organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1-(1-hy­dr­oxy­naphthalen-2-yl)-3-(2,3,4-tri­meth­­oxy­phen­yl)prop-2-en-1-one

aPG and Research Department of Physics, Queen Mary's College, Chennai 600 004, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, India, and cPG and Research Department of Physics, Presidency College, University of Madras, Chennai 600 005, India
*Correspondence e-mail: anbu24663@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 July 2015; accepted 22 July 2015; online 29 July 2015)

The title compound, C22H20O5, is composed of a hy­droxy­naphthyl ring and a tri­meth­oxy­phenyl ring [the planes of which are inclined to one another by 21.61 (10)°] bridged by an unsaturated prop-2-en-1-one group. The mean plane of the prop-2-en-1-one group [–C(=O)—C=C–] is inclined to that of the naphthyl system and benzene rings by 3.77 (14) and 18.01 (16)°, respectively. There is an intra­molecular O—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by a slipped-parallel ππ inter­action [inter­centroid distance = 3.8942 (13) Å, inter­planar distance = 3.478 (9) Å and slippage = 1.751 Å], and stack along the [101] direction. There are no other significant inter­molecular inter­actions present.

1. Related literature

For natural sources of chalcones and flavonoids, see: Anderson & Markham (2006[Anderson, O. M. & Markham, K. R. (2006). In Flavonoids Chemistry, Biochemistry and Applications. New York: Taylor and Francis.]); Yadav et al. (2011[Yadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295-309.]). For their biological activities, see: Lin et al. (2002[Lin, L. C., Kuo, Y. C. & Chou, C. J. (2002). J. Nat. Prod. 65, 505-508.]); Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Mukherjee et al. (2001[Mukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337-345.]); Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Go et al. (2005[Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.]); Sashidhara et al. (2011[Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480-4484.]). For the synthesis by Claisen–Schmidt reaction, see: Shettigar et al. (2006[Shettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44-49.]); Ezhilarasi et al. (2015[Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371-o372.]). For related structures, see: Wu et al. (2005[Wu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434-o1435.]); Lu et al. (2006[Lu, Z.-K., Huang, P.-M. & Yu, J.-F. (2006). Acta Cryst. E62, o5753-o5754.]); Harrison et al. (2007[Harrison, W. T. A., Kumari, V., Ravindra, H. J. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2928.]); Ezhilarasi et al. (2015[Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371-o372.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H20O5

  • Mr = 364.38

  • Monoclinic, P 21 /c

  • a = 8.4523 (8) Å

  • b = 14.0414 (12) Å

  • c = 15.1672 (11) Å

  • β = 94.623 (3)°

  • V = 1794.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.977

  • 19676 measured reflections

  • 3151 independent reflections

  • 2143 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.144

  • S = 1.08

  • 3151 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H7⋯O2 0.82 1.77 2.500 (2) 147

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Chalcones have characteristic 1,3-di­aryl-2-propen-1-one skeleton and occur naturally in roots, rhizomes, heartwood, leaves, petal pigments and seeds of many kinds of flora (Anderson & Markham, 2006; Yadav et al., 2011). Chalcones and chalconoid derivatives originate from the open chain flavonoid family form a wide spectrum of bioactive compounds exhibiting cytoprotective and immuno-modulatory functions (Anderson & Markham, 2006; Lin et al., 2002). The unsaturated ketone moiety, the conjugated double bonds and the radical quenching property of the phenolic group, presents versatile anti-inflammatory (Sashidhara et al., 2011), anti­bacterial, anti-oxidant (Mukherjee et al., 2001), anti­fungal (Go et al., 2005) and anti­cancerous properties (Dhar, 1981; Bhat et al., 2005). The type of substitutuent group and their pattern are linked closely to their pharmacological applications.

Structural commentary top

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths and angles are similar to those reported for the above-mentioned compounds. Atoms O3, O4 and O5 of the meth­oxy groups deviate from the benzene ring by -0.032 (2), 0.026 (2) and -0.012 (2) Å, respectively. The dihedral angle between the planes of the naphthyl system and benzene ring is 21.61 (10)°, and those between the mean plane of the prop-2-en-1-one group [–C11(O2)—C12C13–] and those of the naphthyl system and benzene ring are 3.77 (14) and 18.01 (16)°, respectively. The C22—O5—C17—C18 , C20—O3—C19—C18 and C21—O4—C18—C19 torsion angles [164.3 (2), -73.7 (3) and -87.1 (3)°, respectively] indicate +ap, -sc and -sc orientations of the meth­oxy groups with respect to the benzene ring.

Supra­molecular features top

In the crystal (Fig. 2), the meth­oxy groups substituted in the 3- and 4-positions of the benzene ring allows stacking along [101], rather than close packing of the molecules. Inversion-related molecules are linked by a slipped parallel ππ inter­action [Cg1···Cg1i = 3.8942 (13) Å, inter­planar distance = 3.478 (9) Å and slippage = 1.751 Å; Cg1 is the centroid of C1–C3/C8–C10 ring ; symmetry code: (i) -x+1, -y+1, -z]. There are no other significant inter­molecular inter­actions present.

In comparison to the crystal structure reported for (E)-1-(2-naphthyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Lu et al., 2006), the presence of an intra­molecular O—H···O hydrogen bond (Table 1) between the hy­droxy group and the propenone O atom in the title compound gives steric planar stability to the molecule in the E conformation and restricts the bending of the molecule.

Database survey top

A series of related structures have been reported, viz. (E)-1-(2-hy­droxy­phenyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Wu et al., 2005), (E)-1-(2-naphthyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Lu et al., 2006), 1-(4-hy­droxy­phenyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Harrison et al., 2007) and (E)-3-(3,4-di­meth­oxy­phenyl)-1-(1-hy­droxy­naphthalen-2-yl)prop-2-en-1-one (Ezhilarasi et al., 2015). The synthesis and crystal structure of a new similar chalcone analogue, namely (E)-1-(1-hy­droxy­naphthalen-2-yl)-3-(2,3,4-tri­meth­oxy­phenyl)­prop-2-en-1-one, are reported here.

Synthesis and crystallization top

The title compound was synthesized by Claisen–Schmidt reaction (Shettigar et al., 2006; Ezhilarasi et al., 2015). About 2 mmol of 1-(1-hy­droxy-2-naphthyl)­ethanone was added to 2,3,4-tri­meth­oxy­benzaldehyde (2 mmol) in a 250ml round-bottomed flask and the mixture was dissolved in 100 ml of absolute ethanol through constant stirring. A 10% sodium hydroxide solution (20 ml) was then added to this homogeneous mixture with continuous stirring for 24 h, which was initially pale-yellow but turned orange–red. The progress of the reaction was monitored by thin-layer chromatography (TLC) and upon completion of the reaction, the final mixture was quenched by pouring it into an ice-cold 10% solution of HCl (pH = 3) to precipitate the crude product. The orange precipitate was filtered off, washed with distilled water and dried at room temperature. The crude product after extraction with ethyl acetate was recrystallized with chloro­form and allowed to evaporate slowly in a constant-temperature bath to give orange good-quality block-like crystals after 10 d (yield 79.8%; m.p. 394–395 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined as riding atoms: O—H = 0.82 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(O,C) for hy­droxy and methyl H atoms, and 1.2Ueq(C) for the other H atoms.

Related literature top

For natural sources of chalcones and flavonoids, see: Anderson & Markham (2006); Yadav et al. (2011). For their biological activities, see: Lin et al. (2002); Dhar (1981); Mukherjee et al. (2001); Bhat et al. (2005); Go et al. (2005); Sashidhara et al. (2011). For the synthesis by Claisen-Schmidt reaction, see: Shettigar et al. (2006); Ezhilarasi et al. (2015). For related structures, see: Wu et al. (2005); Lu et al. (2006); Harrison et al. (2007); Ezhilarasi et al. (2015).

Structure description top

Chalcones have characteristic 1,3-di­aryl-2-propen-1-one skeleton and occur naturally in roots, rhizomes, heartwood, leaves, petal pigments and seeds of many kinds of flora (Anderson & Markham, 2006; Yadav et al., 2011). Chalcones and chalconoid derivatives originate from the open chain flavonoid family form a wide spectrum of bioactive compounds exhibiting cytoprotective and immuno-modulatory functions (Anderson & Markham, 2006; Lin et al., 2002). The unsaturated ketone moiety, the conjugated double bonds and the radical quenching property of the phenolic group, presents versatile anti-inflammatory (Sashidhara et al., 2011), anti­bacterial, anti-oxidant (Mukherjee et al., 2001), anti­fungal (Go et al., 2005) and anti­cancerous properties (Dhar, 1981; Bhat et al., 2005). The type of substitutuent group and their pattern are linked closely to their pharmacological applications.

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths and angles are similar to those reported for the above-mentioned compounds. Atoms O3, O4 and O5 of the meth­oxy groups deviate from the benzene ring by -0.032 (2), 0.026 (2) and -0.012 (2) Å, respectively. The dihedral angle between the planes of the naphthyl system and benzene ring is 21.61 (10)°, and those between the mean plane of the prop-2-en-1-one group [–C11(O2)—C12C13–] and those of the naphthyl system and benzene ring are 3.77 (14) and 18.01 (16)°, respectively. The C22—O5—C17—C18 , C20—O3—C19—C18 and C21—O4—C18—C19 torsion angles [164.3 (2), -73.7 (3) and -87.1 (3)°, respectively] indicate +ap, -sc and -sc orientations of the meth­oxy groups with respect to the benzene ring.

In the crystal (Fig. 2), the meth­oxy groups substituted in the 3- and 4-positions of the benzene ring allows stacking along [101], rather than close packing of the molecules. Inversion-related molecules are linked by a slipped parallel ππ inter­action [Cg1···Cg1i = 3.8942 (13) Å, inter­planar distance = 3.478 (9) Å and slippage = 1.751 Å; Cg1 is the centroid of C1–C3/C8–C10 ring ; symmetry code: (i) -x+1, -y+1, -z]. There are no other significant inter­molecular inter­actions present.

In comparison to the crystal structure reported for (E)-1-(2-naphthyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Lu et al., 2006), the presence of an intra­molecular O—H···O hydrogen bond (Table 1) between the hy­droxy group and the propenone O atom in the title compound gives steric planar stability to the molecule in the E conformation and restricts the bending of the molecule.

A series of related structures have been reported, viz. (E)-1-(2-hy­droxy­phenyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Wu et al., 2005), (E)-1-(2-naphthyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Lu et al., 2006), 1-(4-hy­droxy­phenyl)-3-(3,4,5-tri­meth­oxy­phenyl)­prop-2-en-1-one (Harrison et al., 2007) and (E)-3-(3,4-di­meth­oxy­phenyl)-1-(1-hy­droxy­naphthalen-2-yl)prop-2-en-1-one (Ezhilarasi et al., 2015). The synthesis and crystal structure of a new similar chalcone analogue, namely (E)-1-(1-hy­droxy­naphthalen-2-yl)-3-(2,3,4-tri­meth­oxy­phenyl)­prop-2-en-1-one, are reported here.

For natural sources of chalcones and flavonoids, see: Anderson & Markham (2006); Yadav et al. (2011). For their biological activities, see: Lin et al. (2002); Dhar (1981); Mukherjee et al. (2001); Bhat et al. (2005); Go et al. (2005); Sashidhara et al. (2011). For the synthesis by Claisen-Schmidt reaction, see: Shettigar et al. (2006); Ezhilarasi et al. (2015). For related structures, see: Wu et al. (2005); Lu et al. (2006); Harrison et al. (2007); Ezhilarasi et al. (2015).

Synthesis and crystallization top

The title compound was synthesized by Claisen–Schmidt reaction (Shettigar et al., 2006; Ezhilarasi et al., 2015). About 2 mmol of 1-(1-hy­droxy-2-naphthyl)­ethanone was added to 2,3,4-tri­meth­oxy­benzaldehyde (2 mmol) in a 250ml round-bottomed flask and the mixture was dissolved in 100 ml of absolute ethanol through constant stirring. A 10% sodium hydroxide solution (20 ml) was then added to this homogeneous mixture with continuous stirring for 24 h, which was initially pale-yellow but turned orange–red. The progress of the reaction was monitored by thin-layer chromatography (TLC) and upon completion of the reaction, the final mixture was quenched by pouring it into an ice-cold 10% solution of HCl (pH = 3) to precipitate the crude product. The orange precipitate was filtered off, washed with distilled water and dried at room temperature. The crude product after extraction with ethyl acetate was recrystallized with chloro­form and allowed to evaporate slowly in a constant-temperature bath to give orange good-quality block-like crystals after 10 d (yield 79.8%; m.p. 394–395 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined as riding atoms: O—H = 0.82 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(O,C) for hy­droxy and methyl H atoms, and 1.2Ueq(C) for the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O—H···O hydrogen bond is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. The dashed lines indicate the ππ interactions involving inversion-related molecules. H atoms have been omitted for clarity.
(E)-1-(1-Hydroxynaphthalen-2-yl)-3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C22H20O5F(000) = 768
Mr = 364.38Dx = 1.349 Mg m3
Monoclinic, P21/cMelting point: 394(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.4523 (8) Åθ = 2.0–25.0°
b = 14.0414 (12) ŵ = 0.10 mm1
c = 15.1672 (11) ÅT = 293 K
β = 94.623 (3)°Block, orange
V = 1794.2 (3) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3151 independent reflections
Radiation source: fine-focus sealed tube2143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.967, Tmax = 0.977k = 1616
19676 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.7956P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3151 reflectionsΔρmax = 0.19 e Å3
245 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (9)
Crystal data top
C22H20O5V = 1794.2 (3) Å3
Mr = 364.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4523 (8) ŵ = 0.10 mm1
b = 14.0414 (12) ÅT = 293 K
c = 15.1672 (11) Å0.35 × 0.30 × 0.25 mm
β = 94.623 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3151 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2143 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.033
19676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
3151 reflectionsΔρmin = 0.18 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3943 (2)0.35902 (11)0.13288 (11)0.0535 (5)
H70.33680.33150.09490.080*
O20.2007 (2)0.34197 (12)0.00026 (12)0.0590 (5)
C100.3050 (2)0.49116 (15)0.04358 (14)0.0363 (5)
O30.05999 (19)0.28866 (11)0.28956 (12)0.0522 (5)
C80.4894 (2)0.51062 (16)0.17556 (14)0.0384 (5)
O40.2147 (2)0.35002 (12)0.44607 (11)0.0556 (5)
C90.3937 (2)0.45260 (15)0.11569 (14)0.0374 (5)
C120.1103 (3)0.46876 (17)0.09075 (15)0.0441 (6)
H80.10330.53460.09660.053*
C180.1771 (3)0.41365 (16)0.37851 (15)0.0429 (6)
C30.4953 (3)0.60934 (16)0.15994 (15)0.0412 (6)
C140.0573 (3)0.44733 (16)0.23078 (15)0.0408 (6)
C110.2047 (3)0.42933 (17)0.01508 (15)0.0410 (6)
C130.0336 (3)0.41439 (17)0.15184 (15)0.0440 (6)
H90.03890.34890.14300.053*
C190.1002 (3)0.38331 (16)0.29973 (15)0.0422 (6)
C20.4064 (3)0.64762 (16)0.08524 (16)0.0475 (6)
H20.41080.71260.07400.057*
C150.1021 (3)0.54137 (17)0.24414 (15)0.0447 (6)
H100.07580.58530.19950.054*
C10.3154 (3)0.59125 (16)0.03021 (15)0.0439 (6)
H10.25750.61850.01810.053*
C160.1836 (3)0.57236 (17)0.32046 (16)0.0483 (6)
H110.21290.63600.32650.058*
C40.5891 (3)0.66571 (19)0.22005 (17)0.0523 (7)
H30.59340.73110.21110.063*
O50.3020 (2)0.53170 (13)0.46730 (11)0.0612 (5)
C170.2225 (3)0.50847 (17)0.38884 (15)0.0452 (6)
C60.6668 (3)0.5294 (2)0.30668 (17)0.0611 (7)
H50.72400.50330.35580.073*
C70.5762 (3)0.47234 (19)0.25003 (16)0.0510 (6)
H60.57180.40720.26090.061*
C50.6735 (3)0.6270 (2)0.29078 (18)0.0588 (7)
H40.73630.66570.32900.071*
C220.3846 (3)0.6192 (2)0.47248 (19)0.0649 (8)
H130.43530.62710.53100.097*
H140.31110.67050.45970.097*
H120.46330.61960.43030.097*
C200.1934 (3)0.22848 (19)0.2780 (2)0.0645 (8)
H190.15840.16370.27120.097*
H200.26840.23350.32880.097*
H180.24300.24790.22610.097*
C210.0907 (4)0.3367 (2)0.5025 (2)0.0822 (10)
H160.12390.29180.54800.123*
H150.00180.31290.46870.123*
H170.06610.39640.52900.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0681 (12)0.0373 (9)0.0539 (10)0.0006 (8)0.0029 (9)0.0036 (8)
O20.0711 (13)0.0404 (11)0.0636 (12)0.0109 (9)0.0066 (9)0.0000 (8)
C100.0351 (12)0.0352 (12)0.0392 (12)0.0002 (9)0.0064 (10)0.0003 (9)
O30.0430 (10)0.0425 (10)0.0702 (12)0.0030 (8)0.0010 (8)0.0069 (8)
C80.0321 (12)0.0452 (14)0.0384 (12)0.0042 (10)0.0059 (9)0.0026 (10)
O40.0494 (10)0.0588 (11)0.0570 (11)0.0008 (8)0.0054 (8)0.0205 (9)
C90.0405 (12)0.0315 (12)0.0413 (13)0.0040 (9)0.0100 (10)0.0012 (10)
C120.0442 (13)0.0434 (14)0.0448 (14)0.0025 (11)0.0036 (11)0.0007 (11)
C180.0334 (12)0.0464 (14)0.0483 (14)0.0037 (10)0.0010 (10)0.0130 (11)
C30.0366 (12)0.0419 (13)0.0458 (14)0.0017 (10)0.0082 (10)0.0057 (11)
C140.0333 (12)0.0466 (14)0.0426 (13)0.0035 (10)0.0037 (10)0.0055 (11)
C110.0388 (13)0.0424 (14)0.0426 (13)0.0027 (10)0.0083 (10)0.0004 (10)
C130.0399 (13)0.0453 (14)0.0471 (14)0.0021 (10)0.0052 (11)0.0023 (11)
C190.0328 (12)0.0415 (13)0.0522 (15)0.0016 (10)0.0032 (10)0.0056 (11)
C20.0502 (14)0.0339 (13)0.0576 (16)0.0030 (11)0.0006 (12)0.0023 (11)
C150.0434 (13)0.0462 (14)0.0446 (14)0.0043 (11)0.0039 (11)0.0127 (11)
C10.0460 (14)0.0411 (14)0.0436 (13)0.0008 (11)0.0021 (11)0.0057 (11)
C160.0473 (14)0.0426 (14)0.0549 (16)0.0004 (11)0.0042 (12)0.0056 (12)
C40.0461 (14)0.0523 (16)0.0586 (16)0.0045 (12)0.0044 (12)0.0109 (12)
O50.0691 (12)0.0600 (12)0.0521 (11)0.0124 (9)0.0095 (9)0.0049 (9)
C170.0394 (13)0.0512 (15)0.0445 (14)0.0007 (11)0.0009 (10)0.0041 (11)
C60.0545 (16)0.082 (2)0.0450 (15)0.0108 (15)0.0073 (12)0.0051 (14)
C70.0519 (15)0.0547 (16)0.0463 (14)0.0083 (12)0.0035 (12)0.0014 (12)
C50.0469 (15)0.073 (2)0.0553 (17)0.0034 (14)0.0007 (13)0.0192 (14)
C220.0716 (19)0.0591 (17)0.0624 (18)0.0114 (15)0.0036 (14)0.0067 (14)
C200.0590 (17)0.0483 (16)0.087 (2)0.0054 (13)0.0098 (15)0.0017 (14)
C210.079 (2)0.096 (2)0.073 (2)0.0078 (18)0.0174 (17)0.0383 (18)
Geometric parameters (Å, º) top
O1—C91.340 (3)C2—H20.9300
O1—H70.8200C15—C161.369 (3)
O2—C111.250 (3)C15—H100.9300
C10—C91.386 (3)C1—H10.9300
C10—C11.424 (3)C16—C171.390 (3)
C10—C111.464 (3)C16—H110.9300
O3—C191.377 (3)C4—C51.354 (4)
O3—C201.431 (3)C4—H30.9300
C8—C71.403 (3)O5—C171.359 (3)
C8—C31.408 (3)O5—C221.413 (3)
C8—C91.423 (3)C6—C71.365 (4)
O4—C181.377 (3)C6—C51.392 (4)
O4—C211.418 (3)C6—H50.9300
C12—C131.328 (3)C7—H60.9300
C12—C111.454 (3)C5—H40.9300
C12—H80.9300C22—H130.9600
C18—C191.381 (3)C22—H140.9600
C18—C171.391 (3)C22—H120.9600
C3—C41.404 (3)C20—H190.9600
C3—C21.414 (3)C20—H200.9600
C14—C151.384 (3)C20—H180.9600
C14—C191.404 (3)C21—H160.9600
C14—C131.445 (3)C21—H150.9600
C13—H90.9300C21—H170.9600
C2—C11.346 (3)
C9—O1—H7109.5C2—C1—H1119.0
C9—C10—C1117.5 (2)C10—C1—H1119.0
C9—C10—C11119.9 (2)C15—C16—C17119.9 (2)
C1—C10—C11122.6 (2)C15—C16—H11120.1
C19—O3—C20113.18 (18)C17—C16—H11120.1
C7—C8—C3119.3 (2)C5—C4—C3121.5 (3)
C7—C8—C9121.8 (2)C5—C4—H3119.3
C3—C8—C9118.8 (2)C3—C4—H3119.3
C18—O4—C21113.39 (19)C17—O5—C22117.7 (2)
O1—C9—C10122.0 (2)O5—C17—C16124.7 (2)
O1—C9—C8116.40 (19)O5—C17—C18116.2 (2)
C10—C9—C8121.6 (2)C16—C17—C18119.2 (2)
C13—C12—C11122.5 (2)C7—C6—C5119.8 (2)
C13—C12—H8118.7C7—C6—H5120.1
C11—C12—H8118.7C5—C6—H5120.1
O4—C18—C19120.5 (2)C6—C7—C8120.8 (3)
O4—C18—C17119.5 (2)C6—C7—H6119.6
C19—C18—C17119.9 (2)C8—C7—H6119.6
C4—C3—C8118.1 (2)C4—C5—C6120.4 (2)
C4—C3—C2122.8 (2)C4—C5—H4119.8
C8—C3—C2119.0 (2)C6—C5—H4119.8
C15—C14—C19116.8 (2)O5—C22—H13109.5
C15—C14—C13123.2 (2)O5—C22—H14109.5
C19—C14—C13120.0 (2)H13—C22—H14109.5
O2—C11—C12120.0 (2)O5—C22—H12109.5
O2—C11—C10119.5 (2)H13—C22—H12109.5
C12—C11—C10120.5 (2)H14—C22—H12109.5
C12—C13—C14126.2 (2)O3—C20—H19109.5
C12—C13—H9116.9O3—C20—H20109.5
C14—C13—H9116.9H19—C20—H20109.5
O3—C19—C18119.3 (2)O3—C20—H18109.5
O3—C19—C14119.2 (2)H19—C20—H18109.5
C18—C19—C14121.5 (2)H20—C20—H18109.5
C1—C2—C3120.9 (2)O4—C21—H16109.5
C1—C2—H2119.6O4—C21—H15109.5
C3—C2—H2119.6H16—C21—H15109.5
C16—C15—C14122.7 (2)O4—C21—H17109.5
C16—C15—H10118.7H16—C21—H17109.5
C14—C15—H10118.7H15—C21—H17109.5
C2—C1—C10122.1 (2)
C1—C10—C9—O1178.69 (19)C17—C18—C19—C144.0 (3)
C11—C10—C9—O11.6 (3)C15—C14—C19—O3179.34 (19)
C1—C10—C9—C81.3 (3)C13—C14—C19—O32.5 (3)
C11—C10—C9—C8178.34 (19)C15—C14—C19—C182.8 (3)
C7—C8—C9—O11.8 (3)C13—C14—C19—C18175.3 (2)
C3—C8—C9—O1179.03 (18)C4—C3—C2—C1178.7 (2)
C7—C8—C9—C10178.2 (2)C8—C3—C2—C10.9 (3)
C3—C8—C9—C101.0 (3)C19—C14—C15—C160.4 (3)
C21—O4—C18—C1987.1 (3)C13—C14—C15—C16177.7 (2)
C21—O4—C18—C1795.3 (3)C3—C2—C1—C100.6 (4)
C7—C8—C3—C40.2 (3)C9—C10—C1—C20.6 (3)
C9—C8—C3—C4179.44 (19)C11—C10—C1—C2179.1 (2)
C7—C8—C3—C2179.4 (2)C14—C15—C16—C170.9 (4)
C9—C8—C3—C20.2 (3)C8—C3—C4—C50.7 (3)
C13—C12—C11—O28.7 (3)C2—C3—C4—C5179.7 (2)
C13—C12—C11—C10171.3 (2)C22—O5—C17—C1616.3 (4)
C9—C10—C11—O20.3 (3)C22—O5—C17—C18164.3 (2)
C1—C10—C11—O2180.0 (2)C15—C16—C17—O5179.6 (2)
C9—C10—C11—C12179.7 (2)C15—C16—C17—C180.2 (4)
C1—C10—C11—C120.1 (3)O4—C18—C17—O50.3 (3)
C11—C12—C13—C14177.3 (2)C19—C18—C17—O5177.9 (2)
C15—C14—C13—C1213.3 (4)O4—C18—C17—C16179.8 (2)
C19—C14—C13—C12164.7 (2)C19—C18—C17—C162.6 (3)
C20—O3—C19—C1873.7 (3)C5—C6—C7—C80.1 (4)
C20—O3—C19—C14108.4 (2)C3—C8—C7—C60.6 (3)
O4—C18—C19—O30.6 (3)C9—C8—C7—C6179.8 (2)
C17—C18—C19—O3178.2 (2)C3—C4—C5—C61.2 (4)
O4—C18—C19—C14178.4 (2)C7—C6—C5—C40.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H7···O20.821.772.500 (2)147
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H7···O20.821.772.500 (2)147
 

Acknowledgements

The authors thank SAIF, IIT Madras, for providing the X-ray data collection facility and Central Instrumentation Facility, Queen Mary's College, Chennai-4, for providing the computing facility.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnderson, O. M. & Markham, K. R. (2006). In Flavonoids Chemistry, Biochemistry and Applications. New York: Taylor and Francis.  Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationEzhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGo, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Kumari, V., Ravindra, H. J. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, L. C., Kuo, Y. C. & Chou, C. J. (2002). J. Nat. Prod. 65, 505–508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, Z.-K., Huang, P.-M. & Yu, J.-F. (2006). Acta Cryst. E62, o5753–o5754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480–4484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44–49.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434–o1435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295–309.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds