organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 13-(2-meth­­oxy­phenyl)-3,4-di­hydro-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione

aUnité de recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université des frères Mentouri, Constantine 25000, Algeria, bDépartement Sciences de la matière, Université Oum El Bouaghi, 04000, Algeria, and cLaboratoire de Chimie Organique, EA 4446 Biomolécules, Cancer et Chimiorésistances (B2C), Université Claude Bernard Lyon 1, Faculté de Pharmacie–ISPB, Lyon Cedex 08, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 July 2015; accepted 22 July 2015; online 25 July 2015)

In the title compound, C22H18N2O4, the three fused rings of the pyrazolo­phthalazine moiety are coplanar (r.m.s. deviation = 0.027 Å). The cyclo­hexene ring fused to the pyrazolidine ring, so forming the indazolophthalazine unit, has a half-chair conformation. The benzene ring is almost normal to the mean plane of the pyrazolo­phthalazine moiety, with a dihedral angle of 87.21 (6)° between their planes. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds forming inversion dimers. The dimers are linked via C—H⋯π inter­actions, forming slabs parallel to (100). Between the slabs there are weak ππ inter­actions [shortest inter-centroid distance = 3.6664 (9) Å], leading to the formation of a three-dimensional structure.

1. Related literature

For the synthesis of phthalazine derivatives, see: Hasaninejed et al., (2012[Hasaninejed, A., Kazerooni, M. R. & Zare, A. (2012). Catal. Today, 196, 148-155.]); Keshipour et al., (2012[Keshipour, S., Shojaei, S. & Shaabani, A. (2012). Tetrahedron, 68, 6141-6145.]). For applications of this class of compounds, see: Soliman et al. (1981[Soliman, R., Gabr, M., Abouzeit-har, M. S. & Sharabi, F. M. (1981). J. Pharm. Sci. 70, 94-96.]); Nomoto et al. (1990[Nomoto, Y., Obase, H., Takai, H., Teranishi, M., Nakamura, J. & Kubo, K. (1990). Chem. Pharm. Bull. 38, 2179-2183.]); Abd El-Wahab et al. (2013[El-Wahab, A. H. F. A., Mohamed, H. M., El-Agrody, A. M., El-Nassag, M. A. & Bedair, A. H. (2013). Eur. J. Chem. 4, 10-19.]); Cashman & Ghirmai (2009[Cashman, J. R. & Ghirmai, S. (2009). Bioorg. Med. Chem. 17, 6890-6897.]); Hall et al. (1992[Hall, I. H., Hall, E. S. & Wong, O. T. (1992). Anticancer Drugs, 3, 55-62.], 2001[Hall, I. H., Covington, D. W., Wheaton, J. R., Izydore, R. A. & Zhou, X. (2001). Pharmazie, 56, 168-174.]). For the synthesis of the title compound, see: Khurana & Magoo (2009[Khurana, J. M. & Magoo, D. (2009). Tetrahedron Lett. 50, 7300-7303.]). For similar condensation reactions as used here, see: Atar et al. (2015[Atar, A. B., Lee, S. D., Cho, B. G., Cho, D. W. & Jeong, Y. T. (2015). Res. Chem. Intermed. doi:10.1007/s11164-015-2113-3.]). For the Cambridge Structural Database, see: Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H18N2O4

  • Mr = 374.38

  • Monoclinic, P 21 /c

  • a = 8.5839 (2) Å

  • b = 11.8474 (2) Å

  • c = 17.5317 (4) Å

  • β = 102.199 (1)°

  • V = 1742.66 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.15 × 0.11 × 0.08 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.991

  • 17655 measured reflections

  • 5142 independent reflections

  • 3865 reflections with I > 2σ(I)

  • Rint = 0.02

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.163

  • S = 1.03

  • 5142 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of ring C2-C7.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O1i 0.96 2.43 3.379 (2) 168
C20—H20⋯Cg3ii 0.93 2.90 3.726 (2) 149
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Nitro­gen heterocycles containing a phthalazine moiety have attracted significant synthetic inter­est because they show biological and pharmacological activities such as anti­convulsant (Soliman et al., 1981), cardiotonic (Nomoto et al., 1990), and anti­microbial (Abd El-Wahab et al., 2013). In addition, phthalazines have been reported to act as potential inhibitors of serotonin re-uptake (Cashman & Ghirmai, 2009) and as effective anti-proliferative agents against different human and murine tumor cells (Hall et al., 1992;2001). During the last two decades there is a growing inter­est in the synthesis of several phthalazines as promising drug candidates for the treatment of cancer (Hasaninejed et al., 2012; Keshipour et al., 2012). Herein we report on the synthesis and crystal structure of the title compound, synthesized by condensation of phthalhydrazide, 2-meth­oxy­benzaldehyde and 1,3-cyclo­hexadione (Atar et al., 2015).

The molecule structure of the title compound is illustrated in Fig. 1. It consists of an indazolone moiety bearing a meth­oxy­penyl group and attached to a phthalazine. The phthalazine ring is quasi-planar with a maximum deviation of 0.0203 (17) Å for atom C3, and forms a dihedral angle of 86.76 (4) ° with the benzene ring. All bond distances and angles are within the ranges of accepted values, CSD, (Groom & Allen, 2014).

In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds forming inversion dimers (Table 1). The dimers are linked via C—H···π inter­actions forming slabs parallel to (100); Table 1 and Fig. 2. Between the slabs there are weak ππ inter­actions [shortest inter-centroid distance = 3.6664 (9) ° for Cg1···Cg3i; Cg1 and Cg3 and the centroids of rings N1/N2/C9/C10/C15 and C2—C7, respectively; symmetry code: -x+1, -y, -z+1], leading to the formation of a three-dimensional structure.

Synthesis and crystallization top

Phthalhydrazide (1.0 mmol), 2-meth­oxy­benzaldehyde (1.2 mmol), 1,3-cyclo­hexane­dione (1.0 mmol), H2SO4 (0.15 mmol), and 10 ml H2O-EtOH were mixed under reflux following a published procedure (Khurana & Magoo, 2009). The precipitate formed was collected by filtration, and dried. The crude product was washed well with hot ethanol. The solid obtained, was recrystallized in CHCl3 giving colourless crystals of the title compound on slow evaporation of the solvent.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For the synthesis of phthalazine derivatives, see: Hasaninejed et al., (2012); Keshipour et al., (2012). For applications of this class of compounds, see: Soliman et al. (1981); Nomoto et al. (1990); Abd El-Wahab et al. (2013); Cashman & Ghirmai (2009); Hall et al. (1992, 2001). For the synthesis of the title compound, see: Khurana & Magoo (2009). For similar condensation reactions as used here, see: Atar et al. (2015). For the Cambridge Structural database, see: Groom & Allen (2014).

Structure description top

Nitro­gen heterocycles containing a phthalazine moiety have attracted significant synthetic inter­est because they show biological and pharmacological activities such as anti­convulsant (Soliman et al., 1981), cardiotonic (Nomoto et al., 1990), and anti­microbial (Abd El-Wahab et al., 2013). In addition, phthalazines have been reported to act as potential inhibitors of serotonin re-uptake (Cashman & Ghirmai, 2009) and as effective anti-proliferative agents against different human and murine tumor cells (Hall et al., 1992;2001). During the last two decades there is a growing inter­est in the synthesis of several phthalazines as promising drug candidates for the treatment of cancer (Hasaninejed et al., 2012; Keshipour et al., 2012). Herein we report on the synthesis and crystal structure of the title compound, synthesized by condensation of phthalhydrazide, 2-meth­oxy­benzaldehyde and 1,3-cyclo­hexadione (Atar et al., 2015).

The molecule structure of the title compound is illustrated in Fig. 1. It consists of an indazolone moiety bearing a meth­oxy­penyl group and attached to a phthalazine. The phthalazine ring is quasi-planar with a maximum deviation of 0.0203 (17) Å for atom C3, and forms a dihedral angle of 86.76 (4) ° with the benzene ring. All bond distances and angles are within the ranges of accepted values, CSD, (Groom & Allen, 2014).

In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds forming inversion dimers (Table 1). The dimers are linked via C—H···π inter­actions forming slabs parallel to (100); Table 1 and Fig. 2. Between the slabs there are weak ππ inter­actions [shortest inter-centroid distance = 3.6664 (9) ° for Cg1···Cg3i; Cg1 and Cg3 and the centroids of rings N1/N2/C9/C10/C15 and C2—C7, respectively; symmetry code: -x+1, -y, -z+1], leading to the formation of a three-dimensional structure.

For the synthesis of phthalazine derivatives, see: Hasaninejed et al., (2012); Keshipour et al., (2012). For applications of this class of compounds, see: Soliman et al. (1981); Nomoto et al. (1990); Abd El-Wahab et al. (2013); Cashman & Ghirmai (2009); Hall et al. (1992, 2001). For the synthesis of the title compound, see: Khurana & Magoo (2009). For similar condensation reactions as used here, see: Atar et al. (2015). For the Cambridge Structural database, see: Groom & Allen (2014).

Synthesis and crystallization top

Phthalhydrazide (1.0 mmol), 2-meth­oxy­benzaldehyde (1.2 mmol), 1,3-cyclo­hexane­dione (1.0 mmol), H2SO4 (0.15 mmol), and 10 ml H2O-EtOH were mixed under reflux following a published procedure (Khurana & Magoo, 2009). The precipitate formed was collected by filtration, and dried. The crude product was washed well with hot ethanol. The solid obtained, was recrystallized in CHCl3 giving colourless crystals of the title compound on slow evaporation of the solvent.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound, showing the atom labelling. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound.
13-(2-Methoxyphenyl)-3,4-dihydro-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione top
Crystal data top
C22H18N2O4F(000) = 784
Mr = 374.38Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7478 reflections
a = 8.5839 (2) Åθ = 3.0–30.1°
b = 11.8474 (2) ŵ = 0.10 mm1
c = 17.5317 (4) ÅT = 295 K
β = 102.199 (1)°Prism, colourless
V = 1742.66 (6) Å30.15 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
5142 independent reflections
Radiation source: Enraf Nonius FR5903865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.02
CCD rotation images, thick slices scansθmax = 30.2°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1112
Tmin = 0.983, Tmax = 0.991k = 1516
17655 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.6856P]
where P = (Fo2 + 2Fc2)/3
5142 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C22H18N2O4V = 1742.66 (6) Å3
Mr = 374.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5839 (2) ŵ = 0.10 mm1
b = 11.8474 (2) ÅT = 295 K
c = 17.5317 (4) Å0.15 × 0.11 × 0.08 mm
β = 102.199 (1)°
Data collection top
Bruker APEXII
diffractometer
5142 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
3865 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.991Rint = 0.02
17655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
5142 reflectionsΔρmin = 0.41 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74930 (19)0.02215 (12)0.50539 (9)0.0359 (3)
C20.68942 (17)0.04887 (12)0.56184 (8)0.0337 (3)
C30.6996 (2)0.16641 (14)0.55560 (10)0.0430 (4)
H30.74350.1980.51630.052*
C40.6449 (2)0.23529 (15)0.60752 (12)0.0490 (4)
H40.65240.31330.60340.059*
C50.5787 (2)0.18879 (16)0.66597 (11)0.0489 (4)
H50.54240.23570.7010.059*
C60.5665 (2)0.07285 (16)0.67227 (10)0.0447 (4)
H60.52170.04210.71150.054*
C70.62115 (17)0.00193 (13)0.61993 (9)0.0341 (3)
C80.60256 (17)0.12191 (13)0.62625 (9)0.0352 (3)
C90.65657 (17)0.30813 (12)0.56789 (8)0.0320 (3)
H90.54590.33450.55690.038*
C100.72602 (18)0.32444 (12)0.49673 (8)0.0333 (3)
C110.7440 (2)0.43077 (15)0.45874 (11)0.0485 (4)
C120.8116 (5)0.4197 (2)0.38642 (18)0.0957 (11)
H12A0.72320.41770.34160.115*
H12B0.87260.48730.38180.115*
C130.9104 (4)0.3247 (2)0.38186 (19)0.0949 (11)
H13A1.01420.33950.41480.114*
H13B0.92510.31930.32860.114*
C140.8543 (2)0.21095 (15)0.40457 (10)0.0430 (4)
H14A0.7820.17750.36030.052*
H14B0.94480.16080.42010.052*
C150.77157 (17)0.22582 (12)0.47050 (8)0.0320 (3)
C160.74875 (17)0.36667 (12)0.64012 (8)0.0315 (3)
C170.67423 (19)0.44961 (13)0.67530 (9)0.0382 (3)
H170.56670.46450.65620.046*
C180.7569 (2)0.51077 (14)0.73840 (10)0.0435 (4)
H180.70550.56640.76120.052*
C190.9162 (2)0.48835 (14)0.76704 (9)0.0422 (4)
H190.97250.52960.80910.051*
C200.9930 (2)0.40511 (14)0.73373 (9)0.0402 (3)
H201.10010.38980.75380.048*
C210.90965 (19)0.34405 (13)0.67001 (9)0.0350 (3)
C221.1419 (2)0.25375 (17)0.64403 (14)0.0562 (5)
H22A1.18020.32240.62530.084*
H22B1.170.19090.61510.084*
H22C1.18930.24430.69840.084*
N10.73260 (15)0.13669 (10)0.51526 (7)0.0322 (3)
N20.65943 (15)0.18347 (10)0.57313 (7)0.0331 (3)
O10.80755 (19)0.01451 (11)0.45288 (8)0.0575 (4)
O20.53946 (16)0.16813 (11)0.67456 (8)0.0511 (3)
O30.7009 (2)0.52090 (11)0.48121 (10)0.0660 (4)
O40.97523 (15)0.25908 (12)0.63425 (8)0.0533 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0434 (8)0.0281 (7)0.0371 (7)0.0015 (6)0.0108 (6)0.0034 (5)
C20.0333 (7)0.0295 (7)0.0368 (7)0.0023 (5)0.0038 (5)0.0018 (5)
C30.0455 (9)0.0316 (8)0.0503 (9)0.0000 (6)0.0063 (7)0.0012 (7)
C40.0474 (9)0.0334 (8)0.0614 (11)0.0041 (7)0.0008 (8)0.0097 (7)
C50.0398 (8)0.0467 (10)0.0576 (10)0.0079 (7)0.0041 (7)0.0190 (8)
C60.0393 (8)0.0485 (10)0.0479 (9)0.0041 (7)0.0129 (7)0.0096 (7)
C70.0293 (6)0.0348 (7)0.0378 (7)0.0027 (5)0.0058 (5)0.0040 (6)
C80.0335 (7)0.0375 (8)0.0365 (7)0.0027 (6)0.0118 (5)0.0010 (6)
C90.0334 (7)0.0283 (7)0.0354 (7)0.0020 (5)0.0094 (5)0.0025 (5)
C100.0368 (7)0.0303 (7)0.0328 (6)0.0014 (6)0.0075 (5)0.0002 (5)
C110.0612 (11)0.0334 (8)0.0553 (10)0.0031 (7)0.0225 (8)0.0080 (7)
C120.162 (3)0.0495 (13)0.105 (2)0.0176 (16)0.095 (2)0.0275 (13)
C130.151 (3)0.0484 (12)0.118 (2)0.0047 (15)0.104 (2)0.0130 (13)
C140.0528 (9)0.0401 (8)0.0422 (8)0.0032 (7)0.0242 (7)0.0027 (7)
C150.0349 (7)0.0310 (7)0.0309 (6)0.0036 (5)0.0087 (5)0.0010 (5)
C160.0368 (7)0.0270 (6)0.0323 (6)0.0008 (5)0.0107 (5)0.0015 (5)
C170.0401 (8)0.0325 (7)0.0451 (8)0.0028 (6)0.0161 (6)0.0045 (6)
C180.0539 (10)0.0345 (8)0.0467 (8)0.0000 (7)0.0210 (7)0.0113 (7)
C190.0536 (9)0.0381 (8)0.0366 (7)0.0072 (7)0.0132 (7)0.0092 (6)
C200.0416 (8)0.0416 (8)0.0366 (7)0.0011 (7)0.0065 (6)0.0040 (6)
C210.0408 (8)0.0312 (7)0.0342 (7)0.0049 (6)0.0104 (6)0.0027 (5)
C220.0522 (10)0.0382 (9)0.0834 (14)0.0091 (8)0.0259 (10)0.0052 (9)
N10.0396 (6)0.0275 (6)0.0326 (6)0.0021 (5)0.0145 (5)0.0036 (5)
N20.0398 (6)0.0286 (6)0.0346 (6)0.0010 (5)0.0161 (5)0.0038 (5)
O10.0913 (10)0.0349 (6)0.0579 (8)0.0002 (6)0.0419 (7)0.0080 (6)
O20.0617 (8)0.0472 (7)0.0543 (7)0.0017 (6)0.0349 (6)0.0038 (6)
O30.0920 (11)0.0336 (7)0.0801 (10)0.0118 (7)0.0353 (9)0.0094 (6)
O40.0429 (6)0.0565 (8)0.0566 (7)0.0165 (6)0.0016 (5)0.0248 (6)
Geometric parameters (Å, º) top
C1—O11.2168 (19)C12—H12A0.97
C1—N11.3794 (19)C12—H12B0.97
C1—C21.472 (2)C13—C141.512 (3)
C2—C71.394 (2)C13—H13A0.97
C2—C31.401 (2)C13—H13B0.97
C3—C41.377 (2)C14—C151.490 (2)
C3—H30.93C14—H14A0.97
C4—C51.387 (3)C14—H14B0.97
C4—H40.93C15—N11.3977 (18)
C5—C61.384 (3)C16—C171.386 (2)
C5—H50.93C16—C211.396 (2)
C6—C71.396 (2)C17—C181.386 (2)
C6—H60.93C17—H170.93
C7—C81.483 (2)C18—C191.379 (3)
C8—O21.2266 (18)C18—H180.93
C8—N21.3526 (19)C19—C201.382 (2)
C9—N21.4797 (19)C19—H190.93
C9—C101.504 (2)C20—C211.395 (2)
C9—C161.512 (2)C20—H200.93
C9—H90.98C21—O41.3684 (18)
C10—C151.344 (2)C22—O41.406 (2)
C10—C111.448 (2)C22—H22A0.96
C11—O31.222 (2)C22—H22B0.96
C11—C121.507 (3)C22—H22C0.96
C12—C131.422 (4)N1—N21.4143 (16)
O1—C1—N1121.07 (14)C14—C13—H13A107.9
O1—C1—C2124.22 (14)C12—C13—H13B107.9
N1—C1—C2114.70 (13)C14—C13—H13B107.9
C7—C2—C3119.78 (15)H13A—C13—H13B107.2
C7—C2—C1121.59 (14)C15—C14—C13109.23 (15)
C3—C2—C1118.63 (14)C15—C14—H14A109.8
C4—C3—C2120.11 (17)C13—C14—H14A109.8
C4—C3—H3119.9C15—C14—H14B109.8
C2—C3—H3119.9C13—C14—H14B109.8
C3—C4—C5120.23 (17)H14A—C14—H14B108.3
C3—C4—H4119.9C10—C15—N1110.08 (12)
C5—C4—H4119.9C10—C15—C14126.12 (14)
C6—C5—C4120.21 (16)N1—C15—C14123.79 (13)
C6—C5—H5119.9C17—C16—C21118.82 (14)
C4—C5—H5119.9C17—C16—C9119.25 (13)
C5—C6—C7120.20 (17)C21—C16—C9121.84 (12)
C5—C6—H6119.9C18—C17—C16121.27 (15)
C7—C6—H6119.9C18—C17—H17119.4
C2—C7—C6119.45 (15)C16—C17—H17119.4
C2—C7—C8121.20 (13)C19—C18—C17119.40 (14)
C6—C7—C8119.34 (14)C19—C18—H18120.3
O2—C8—N2120.73 (15)C17—C18—H18120.3
O2—C8—C7124.31 (14)C18—C19—C20120.55 (15)
N2—C8—C7114.96 (13)C18—C19—H19119.7
N2—C9—C10100.10 (11)C20—C19—H19119.7
N2—C9—C16114.01 (12)C19—C20—C21119.91 (15)
C10—C9—C16113.99 (12)C19—C20—H20120
N2—C9—H9109.5C21—C20—H20120
C10—C9—H9109.5O4—C21—C20123.87 (14)
C16—C9—H9109.5O4—C21—C16116.07 (13)
C15—C10—C11122.13 (14)C20—C21—C16120.04 (14)
C15—C10—C9111.54 (13)O4—C22—H22A109.5
C11—C10—C9126.33 (14)O4—C22—H22B109.5
O3—C11—C10122.89 (17)H22A—C22—H22B109.5
O3—C11—C12122.94 (17)O4—C22—H22C109.5
C10—C11—C12114.09 (16)H22A—C22—H22C109.5
C13—C12—C11117.2 (2)H22B—C22—H22C109.5
C13—C12—H12A108C1—N1—C15129.00 (12)
C11—C12—H12A108C1—N1—N2123.30 (12)
C13—C12—H12B108C15—N1—N2107.58 (11)
C11—C12—H12B108C8—N2—N1124.21 (12)
H12A—C12—H12B107.2C8—N2—C9125.25 (12)
C12—C13—C14117.6 (2)N1—N2—C9110.53 (11)
C12—C13—H13A107.9C21—O4—C22118.93 (14)
O1—C1—C2—C7178.79 (16)N2—C9—C16—C17127.42 (14)
N1—C1—C2—C70.2 (2)C10—C9—C16—C17118.48 (15)
O1—C1—C2—C30.2 (2)N2—C9—C16—C2156.20 (18)
N1—C1—C2—C3179.20 (14)C10—C9—C16—C2157.90 (18)
C7—C2—C3—C41.1 (2)C21—C16—C17—C180.9 (2)
C1—C2—C3—C4179.91 (15)C9—C16—C17—C18175.63 (15)
C2—C3—C4—C50.3 (3)C16—C17—C18—C190.3 (3)
C3—C4—C5—C60.3 (3)C17—C18—C19—C200.5 (3)
C4—C5—C6—C70.2 (3)C18—C19—C20—C210.8 (3)
C3—C2—C7—C61.2 (2)C19—C20—C21—O4178.87 (16)
C1—C2—C7—C6179.82 (14)C19—C20—C21—C160.2 (2)
C3—C2—C7—C8177.54 (14)C17—C16—C21—O4178.16 (14)
C1—C2—C7—C81.4 (2)C9—C16—C21—O45.4 (2)
C5—C6—C7—C20.6 (2)C17—C16—C21—C200.6 (2)
C5—C6—C7—C8178.20 (15)C9—C16—C21—C20175.82 (14)
C2—C7—C8—O2177.83 (15)O1—C1—N1—C151.5 (3)
C6—C7—C8—O21.0 (2)C2—C1—N1—C15177.53 (13)
C2—C7—C8—N21.4 (2)O1—C1—N1—N2177.13 (15)
C6—C7—C8—N2179.86 (14)C2—C1—N1—N21.9 (2)
N2—C9—C10—C154.23 (16)C10—C15—N1—C1175.69 (15)
C16—C9—C10—C15117.89 (14)C14—C15—N1—C15.3 (2)
N2—C9—C10—C11175.59 (16)C10—C15—N1—N20.45 (16)
C16—C9—C10—C1162.3 (2)C14—C15—N1—N2178.51 (14)
C15—C10—C11—O3178.88 (18)O2—C8—N2—N1179.53 (14)
C9—C10—C11—O30.9 (3)C7—C8—N2—N10.3 (2)
C15—C10—C11—C122.2 (3)O2—C8—N2—C91.5 (2)
C9—C10—C11—C12177.6 (2)C7—C8—N2—C9179.30 (13)
O3—C11—C12—C13156.7 (3)C1—N1—N2—C82.1 (2)
C10—C11—C12—C1326.6 (4)C15—N1—N2—C8178.49 (13)
C11—C12—C13—C1445.2 (5)C1—N1—N2—C9178.81 (13)
C12—C13—C14—C1535.9 (4)C15—N1—N2—C92.40 (15)
C11—C10—C15—N1176.72 (15)C10—C9—N2—C8177.02 (14)
C9—C10—C15—N13.11 (17)C16—C9—N2—C860.88 (19)
C11—C10—C15—C144.3 (3)C10—C9—N2—N13.88 (14)
C9—C10—C15—C14175.83 (14)C16—C9—N2—N1118.22 (13)
C13—C14—C15—C1011.7 (3)C20—C21—O4—C2220.5 (3)
C13—C14—C15—N1167.1 (2)C16—C21—O4—C22160.83 (16)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of ring C2-C7.
D—H···AD—HH···AD···AD—H···A
C22—H22B···O1i0.962.433.379 (2)168
C20—H20···Cg3ii0.932.903.726 (2)149
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of ring C2-C7.
D—H···AD—HH···AD···AD—H···A
C22—H22B···O1i0.962.433.379 (2)168
C20—H20···Cg3ii0.932.903.726 (2)149
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

Thanks are due to MESRS and DG-RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la direction générale de la recherche – Algérie) for financial support.

References

First citationAtar, A. B., Lee, S. D., Cho, B. G., Cho, D. W. & Jeong, Y. T. (2015). Res. Chem. Intermed. doi:10.1007/s11164-015-2113-3.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCashman, J. R. & Ghirmai, S. (2009). Bioorg. Med. Chem. 17, 6890–6897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Wahab, A. H. F. A., Mohamed, H. M., El-Agrody, A. M., El-Nassag, M. A. & Bedair, A. H. (2013). Eur. J. Chem. 4, 10–19.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHall, I. H., Covington, D. W., Wheaton, J. R., Izydore, R. A. & Zhou, X. (2001). Pharmazie, 56, 168–174.  Web of Science PubMed CAS Google Scholar
First citationHall, I. H., Hall, E. S. & Wong, O. T. (1992). Anticancer Drugs, 3, 55–62.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHasaninejed, A., Kazerooni, M. R. & Zare, A. (2012). Catal. Today, 196, 148–155.  Web of Science CrossRef CAS Google Scholar
First citationKeshipour, S., Shojaei, S. & Shaabani, A. (2012). Tetrahedron, 68, 6141–6145.  Web of Science CrossRef CAS Google Scholar
First citationKhurana, J. M. & Magoo, D. (2009). Tetrahedron Lett. 50, 7300–7303.  Web of Science CrossRef CAS Google Scholar
First citationNomoto, Y., Obase, H., Takai, H., Teranishi, M., Nakamura, J. & Kubo, K. (1990). Chem. Pharm. Bull. 38, 2179–2183.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoliman, R., Gabr, M., Abouzeit-har, M. S. & Sharabi, F. M. (1981). J. Pharm. Sci. 70, 94–96.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds