H···π inter­actions forming chains along the b axis direction (Table 1 and Fig. 2).

Synthesis and crystallization top

Commercially available 1-amino­pyrene after diazo­tization reaction was coupled with N,N'-di­methyl­aniline according to the previously reported procedure (Dewar & Mole 1956; Norman et al., 1958). The crude product was then purified on an aluminium oxide column with a mixture of cyclo­hexane/toluene as eluent and applying HPLC. Plate-like colourless crystals of the title compound were obtained by slow evaporation of a solution in ethyl acetate.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The crystal was refined as a non-merohedral twin [refined BASF ratio = 0.9989 (4):0.0011 (4)].

Related literature top

For charge transfer in donor–acceptor systems, see: Wasielewski (1992); Willemse et al. (2000); Thekku Veedu et al. (2014a). For related structures, see: Thekku Veedu et al. (2014b); Wang et al. (2010). For the synthesis of the title compound, see: Dewar & Mole (1956); Norman et al. (1958).

Structure description top

Electron-transfer reactions are fundamental processes in chemistry and also in biology. Going back to nature, photo-induced electron transfer (PI—ET) is the key step in photosynthesis where light harvesting complexes are functional centers in plants which converts solar energy into chemical energy. In the past decades, to gain more insight into electron transfer processes extensive studies have been carried out on the optical behaviour of systems consisting of donor acceptor groups linked by different bridges (Thekku Veedu et al., 2014a; Wasielewski, 1992; Willemse et al., 2000). These molecules are also ideal systems for studying solvation dynamics and non-linear optical properties. In the title compound (PyDMAD), the electron donor N,N'-di­methyl­aniline (DMA) unit is covalently linked to the electron acceptor pyrene by an extended di­ethyl­cyclo­hexane bridge between the donor and acceptor.

The molecular structure of the title pyrene derivative is illustrated in Fig. 1. Pyrene is linked to an ethyl­cyclo­hexane ring which in turn carries a 4-di­methyl­amino­phenyl­ethyl substituent in the para-position. The bond lengths and angles are within normal ranges and are comparable to those reported for similar structures (Thekku Veedu et al., 2014b; Wang et al., 2010). The cyclo­hexane ring (C9—C14) has a chair conformation. The benzene ring (C1—C6) is inclined to the mean plane of the pyrene ring system (maximum devation = 0.038 (4) Å for atom C29), by 14.84 (15) °. The various hetero atoms of the di­methyl­amino group are displaced from the benzene ring by 0.078 (4) Å for N1, 0.102 (4) Å for C33, but 0.549 (4) Å for atom C34.

In the crystal, molecules are linked via C—H···π inter­actions forming chains along the b axis direction (Table 1 and Fig. 2).

For charge transfer in donor–acceptor systems, see: Wasielewski (1992); Willemse et al. (2000); Thekku Veedu et al. (2014a). For related structures, see: Thekku Veedu et al. (2014b); Wang et al. (2010). For the synthesis of the title compound, see: Dewar & Mole (1956); Norman et al. (1958).

Synthesis and crystallization top

Commercially available 1-amino­pyrene after diazo­tization reaction was coupled with N,N'-di­methyl­aniline according to the previously reported procedure (Dewar & Mole 1956; Norman et al., 1958). The crude product was then purified on an aluminium oxide column with a mixture of cyclo­hexane/toluene as eluent and applying HPLC. Plate-like colourless crystals of the title compound were obtained by slow evaporation of a solution in ethyl acetate.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The crystal was refined as a non-merohedral twin [refined BASF ratio = 0.9989 (4):0.0011 (4)].

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The C—H···π interactions linking the molecules are shown as dashed lines (see Table 1 for details).
trans-1-{2-[4-(Dimethylamino)phenyl]ethyl}-4-[2-(pyren-1-yl)ethyl]cyclohexane top
Crystal data top
C34H37NF(000) = 992
Mr = 459.64Dx = 1.221 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1927 (4) ÅCell parameters from 2860 reflections
b = 10.4082 (6) Åθ = 2.5–26.8°
c = 33.399 (2) ŵ = 0.07 mm1
β = 91.473 (4)°T = 100 K
V = 2499.5 (3) Å3Plate, colorless
Z = 40.35 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEXII DUO
diffractometer
23477 reflections with I > 2σ(I)
Radiation source: Micro-focusRint = 0.087
φ and ω scanθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 88
Tmin = 0.976, Tmax = 0.990k = 1212
38082 measured reflectionsl = 3939
38082 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0001P)2 + 8.046P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
38082 reflectionsΔρmax = 0.36 e Å3
320 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (4)
Crystal data top
C34H37NV = 2499.5 (3) Å3
Mr = 459.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1927 (4) ŵ = 0.07 mm1
b = 10.4082 (6) ÅT = 100 K
c = 33.399 (2) Å0.35 × 0.25 × 0.15 mm
β = 91.473 (4)°
Data collection top
Bruker SMART APEXII DUO
diffractometer
38082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
23477 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.990Rint = 0.087
38082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
38082 reflectionsΔρmin = 0.32 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7622 (6)0.4345 (4)0.13130 (13)0.0228 (11)
C20.6154 (6)0.3625 (4)0.14560 (13)0.0275 (12)
H20.62920.31970.17060.033*
C30.4497 (7)0.3522 (4)0.12399 (13)0.0293 (12)
H30.35220.30190.13460.035*
C40.4209 (6)0.4124 (4)0.08757 (13)0.0248 (12)
C50.5662 (6)0.4859 (4)0.07374 (13)0.0275 (12)
H50.55050.52980.04900.033*
C60.7332 (6)0.4975 (4)0.09472 (13)0.0267 (12)
H60.82950.54880.08420.032*
C70.2415 (6)0.3977 (4)0.06387 (13)0.0285 (12)
H7A0.20370.48270.05320.034*
H7B0.14360.36840.08210.034*
C80.2532 (6)0.3027 (4)0.02897 (12)0.0242 (12)
H8A0.35310.33120.01120.029*
H8B0.28910.21750.03980.029*
C90.0743 (6)0.2881 (4)0.00411 (12)0.0214 (11)
H90.03250.37580.00430.026*
C100.0814 (6)0.2270 (4)0.02735 (12)0.0229 (11)
H10A0.10870.28140.05080.027*
H10B0.04010.14190.03740.027*
C110.2574 (6)0.2107 (4)0.00179 (12)0.0253 (12)
H11A0.30710.29670.00530.030*
H11B0.35180.16600.01770.030*
C120.2274 (6)0.1351 (4)0.03662 (12)0.0209 (11)
H120.18920.04590.02900.025*
C130.0694 (6)0.1953 (4)0.05960 (12)0.0245 (12)
H13A0.04250.14110.08310.029*
H13B0.10870.28090.06950.029*
C140.1066 (6)0.2095 (4)0.03377 (12)0.0230 (11)
H14A0.20350.25190.04960.028*
H14B0.15280.12320.02610.028*
C150.4070 (6)0.1263 (4)0.06140 (12)0.0243 (12)
H15A0.44220.21380.07040.029*
H15B0.50650.09480.04400.029*
C160.3996 (6)0.0392 (4)0.09817 (12)0.0260 (12)
H16A0.30200.07100.11600.031*
H16B0.36440.04870.08950.031*
C170.5821 (6)0.0335 (4)0.12126 (12)0.0217 (11)
C180.7102 (6)0.0601 (4)0.11161 (13)0.0251 (12)
H180.68010.11890.09070.030*
C190.8802 (6)0.0707 (4)0.13140 (12)0.0237 (12)
H190.96520.13550.12370.028*
C200.9282 (6)0.0124 (4)0.16246 (12)0.0196 (11)
C211.1005 (6)0.0024 (4)0.18479 (12)0.0233 (11)
H211.18620.06300.17800.028*
C221.1442 (6)0.0829 (4)0.21503 (12)0.0232 (11)
H221.26030.07360.22900.028*
C231.0191 (6)0.1825 (4)0.22666 (12)0.0195 (11)
C241.0607 (6)0.2681 (4)0.25782 (13)0.0262 (12)
H241.17700.26180.27180.031*
C250.9356 (7)0.3615 (4)0.26856 (13)0.0271 (12)
H250.96610.41830.29000.033*
C260.7664 (6)0.3732 (4)0.24839 (13)0.0254 (12)
H260.68080.43730.25630.031*
C270.7201 (6)0.2921 (4)0.21650 (12)0.0204 (11)
C280.5495 (6)0.3042 (4)0.19410 (13)0.0254 (12)
H280.46460.37010.20090.030*
C290.5058 (6)0.2241 (4)0.16343 (13)0.0236 (11)
H290.39160.23590.14900.028*
C300.6270 (6)0.1218 (4)0.15210 (12)0.0197 (11)
C310.8004 (6)0.1096 (4)0.17320 (12)0.0182 (11)
C320.8462 (6)0.1942 (4)0.20562 (12)0.0183 (11)
C330.9569 (7)0.3722 (4)0.18918 (13)0.0396 (14)
H33A0.87680.41070.20920.059*
H33B1.08700.37780.19840.059*
H33C0.92280.28180.18530.059*
C341.0444 (6)0.5568 (4)0.14819 (14)0.0340 (13)
H34A1.12530.54940.12510.051*
H34B1.12070.56810.17270.051*
H34C0.96190.63100.14450.051*
N10.9334 (5)0.4406 (4)0.15151 (11)0.0309 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (3)0.019 (3)0.025 (3)0.002 (2)0.003 (2)0.002 (2)
C20.031 (3)0.031 (3)0.021 (3)0.000 (3)0.003 (2)0.003 (2)
C30.025 (3)0.030 (3)0.033 (3)0.003 (2)0.011 (2)0.000 (2)
C40.023 (3)0.025 (3)0.028 (3)0.004 (2)0.005 (2)0.003 (2)
C50.030 (3)0.029 (3)0.024 (3)0.005 (3)0.001 (2)0.006 (2)
C60.026 (3)0.025 (3)0.030 (3)0.004 (2)0.005 (2)0.004 (2)
C70.026 (3)0.029 (3)0.031 (3)0.005 (2)0.002 (2)0.005 (2)
C80.021 (3)0.027 (3)0.024 (3)0.001 (2)0.003 (2)0.003 (2)
C90.023 (3)0.018 (3)0.024 (3)0.006 (2)0.002 (2)0.001 (2)
C100.022 (3)0.029 (3)0.018 (2)0.004 (2)0.003 (2)0.001 (2)
C110.021 (3)0.032 (3)0.023 (3)0.000 (2)0.005 (2)0.002 (2)
C120.020 (3)0.024 (3)0.020 (3)0.005 (2)0.003 (2)0.001 (2)
C130.025 (3)0.026 (3)0.022 (3)0.005 (2)0.004 (2)0.001 (2)
C140.018 (3)0.028 (3)0.023 (3)0.002 (2)0.006 (2)0.003 (2)
C150.022 (3)0.028 (3)0.023 (3)0.002 (2)0.003 (2)0.002 (2)
C160.026 (3)0.029 (3)0.023 (3)0.004 (2)0.000 (2)0.000 (2)
C170.025 (3)0.023 (3)0.017 (3)0.004 (2)0.002 (2)0.003 (2)
C180.036 (3)0.022 (3)0.017 (3)0.004 (2)0.002 (2)0.002 (2)
C190.030 (3)0.020 (3)0.021 (3)0.003 (2)0.007 (2)0.001 (2)
C200.022 (3)0.019 (3)0.018 (2)0.002 (2)0.005 (2)0.004 (2)
C210.026 (3)0.021 (3)0.024 (3)0.003 (2)0.006 (2)0.007 (2)
C220.023 (3)0.024 (3)0.023 (3)0.001 (2)0.000 (2)0.006 (2)
C230.023 (3)0.018 (3)0.017 (3)0.002 (2)0.004 (2)0.004 (2)
C240.027 (3)0.030 (3)0.022 (3)0.004 (2)0.002 (2)0.001 (2)
C250.035 (3)0.025 (3)0.022 (3)0.005 (3)0.003 (2)0.004 (2)
C260.029 (3)0.021 (3)0.026 (3)0.000 (2)0.007 (2)0.003 (2)
C270.020 (3)0.019 (3)0.022 (3)0.001 (2)0.006 (2)0.003 (2)
C280.024 (3)0.023 (3)0.029 (3)0.002 (2)0.005 (2)0.002 (2)
C290.022 (3)0.024 (3)0.025 (3)0.002 (2)0.002 (2)0.003 (2)
C300.021 (3)0.021 (3)0.018 (2)0.004 (2)0.005 (2)0.004 (2)
C310.023 (3)0.016 (2)0.015 (2)0.003 (2)0.004 (2)0.004 (2)
C320.020 (3)0.017 (3)0.017 (2)0.004 (2)0.004 (2)0.005 (2)
C330.051 (4)0.035 (3)0.031 (3)0.005 (3)0.010 (3)0.001 (3)
C340.029 (3)0.038 (3)0.036 (3)0.001 (3)0.000 (2)0.009 (2)
N10.030 (2)0.034 (3)0.029 (2)0.003 (2)0.005 (2)0.0074 (19)
Geometric parameters (Å, º) top
C1—C21.389 (6)C16—H16A0.9900
C1—N11.390 (5)C16—H16B0.9900
C1—C61.397 (6)C17—C181.385 (6)
C2—C31.382 (6)C17—C301.412 (6)
C2—H20.9500C18—C191.379 (6)
C3—C41.380 (6)C18—H180.9500
C3—H30.9500C19—C201.387 (5)
C4—C51.384 (6)C19—H190.9500
C4—C71.504 (6)C20—C311.419 (6)
C5—C61.380 (6)C20—C211.433 (6)
C5—H50.9500C21—C221.343 (6)
C6—H60.9500C21—H210.9500
C7—C81.532 (6)C22—C231.433 (6)
C7—H7A0.9900C22—H220.9500
C7—H7B0.9900C23—C241.396 (6)
C8—C91.521 (5)C23—C321.418 (6)
C8—H8A0.9900C24—C251.378 (6)
C8—H8B0.9900C24—H240.9500
C9—C101.518 (6)C25—C261.381 (6)
C9—C141.529 (5)C25—H250.9500
C9—H91.0000C26—C271.393 (6)
C10—C111.518 (5)C26—H260.9500
C10—H10A0.9900C27—C321.417 (6)
C10—H10B0.9900C27—C281.426 (6)
C11—C121.525 (5)C28—C291.351 (6)
C11—H11A0.9900C28—H280.9500
C11—H11B0.9900C29—C301.433 (6)
C12—C151.519 (5)C29—H290.9500
C12—C131.522 (6)C30—C311.422 (6)
C12—H121.0000C31—C321.428 (5)
C13—C141.520 (5)C33—N11.452 (5)
C13—H13A0.9900C33—H33A0.9800
C13—H13B0.9900C33—H33B0.9800
C14—H14A0.9900C33—H33C0.9800
C14—H14B0.9900C34—N11.454 (5)
C15—C161.529 (5)C34—H34A0.9800
C15—H15A0.9900C34—H34B0.9800
C15—H15B0.9900C34—H34C0.9800
C16—C171.507 (6)
C2—C1—N1122.0 (4)H15A—C15—H15B107.5
C2—C1—C6117.1 (4)C17—C16—C15112.7 (4)
N1—C1—C6120.9 (4)C17—C16—H16A109.0
C3—C2—C1121.0 (4)C15—C16—H16A109.0
C3—C2—H2119.5C17—C16—H16B109.0
C1—C2—H2119.5C15—C16—H16B109.0
C4—C3—C2122.2 (5)H16A—C16—H16B107.8
C4—C3—H3118.9C18—C17—C30119.1 (4)
C2—C3—H3118.9C18—C17—C16119.0 (4)
C3—C4—C5116.6 (4)C30—C17—C16121.9 (4)
C3—C4—C7121.6 (4)C19—C18—C17122.1 (4)
C5—C4—C7121.7 (4)C19—C18—H18118.9
C6—C5—C4122.3 (4)C17—C18—H18118.9
C6—C5—H5118.9C18—C19—C20120.6 (4)
C4—C5—H5118.9C18—C19—H19119.7
C5—C6—C1120.8 (4)C20—C19—H19119.7
C5—C6—H6119.6C19—C20—C31118.9 (4)
C1—C6—H6119.6C19—C20—C21122.6 (4)
C4—C7—C8113.8 (4)C31—C20—C21118.5 (4)
C4—C7—H7A108.8C22—C21—C20122.0 (4)
C8—C7—H7A108.8C22—C21—H21119.0
C4—C7—H7B108.8C20—C21—H21119.0
C8—C7—H7B108.8C21—C22—C23121.2 (4)
H7A—C7—H7B107.7C21—C22—H22119.4
C9—C8—C7114.7 (4)C23—C22—H22119.4
C9—C8—H8A108.6C24—C23—C32118.9 (4)
C7—C8—H8A108.6C24—C23—C22122.7 (4)
C9—C8—H8B108.6C32—C23—C22118.5 (4)
C7—C8—H8B108.6C25—C24—C23121.0 (4)
H8A—C8—H8B107.6C25—C24—H24119.5
C10—C9—C8112.8 (3)C23—C24—H24119.5
C10—C9—C14109.2 (4)C24—C25—C26120.5 (4)
C8—C9—C14111.2 (4)C24—C25—H25119.7
C10—C9—H9107.8C26—C25—H25119.7
C8—C9—H9107.8C25—C26—C27120.6 (4)
C14—C9—H9107.8C25—C26—H26119.7
C9—C10—C11112.0 (3)C27—C26—H26119.7
C9—C10—H10A109.2C26—C27—C32119.3 (4)
C11—C10—H10A109.2C26—C27—C28122.2 (4)
C9—C10—H10B109.2C32—C27—C28118.5 (4)
C11—C10—H10B109.2C29—C28—C27121.6 (4)
H10A—C10—H10B107.9C29—C28—H28119.2
C10—C11—C12113.4 (4)C27—C28—H28119.2
C10—C11—H11A108.9C28—C29—C30121.8 (4)
C12—C11—H11A108.9C28—C29—H29119.1
C10—C11—H11B108.9C30—C29—H29119.1
C12—C11—H11B108.9C17—C30—C31119.0 (4)
H11A—C11—H11B107.7C17—C30—C29123.2 (4)
C15—C12—C13112.7 (4)C31—C30—C29117.9 (4)
C15—C12—C11110.6 (4)C20—C31—C30120.3 (4)
C13—C12—C11109.6 (4)C20—C31—C32119.5 (4)
C15—C12—H12107.9C30—C31—C32120.2 (4)
C13—C12—H12107.9C27—C32—C23119.6 (4)
C11—C12—H12107.9C27—C32—C31120.0 (4)
C14—C13—C12112.0 (3)C23—C32—C31120.4 (4)
C14—C13—H13A109.2N1—C33—H33A109.5
C12—C13—H13A109.2N1—C33—H33B109.5
C14—C13—H13B109.2H33A—C33—H33B109.5
C12—C13—H13B109.2N1—C33—H33C109.5
H13A—C13—H13B107.9H33A—C33—H33C109.5
C13—C14—C9112.3 (4)H33B—C33—H33C109.5
C13—C14—H14A109.1N1—C34—H34A109.5
C9—C14—H14A109.1N1—C34—H34B109.5
C13—C14—H14B109.1H34A—C34—H34B109.5
C9—C14—H14B109.1N1—C34—H34C109.5
H14A—C14—H14B107.9H34A—C34—H34C109.5
C12—C15—C16115.2 (4)H34B—C34—H34C109.5
C12—C15—H15A108.5C1—N1—C33118.7 (4)
C16—C15—H15A108.5C1—N1—C34118.8 (4)
C12—C15—H15B108.5C33—N1—C34115.0 (4)
C16—C15—H15B108.5
N1—C1—C2—C3176.5 (4)C32—C23—C24—C250.9 (7)
C6—C1—C2—C31.2 (7)C22—C23—C24—C25179.0 (4)
C1—C2—C3—C40.2 (7)C23—C24—C25—C260.6 (7)
C2—C3—C4—C50.8 (7)C24—C25—C26—C270.9 (7)
C2—C3—C4—C7178.4 (4)C25—C26—C27—C321.9 (6)
C3—C4—C5—C61.0 (7)C25—C26—C27—C28177.8 (4)
C7—C4—C5—C6178.3 (4)C26—C27—C28—C29179.5 (4)
C4—C5—C6—C10.0 (7)C32—C27—C28—C290.8 (7)
C2—C1—C6—C51.1 (7)C27—C28—C29—C300.8 (7)
N1—C1—C6—C5176.7 (4)C18—C17—C30—C311.9 (6)
C3—C4—C7—C8101.6 (5)C16—C17—C30—C31178.9 (4)
C5—C4—C7—C877.7 (6)C18—C17—C30—C29178.2 (4)
C4—C7—C8—C9178.9 (4)C16—C17—C30—C291.0 (6)
C7—C8—C9—C1066.3 (5)C28—C29—C30—C17177.4 (4)
C7—C8—C9—C14170.6 (4)C28—C29—C30—C312.5 (6)
C8—C9—C10—C11178.8 (4)C19—C20—C31—C300.6 (6)
C14—C9—C10—C1154.7 (5)C21—C20—C31—C30179.3 (4)
C9—C10—C11—C1255.3 (5)C19—C20—C31—C32178.8 (4)
C10—C11—C12—C15178.0 (4)C21—C20—C31—C320.0 (6)
C10—C11—C12—C1353.2 (5)C17—C30—C31—C201.9 (6)
C15—C12—C13—C14177.1 (4)C29—C30—C31—C20178.2 (4)
C11—C12—C13—C1453.5 (5)C17—C30—C31—C32177.4 (4)
C12—C13—C14—C956.7 (5)C29—C30—C31—C322.5 (6)
C10—C9—C14—C1355.9 (5)C26—C27—C32—C231.6 (6)
C8—C9—C14—C13179.0 (4)C28—C27—C32—C23178.2 (4)
C13—C12—C15—C1663.9 (5)C26—C27—C32—C31179.6 (4)
C11—C12—C15—C16173.0 (4)C28—C27—C32—C310.7 (6)
C12—C15—C16—C17179.5 (4)C24—C23—C32—C270.2 (6)
C15—C16—C17—C1890.4 (5)C22—C23—C32—C27179.9 (4)
C15—C16—C17—C3088.8 (5)C24—C23—C32—C31179.0 (4)
C30—C17—C18—C190.6 (7)C22—C23—C32—C311.0 (6)
C16—C17—C18—C19179.8 (4)C20—C31—C32—C27179.7 (4)
C17—C18—C19—C200.8 (7)C30—C31—C32—C271.0 (6)
C18—C19—C20—C310.8 (6)C20—C31—C32—C230.8 (6)
C18—C19—C20—C21177.9 (4)C30—C31—C32—C23179.8 (4)
C19—C20—C21—C22179.4 (4)C2—C1—N1—C331.6 (7)
C31—C20—C21—C220.7 (7)C6—C1—N1—C33179.2 (4)
C20—C21—C22—C230.5 (7)C2—C1—N1—C34149.8 (4)
C21—C22—C23—C24179.7 (4)C6—C1—N1—C3432.5 (6)
C21—C22—C23—C320.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C23/C32/C31 ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···Cg1i0.952.603.4927 (15)156
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C23/C32/C31 ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···Cg1i0.952.6033.4927 (15)156
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

ST thanks DFG, SFB 755 and SFB 1073 for financial support. STV thanks G. and L. Busse for technical help, and the synthesis group at Max Planck Institute for Biophysical Chemistry, Göttingen.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDewar, M. J. S. & Mole, T. (1956). J. Chem. Soc. pp. 1441–1443.  CrossRef Google Scholar
First citationNorman, R. O. C., Thompson, G. A. & Waters, W. A. (1958). J. Chem. Soc. pp. 175–179.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThekku Veedu, S., Raiser, D., Kia, R., Scholz, M. & Techert, S. (2014a). J. Phys. Chem. B, 118, 3291–3297.  CSD CrossRef CAS PubMed Google Scholar
First citationThekku Veedu, S., Scholz, M., Kia, R., Paulmann, C. & Techert, S. (2014b). Acta Cryst. E70, o16.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z.-Q., Zhang, R., Sun, X.-J., Zhang, Y.-P., Xu, Y. & Xu, C. (2010). Z. Kristallogr. New Cryst. Struct. 225, 573–575.  CAS Google Scholar
First citationWasielewski, M. R. (1992). Chem. Rev. 92, 435–461.  CrossRef CAS Web of Science Google Scholar
First citationWillemse, R. J., Piet, J. J., Warman, J. M., Hartl, F., Verhoeven, J. W. & Brouwer, A. M. (2000). J. Am. Chem. Soc. 122, 3721–3730.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds