organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-amino-1-(4-hy­dr­oxy­phen­yl)-1H-benzo[f]chromene-2-carbo­nitrile

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, cChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 29 June 2015; accepted 30 June 2015; online 4 July 2015)

In the title compound, C20H14N2O2, the hy­droxy­benzene ring is almost perpendicular to the mean plane of the naphthalene ring system, making a dihedral angle of 85.56 (4)°. The 4H-pyran ring fused with the naphthalene ring system has a flattened boat conformation. In the crystal, O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular layer in the bc plane; N—H⋯π inter­actions also contribute to this arrangement. The layers are linked by weak by C—H⋯π and ππ [inter-centroid separation = 3.8713 (7) Å] inter­actions.

1. Related literature

For the biological activity of some heterocyclic derivatives containing the 4H-pyran unit, see: Elnagdi et al. (1983[Elnagdi, M. H., Elfaham, H. A. & Elgemeie, G. E. H. (1983). Heterocycles, 20, 519-550.]); Goldmann & Stoltefus (1991[Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559-1578.]); Perez-Perez et al. (1995[Pérez-Pérez, M., Balzarini, J., Rozenski, J., De Clercq, E. & Herdewijn, P. (1995). Bioorg. Med. Chem. Lett. 5, 1115-1118.]); Fan et al. (2010[Fan, X., Feng, D., Qu, Y., Zhang, X., Wang, J., Loiseau, P. M., Andrei, G., Snoeck, R. & Clercq, E. D. (2010). Bioorg. Med. Chem. Lett. 20, 809-813.]); Aytemir et al. (2004[Aytemir, M. D., Çaliş, U., Ünsal, & Özalp, M. (2004). Arch. Pharm. Pharm. Med. Chem. 337, 281-288.]); Uher et al. (1994[Uher, M., Konečný, V. & Rajniaková, O. (1994). Chem. Pap. 48, 282-284.]). For similar structures, see: Akkurt et al. (2013[Akkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.], 2015[Akkurt, M., Horton, P. N., Mohamed, S. K., Younes, S. H. H. & Albayati, M. R. (2015). Acta Cryst. E71, o481-o482.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H14N2O2

  • Mr = 314.33

  • Monoclinic, P 21 /c

  • a = 12.1086 (8) Å

  • b = 13.1418 (9) Å

  • c = 10.1552 (7) Å

  • β = 96.992 (1)°

  • V = 1603.97 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.21 × 0.08 × 0.07 mm

2.2. Data collection

  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.738, Tmax = 1.000

  • 17411 measured reflections

  • 3679 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.06

  • 3679 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C5–C10 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.90 (1) 2.03 (1) 2.9191 (12) 173 (1)
O2—H2O⋯N2ii 0.89 (1) 1.86 (1) 2.7403 (12) 175 (2)
N1—H2NCg4iii 0.88 (1) 2.55 (1) 3.2340 (11) 135 (1)
C11—H11⋯Cg3iv 0.95 2.97 3.7610 (13) 142
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

During the last decade, 4H-pyrans have held a unique role in medicinal chemistry due to their biological and pharmacological activities (Elnagdi et al., 1983; Goldmann & Stoltefus, 1991). Fused pyran derivatives also exhibit a wide spectrum of biological and pharmacological properties, such as antiviral and antileishmanial (Perez-Perez et al., 1995; Fan et al., 2010), anticonvulsant and antimicrobial (Aytemir et al., 2004) and insecticidal (Uher et al., 1994). In this context we report in this study the synthesis and crystal structural determination for the title compound.

In the title compound (Fig. 1), the hydroxy-benzene ring (C15–C20) is approximately perpendicular to the naphthalene ring system [C4–C13, maximum deviation = -0.017 (1) Å at atom C13] as indicated by the dihedral angle of 85.56 (4)°. The 4H-pyran ring (O1/C1–C4/C13) in the title compound is puckered with the puckering parameters of QT = 0.199 (1) Å, θ = 102.9 (3) ° and φ = 354.2 (3) °. The bond lengths and angles in the title compound are within normal ranges and comparable with those reported for the similar structures (Akkurt et al., 2013; 2015).

In the crystal structure, molecules are linked by N—H···O and O—H···N hydrogen bonds (Table 1, Fig. 2), which leads to a layer in the bc plane.

Related literature top

For general biological activities of some heterocyclic derivatives containing the 4H-pyran moiety, see: Elnagdi et al. (1983); Goldmann & Stoltefus (1991); Perez-Perez et al. (1995); Fan et al. (2010); Aytemir et al. (2004); Uher et al. (1994). For similar structures, see: Akkurt et al. (2013, 2015).

Experimental top

The title compound was obtained in 95% yield from the reaction of 2-naphthol (144 mg; 1 mmol) and an equimolar amount of 4-hydroxybenzylidene-malononitrile (180 mg; 1 mmol) in absolute ethanol (10 ml ) in the presence of a catalytic amount of piperidine under reflux for 3 h. Crystallization of the crude product from ethanol gave colourless crystals of the title compound suitable for X-ray crystallography·M.pt: 521 K.

Refinement top

The H atoms of the OH and NH2 group were located in a difference Fourier map and were refined freely [N1—H1N = 0.896 (12) Å, N1—H2N = 0.883 (12) Å and O2—H2O = 0.885 (13) Å]. The H atoms attached to the C atoms were positioned geometrically, with C—H = 0.95 Å and C—H = 1.00 Å for aromatic and methine H, respectively, and with Uiso(H) = 1.2Ueq(C).

Structure description top

During the last decade, 4H-pyrans have held a unique role in medicinal chemistry due to their biological and pharmacological activities (Elnagdi et al., 1983; Goldmann & Stoltefus, 1991). Fused pyran derivatives also exhibit a wide spectrum of biological and pharmacological properties, such as antiviral and antileishmanial (Perez-Perez et al., 1995; Fan et al., 2010), anticonvulsant and antimicrobial (Aytemir et al., 2004) and insecticidal (Uher et al., 1994). In this context we report in this study the synthesis and crystal structural determination for the title compound.

In the title compound (Fig. 1), the hydroxy-benzene ring (C15–C20) is approximately perpendicular to the naphthalene ring system [C4–C13, maximum deviation = -0.017 (1) Å at atom C13] as indicated by the dihedral angle of 85.56 (4)°. The 4H-pyran ring (O1/C1–C4/C13) in the title compound is puckered with the puckering parameters of QT = 0.199 (1) Å, θ = 102.9 (3) ° and φ = 354.2 (3) °. The bond lengths and angles in the title compound are within normal ranges and comparable with those reported for the similar structures (Akkurt et al., 2013; 2015).

In the crystal structure, molecules are linked by N—H···O and O—H···N hydrogen bonds (Table 1, Fig. 2), which leads to a layer in the bc plane.

For general biological activities of some heterocyclic derivatives containing the 4H-pyran moiety, see: Elnagdi et al. (1983); Goldmann & Stoltefus (1991); Perez-Perez et al. (1995); Fan et al. (2010); Aytemir et al. (2004); Uher et al. (1994). For similar structures, see: Akkurt et al. (2013, 2015).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing of the title compound viewing down a axis.
3-Amino-1-(4-hydroxyphenyl)-1H-benzo[f]chromene-2-carbonitrile top
Crystal data top
C20H14N2O2F(000) = 656
Mr = 314.33Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 12.1086 (8) ÅCell parameters from 17749 reflections
b = 13.1418 (9) Åθ = 2.3–27.5°
c = 10.1552 (7) ŵ = 0.09 mm1
β = 96.992 (1)°T = 100 K
V = 1603.97 (19) Å3Blade, colourless
Z = 40.21 × 0.08 × 0.07 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3679 independent reflections
Radiation source: Rotating Anode3251 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.030
profile data from ω–scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 1515
Tmin = 0.738, Tmax = 1.000k = 1714
17411 measured reflectionsl = 1213
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.4007P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3679 reflectionsΔρmax = 0.26 e Å3
229 parametersΔρmin = 0.18 e Å3
Crystal data top
C20H14N2O2V = 1603.97 (19) Å3
Mr = 314.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1086 (8) ŵ = 0.09 mm1
b = 13.1418 (9) ÅT = 100 K
c = 10.1552 (7) Å0.21 × 0.08 × 0.07 mm
β = 96.992 (1)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
3679 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
3251 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.030
17411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
3679 reflectionsΔρmin = 0.18 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33983 (8)0.47639 (8)1.11802 (10)0.0237 (2)
C20.31777 (8)0.53512 (7)1.00751 (9)0.0225 (2)
C30.22804 (8)0.50920 (7)0.89492 (9)0.02158 (19)
H30.18650.57300.86720.026*
C40.14741 (8)0.43453 (7)0.94430 (10)0.0234 (2)
C50.04093 (8)0.41495 (8)0.87013 (10)0.0261 (2)
C60.00288 (9)0.46750 (8)0.75126 (11)0.0295 (2)
H60.04940.51700.71780.035*
C70.10048 (9)0.44795 (9)0.68361 (12)0.0356 (3)
H70.12500.48470.60490.043*
C80.17001 (9)0.37399 (10)0.73009 (13)0.0380 (3)
H80.24080.36030.68220.046*
C90.13586 (9)0.32188 (9)0.84389 (13)0.0363 (3)
H90.18360.27220.87470.044*
C100.03025 (9)0.34047 (8)0.91728 (11)0.0300 (2)
C110.00527 (9)0.28765 (9)1.03649 (12)0.0348 (3)
H110.04170.23741.06750.042*
C120.10573 (9)0.30770 (8)1.10727 (12)0.0325 (2)
H120.12870.27231.18750.039*
C130.17513 (8)0.38188 (8)1.05958 (10)0.0256 (2)
C140.38247 (9)0.62331 (8)0.99791 (10)0.0264 (2)
C150.27956 (8)0.46801 (7)0.77552 (9)0.02106 (19)
C160.32470 (8)0.37029 (7)0.77790 (10)0.0233 (2)
H160.32010.32800.85290.028*
C170.37626 (8)0.33360 (7)0.67264 (10)0.0237 (2)
H170.40670.26690.67580.028*
C180.38308 (8)0.39533 (8)0.56223 (9)0.0235 (2)
C190.33979 (9)0.49308 (8)0.55907 (10)0.0272 (2)
H190.34530.53570.48460.033*
C200.28830 (8)0.52852 (8)0.66516 (10)0.0255 (2)
H200.25850.59550.66220.031*
N10.42225 (8)0.48875 (8)1.21728 (9)0.0297 (2)
N20.43322 (9)0.69661 (8)0.99112 (10)0.0383 (2)
O10.27537 (6)0.39555 (6)1.14083 (7)0.02776 (17)
O20.43199 (7)0.36270 (6)0.45510 (7)0.02998 (18)
H1N0.4259 (12)0.4453 (10)1.2856 (13)0.042 (4)*
H2N0.4767 (11)0.5317 (10)1.2069 (14)0.041 (4)*
H2O0.4737 (13)0.3086 (11)0.4770 (16)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (5)0.0260 (5)0.0232 (5)0.0009 (4)0.0073 (4)0.0010 (4)
C20.0224 (5)0.0251 (5)0.0207 (4)0.0014 (4)0.0050 (3)0.0007 (4)
C30.0210 (4)0.0223 (4)0.0217 (4)0.0009 (3)0.0037 (3)0.0003 (3)
C40.0221 (5)0.0226 (5)0.0266 (5)0.0006 (4)0.0074 (4)0.0028 (4)
C50.0226 (5)0.0257 (5)0.0312 (5)0.0012 (4)0.0080 (4)0.0073 (4)
C60.0246 (5)0.0322 (5)0.0318 (5)0.0016 (4)0.0040 (4)0.0067 (4)
C70.0281 (5)0.0410 (6)0.0370 (6)0.0051 (5)0.0009 (4)0.0108 (5)
C80.0223 (5)0.0430 (7)0.0483 (7)0.0012 (5)0.0022 (5)0.0184 (5)
C90.0251 (5)0.0330 (6)0.0529 (7)0.0045 (4)0.0130 (5)0.0159 (5)
C100.0249 (5)0.0266 (5)0.0405 (6)0.0014 (4)0.0116 (4)0.0089 (4)
C110.0317 (5)0.0279 (5)0.0477 (7)0.0057 (4)0.0164 (5)0.0007 (5)
C120.0338 (6)0.0287 (5)0.0370 (6)0.0008 (4)0.0119 (5)0.0051 (4)
C130.0237 (5)0.0250 (5)0.0293 (5)0.0004 (4)0.0075 (4)0.0004 (4)
C140.0277 (5)0.0328 (5)0.0189 (4)0.0026 (4)0.0035 (4)0.0001 (4)
C150.0190 (4)0.0237 (5)0.0204 (4)0.0002 (3)0.0020 (3)0.0005 (3)
C160.0251 (5)0.0232 (5)0.0221 (4)0.0006 (4)0.0046 (4)0.0033 (4)
C170.0251 (5)0.0206 (4)0.0258 (5)0.0017 (4)0.0045 (4)0.0009 (4)
C180.0224 (4)0.0285 (5)0.0196 (4)0.0012 (4)0.0032 (3)0.0011 (4)
C190.0308 (5)0.0294 (5)0.0215 (5)0.0051 (4)0.0045 (4)0.0067 (4)
C200.0279 (5)0.0238 (5)0.0249 (5)0.0058 (4)0.0039 (4)0.0033 (4)
N10.0284 (5)0.0386 (5)0.0218 (4)0.0026 (4)0.0020 (3)0.0042 (4)
N20.0448 (6)0.0404 (6)0.0292 (5)0.0161 (5)0.0028 (4)0.0030 (4)
O10.0269 (4)0.0280 (4)0.0285 (4)0.0009 (3)0.0036 (3)0.0063 (3)
O20.0364 (4)0.0326 (4)0.0223 (4)0.0095 (3)0.0091 (3)0.0022 (3)
Geometric parameters (Å, º) top
C1—N11.3393 (13)C11—C121.3612 (17)
C1—O11.3548 (12)C11—H110.9500
C1—C21.3614 (14)C12—C131.4108 (14)
C2—C141.4089 (14)C12—H120.9500
C2—C31.5171 (13)C13—O11.3937 (12)
C3—C41.5122 (13)C14—N21.1492 (14)
C3—C151.5286 (13)C15—C201.3887 (13)
C3—H31.0000C15—C161.3948 (13)
C4—C131.3661 (14)C16—C171.3883 (13)
C4—C51.4351 (14)C16—H160.9500
C5—C61.4180 (15)C17—C181.3945 (13)
C5—C101.4250 (15)C17—H170.9500
C6—C71.3765 (15)C18—O21.3693 (11)
C6—H60.9500C18—C191.3864 (14)
C7—C81.4047 (18)C19—C201.3892 (14)
C7—H70.9500C19—H190.9500
C8—C91.3636 (19)C20—H200.9500
C8—H80.9500N1—H1N0.896 (12)
C9—C101.4207 (15)N1—H2N0.883 (12)
C9—H90.9500O2—H2O0.885 (13)
C10—C111.4162 (17)
N1—C1—O1111.01 (9)C12—C11—C10121.03 (10)
N1—C1—C2127.23 (10)C12—C11—H11119.5
O1—C1—C2121.75 (9)C10—C11—H11119.5
C1—C2—C14117.94 (9)C11—C12—C13118.93 (10)
C1—C2—C3122.99 (9)C11—C12—H12120.5
C14—C2—C3119.07 (8)C13—C12—H12120.5
C4—C3—C2109.14 (8)C4—C13—O1123.20 (9)
C4—C3—C15112.06 (8)C4—C13—C12123.35 (10)
C2—C3—C15110.69 (8)O1—C13—C12113.46 (9)
C4—C3—H3108.3N2—C14—C2178.35 (12)
C2—C3—H3108.3C20—C15—C16118.23 (9)
C15—C3—H3108.3C20—C15—C3121.06 (8)
C13—C4—C5118.06 (9)C16—C15—C3120.61 (8)
C13—C4—C3120.77 (9)C17—C16—C15121.23 (9)
C5—C4—C3121.16 (9)C17—C16—H16119.4
C6—C5—C10118.25 (10)C15—C16—H16119.4
C6—C5—C4122.52 (10)C16—C17—C18119.55 (9)
C10—C5—C4119.23 (10)C16—C17—H17120.2
C7—C6—C5121.03 (11)C18—C17—H17120.2
C7—C6—H6119.5O2—C18—C19118.08 (9)
C5—C6—H6119.5O2—C18—C17122.03 (9)
C6—C7—C8120.47 (12)C19—C18—C17119.90 (9)
C6—C7—H7119.8C18—C19—C20119.79 (9)
C8—C7—H7119.8C18—C19—H19120.1
C9—C8—C7120.00 (11)C20—C19—H19120.1
C9—C8—H8120.0C15—C20—C19121.29 (9)
C7—C8—H8120.0C15—C20—H20119.4
C8—C9—C10121.26 (11)C19—C20—H20119.4
C8—C9—H9119.4C1—N1—H1N117.9 (9)
C10—C9—H9119.4C1—N1—H2N119.1 (9)
C11—C10—C9121.63 (10)H1N—N1—H2N122.1 (13)
C11—C10—C5119.39 (10)C1—O1—C13118.57 (8)
C9—C10—C5118.98 (11)C18—O2—H2O109.9 (11)
N1—C1—C2—C144.87 (16)C9—C10—C11—C12178.64 (10)
O1—C1—C2—C14173.97 (9)C5—C10—C11—C120.69 (16)
N1—C1—C2—C3174.55 (9)C10—C11—C12—C130.47 (17)
O1—C1—C2—C36.61 (15)C5—C4—C13—O1179.02 (9)
C1—C2—C3—C418.81 (13)C3—C4—C13—O12.51 (15)
C14—C2—C3—C4161.78 (9)C5—C4—C13—C121.68 (15)
C1—C2—C3—C15104.97 (10)C3—C4—C13—C12176.79 (9)
C14—C2—C3—C1574.44 (11)C11—C12—C13—C40.76 (16)
C2—C3—C4—C1316.41 (12)C11—C12—C13—O1179.88 (9)
C15—C3—C4—C13106.56 (10)C4—C3—C15—C20134.98 (10)
C2—C3—C4—C5165.16 (8)C2—C3—C15—C20102.93 (10)
C15—C3—C4—C571.87 (11)C4—C3—C15—C1648.65 (12)
C13—C4—C5—C6178.20 (9)C2—C3—C15—C1673.44 (11)
C3—C4—C5—C63.33 (14)C20—C15—C16—C170.56 (14)
C13—C4—C5—C101.40 (14)C3—C15—C16—C17177.04 (9)
C3—C4—C5—C10177.07 (9)C15—C16—C17—C180.08 (15)
C10—C5—C6—C70.61 (15)C16—C17—C18—O2179.34 (9)
C4—C5—C6—C7178.99 (10)C16—C17—C18—C190.85 (15)
C5—C6—C7—C81.03 (16)O2—C18—C19—C20179.21 (9)
C6—C7—C8—C90.84 (17)C17—C18—C19—C200.97 (16)
C7—C8—C9—C100.24 (17)C16—C15—C20—C190.45 (15)
C8—C9—C10—C11179.16 (10)C3—C15—C20—C19176.91 (9)
C8—C9—C10—C50.17 (16)C18—C19—C20—C150.31 (16)
C6—C5—C10—C11179.35 (9)N1—C1—O1—C13169.17 (8)
C4—C5—C10—C110.26 (14)C2—C1—O1—C139.84 (14)
C6—C5—C10—C90.01 (14)C4—C13—O1—C112.00 (14)
C4—C5—C10—C9179.60 (9)C12—C13—O1—C1168.63 (9)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C5–C10 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.90 (1)2.03 (1)2.9191 (12)173 (1)
O2—H2O···N2ii0.89 (1)1.86 (1)2.7403 (12)175 (2)
N1—H2N···Cg4iii0.88 (1)2.55 (1)3.2340 (11)135 (1)
C11—H11···Cg3iv0.952.973.7610 (13)142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C5–C10 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.896 (12)2.029 (12)2.9191 (12)172.7 (13)
O2—H2O···N2ii0.885 (13)1.858 (14)2.7403 (12)174.9 (16)
N1—H2N···Cg4iii0.883 (12)2.547 (14)3.2340 (11)135.2 (11)
C11—H11···Cg3iv0.952.973.7610 (13)142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y1/2, z1/2.
 

Acknowledgements

The authors would like to express their thanks to National Crystallography Service (NCS), Southampton, UK, for providing the X-ray data.

References

First citationAkkurt, M., Horton, P. N., Mohamed, S. K., Younes, S. H. H. & Albayati, M. R. (2015). Acta Cryst. E71, o481-o482.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.  CSD CrossRef IUCr Journals Google Scholar
First citationAytemir, M. D., Çaliş, U., Ünsal, & Özalp, M. (2004). Arch. Pharm. Pharm. Med. Chem. 337, 281–288.  Google Scholar
First citationElnagdi, M. H., Elfaham, H. A. & Elgemeie, G. E. H. (1983). Heterocycles, 20, 519–550.  CAS Google Scholar
First citationFan, X., Feng, D., Qu, Y., Zhang, X., Wang, J., Loiseau, P. M., Andrei, G., Snoeck, R. & Clercq, E. D. (2010). Bioorg. Med. Chem. Lett. 20, 809–813.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559–1578.  CrossRef Web of Science Google Scholar
First citationPérez-Pérez, M., Balzarini, J., Rozenski, J., De Clercq, E. & Herdewijn, P. (1995). Bioorg. Med. Chem. Lett. 5, 1115–1118.  Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUher, M., Konečný, V. & Rajniaková, O. (1994). Chem. Pap. 48, 282–284.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds