organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 8-chloro-4-oxo-1,4-di­hydro­quinoline-3-carboxyl­ate

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 , Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 8 July 2015; accepted 9 July 2015; online 15 July 2015)

In the title compound, C12H10ClNO3, the asymmetric unit comprises two independent mol­ecules, and the dihedral angle between the least-square planes of the quinoline ring systems of these mol­ecules is 73.30 (5)°. In the crystal, N—H⋯O hydrogen bonds between the independent mol­ecules lead to supra­molecular layers parallel to (-1-10); both N—H H atoms are bifurcated.

1. Related literature

For the biological background of this study, see: Mugnaini et al. (2009[Mugnaini, C., Pasquini, S. & Corelli, F. (2009). Curr. Med. Chem. 16, 1746-1767.]); Ishikawa & Fujii (2011[Ishikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221-225.]); Bisacchi (2015[Bisacchi, G. S. (2015). J. Med. Chem. 58, 4874-4882.]). For the synthesis of the title compound, see: Ozeki et al. (1987[Ozeki, K., Ishizuka, Y., Sawada, M., Ichikawa, T., Sato, M. & Yaginuma, H. (1987). Yakugaku Zasshi, 107, 123-134.]). For related structures, see: Garudachari et al. (2012[Garudachari, B., Islor, A. M., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3304-o3305.], 2013[Garudachari, B., Islor, A. M., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. 228, 301-302.]); Ishikawa & Yoshida (2014[Ishikawa, Y. & Yoshida, N. (2014). Acta Cryst. E70, o719.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H10ClNO3

  • Mr = 251.67

  • Triclinic, [P \overline 1]

  • a = 9.328 (5) Å

  • b = 11.043 (2) Å

  • c = 12.350 (4) Å

  • α = 73.298 (17)°

  • β = 70.57 (3)°

  • γ = 77.22 (3)°

  • V = 1137.8 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.96 mm−1

  • T = 298 K

  • 0.25 × 0.15 × 0.15 mm

2.2. Data collection

  • Rigaku AFC7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.436, Tmax = 0.642

  • 5652 measured reflections

  • 4147 independent reflections

  • 3328 reflections with F2 > 2.0σ(F2)

  • Rint = 0.047

  • 3 standard reflections every 150 reflections intensity decay: −0.9%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.184

  • S = 1.05

  • 4147 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 1.98 2.748 (4) 148
N1—H1A⋯O5i 0.86 2.51 3.035 (4) 121
N2—H2⋯O1ii 0.86 2.04 2.777 (4) 144
N2—H2⋯O2ii 0.86 2.48 3.064 (4) 126
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

4-Quinolones show inhibition not only to Gram negative and Gram positive bacteria (Bisacchi, 2015), but also to human immunodeficiency virus (HIV) (Mugnaini et al., 2009). The inhibition to HIV is derived from their chelating ability to metal ions in the active site of metalloenzyme HIV integrase. According to our inhibitor design targeting metalloenzyme influenza virus RNA polymerase (Ishikawa & Fujii, 2011), we synthesized the title compound as a synthetic intermediate of final products.

The asymmetric unit contains two independent molecules, as shown in Fig. 1. The dihedral angle between the least-square planes of the quinoline rings of the 4-quinolone units is 73.30 (5)°. In the crystal, face-to-face π-π stacking interactions are found between the molecules and their inversion-symmetry equivalentsi,ii [centroid–centroid distances between the benzene rings of the 4-quinolone units = 3.597 (3)i and 3.881 (3) Åii, i: –x + 1, –y + 1, –z + 2, ii: –x + 2, –y + 2, –z + 1]. Molecules A are further linked with the translation-symmetry equivalents of the molecules B through bidentate N–H···O hydrogen bonds, as shown in Fig. 2.

Related literature top

For the biological background of this study, see: Mugnaini et al. (2009); Ishikawa & Fujii (2011); Bisacchi (2015). For the synthesis of the title compound, see: Ozeki et al. (1987). For related structures, see: Garudachari et al. (2012, 2013); Ishikawa & Yoshida (2014).

Experimental top

The title compound was synthesized according to the literature (Ozeki et al. 1987). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an N,N-dimethylforamide solution of the compound at room temperature.

Refinement top

The H atoms of secondary amine [N—H 0.86 Å, Uiso(H) = 1.2Ueq(N)], methylene [C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)], and phenyl groups [C—H 0.93 Å, Uiso(H) = 1.2Ueq(C)] were placed in their geometric positions, and refined using a riding model. A rotating group model was applied for the H atoms of the methyl groups [C—H = 0.96 Å, Uiso(H) = 1.2Ueq(C)].

Structure description top

4-Quinolones show inhibition not only to Gram negative and Gram positive bacteria (Bisacchi, 2015), but also to human immunodeficiency virus (HIV) (Mugnaini et al., 2009). The inhibition to HIV is derived from their chelating ability to metal ions in the active site of metalloenzyme HIV integrase. According to our inhibitor design targeting metalloenzyme influenza virus RNA polymerase (Ishikawa & Fujii, 2011), we synthesized the title compound as a synthetic intermediate of final products.

The asymmetric unit contains two independent molecules, as shown in Fig. 1. The dihedral angle between the least-square planes of the quinoline rings of the 4-quinolone units is 73.30 (5)°. In the crystal, face-to-face π-π stacking interactions are found between the molecules and their inversion-symmetry equivalentsi,ii [centroid–centroid distances between the benzene rings of the 4-quinolone units = 3.597 (3)i and 3.881 (3) Åii, i: –x + 1, –y + 1, –z + 2, ii: –x + 2, –y + 2, –z + 1]. Molecules A are further linked with the translation-symmetry equivalents of the molecules B through bidentate N–H···O hydrogen bonds, as shown in Fig. 2.

For the biological background of this study, see: Mugnaini et al. (2009); Ishikawa & Fujii (2011); Bisacchi (2015). For the synthesis of the title compound, see: Ozeki et al. (1987). For related structures, see: Garudachari et al. (2012, 2013); Ishikawa & Yoshida (2014).

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Intermolecular hydrogen bonds are represented as dashed lines.
Ethyl 8-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C12H10ClNO3Z = 4
Mr = 251.67F(000) = 520.00
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 9.328 (5) ÅCell parameters from 25 reflections
b = 11.043 (2) Åθ = 25.0–29.3°
c = 12.350 (4) ŵ = 2.96 mm1
α = 73.298 (17)°T = 298 K
β = 70.57 (3)°Prismatic, colorless
γ = 77.22 (3)°0.25 × 0.15 × 0.15 mm
V = 1137.8 (7) Å3
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.047
ω–2θ scansθmax = 68.0°
Absorption correction: ψ scan
(North et al., 1968)
h = 1011
Tmin = 0.436, Tmax = 0.642k = 913
5652 measured reflectionsl = 1414
4147 independent reflections3 standard reflections every 150 reflections
3328 reflections with F2 > 2.0σ(F2) intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1039P)2 + 0.6522P]
where P = (Fo2 + 2Fc2)/3
4147 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H10ClNO3γ = 77.22 (3)°
Mr = 251.67V = 1137.8 (7) Å3
Triclinic, P1Z = 4
a = 9.328 (5) ÅCu Kα radiation
b = 11.043 (2) ŵ = 2.96 mm1
c = 12.350 (4) ÅT = 298 K
α = 73.298 (17)°0.25 × 0.15 × 0.15 mm
β = 70.57 (3)°
Data collection top
Rigaku AFC7R
diffractometer
3328 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.436, Tmax = 0.6423 standard reflections every 150 reflections
5652 measured reflections intensity decay: 0.9%
4147 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
4147 reflectionsΔρmin = 0.41 e Å3
309 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08408 (10)0.65841 (10)0.98364 (8)0.0840 (4)
Cl20.58312 (10)1.16556 (10)0.62449 (10)0.0843 (4)
O10.6848 (3)0.2777 (2)0.82920 (19)0.0660 (7)
O20.8378 (3)0.3772 (3)0.5944 (2)0.0701 (7)
O30.7027 (3)0.5425 (2)0.50191 (17)0.0557 (6)
O41.1706 (3)0.7698 (2)0.6817 (2)0.0641 (7)
O51.3355 (3)0.8720 (3)0.7792 (3)0.0807 (8)
O61.1962 (3)1.0279 (3)0.8650 (3)0.0758 (8)
N10.3633 (3)0.5894 (2)0.7925 (2)0.0463 (6)
N20.8636 (3)1.0913 (2)0.7116 (2)0.0498 (6)
C10.4819 (3)0.5701 (3)0.6996 (3)0.0439 (6)
C20.5972 (3)0.4684 (3)0.7047 (3)0.0433 (6)
C30.5924 (4)0.3757 (3)0.8155 (3)0.0446 (6)
C40.4510 (4)0.3239 (3)1.0303 (3)0.0537 (7)
C50.3293 (4)0.3460 (4)1.1246 (3)0.0602 (8)
C60.2151 (4)0.4483 (4)1.1103 (3)0.0631 (9)
C70.2249 (4)0.5289 (3)1.0010 (3)0.0531 (7)
C80.4622 (3)0.4037 (3)0.9171 (3)0.0433 (6)
C90.3498 (3)0.5084 (3)0.9022 (3)0.0429 (6)
C100.7249 (3)0.4555 (3)0.5978 (3)0.0455 (6)
C110.8225 (4)0.5353 (4)0.3913 (3)0.0622 (9)
C120.7820 (5)0.6430 (4)0.2991 (3)0.0687 (9)
C130.9825 (4)1.0692 (3)0.7539 (3)0.0490 (7)
C141.0937 (4)0.9640 (3)0.7463 (3)0.0472 (7)
C151.0809 (4)0.8692 (3)0.6907 (3)0.0467 (7)
C160.9258 (4)0.8116 (3)0.5878 (3)0.0522 (7)
C170.8017 (4)0.8339 (4)0.5473 (3)0.0615 (8)
C180.6941 (4)0.9426 (4)0.5603 (4)0.0662 (9)
C190.7149 (4)1.0284 (3)0.6131 (3)0.0559 (8)
C200.9476 (3)0.8971 (3)0.6448 (3)0.0446 (6)
C210.8410 (3)1.0076 (3)0.6566 (3)0.0444 (6)
C221.2215 (4)0.9479 (3)0.7954 (3)0.0544 (7)
C231.3084 (5)1.0104 (5)0.9282 (5)0.0885 (13)
C241.2729 (6)1.1118 (5)0.9879 (5)0.0966 (14)
H10.48690.62850.62760.0527*
H1A0.29360.65390.78370.0555*
H20.79891.15950.71870.0597*
H40.52720.25521.04110.0645*
H50.32300.29211.19880.0723*
H60.13190.46231.17470.0757*
H11A0.82900.45510.37130.0747*
H11B0.92120.54060.39860.0747*
H12A0.77030.72160.32190.0824*
H12B0.68730.63410.28930.0824*
H12C0.86190.64380.22600.0824*
H130.99161.12840.79090.0588*
H160.99730.73920.57790.0626*
H170.78820.77630.51060.0738*
H180.60860.95690.53330.0794*
H23A1.30540.92870.98500.1062*
H23B1.41071.01140.87330.1062*
H24A1.16961.11301.03900.1159*
H24B1.28281.19180.93080.1159*
H24C1.34261.09851.03380.1159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0547 (5)0.0919 (7)0.0693 (6)0.0301 (5)0.0002 (4)0.0157 (5)
Cl20.0593 (6)0.0814 (7)0.1179 (8)0.0357 (5)0.0449 (6)0.0431 (6)
O10.0787 (15)0.0485 (12)0.0563 (12)0.0336 (11)0.0233 (11)0.0177 (10)
O20.0536 (13)0.0670 (15)0.0664 (14)0.0276 (11)0.0103 (11)0.0157 (12)
O30.0501 (11)0.0544 (12)0.0470 (11)0.0140 (9)0.0064 (9)0.0133 (9)
O40.0712 (15)0.0492 (12)0.0719 (14)0.0318 (11)0.0349 (12)0.0278 (11)
O50.0585 (14)0.0736 (16)0.121 (3)0.0266 (12)0.0419 (15)0.0473 (16)
O60.0698 (15)0.0779 (16)0.0975 (19)0.0253 (13)0.0478 (14)0.0465 (15)
N10.0419 (12)0.0399 (12)0.0469 (13)0.0165 (10)0.0136 (10)0.0108 (10)
N20.0472 (13)0.0390 (12)0.0579 (14)0.0169 (10)0.0176 (11)0.0178 (11)
C10.0434 (14)0.0378 (13)0.0445 (14)0.0077 (11)0.0132 (11)0.0101 (11)
C20.0427 (14)0.0377 (13)0.0486 (15)0.0086 (11)0.0157 (12)0.0165 (11)
C30.0499 (15)0.0351 (13)0.0489 (15)0.0107 (11)0.0202 (12)0.0155 (11)
C40.0640 (19)0.0403 (14)0.0541 (17)0.0024 (13)0.0219 (14)0.0082 (13)
C50.070 (2)0.0568 (18)0.0477 (16)0.0097 (16)0.0160 (15)0.0036 (14)
C60.0553 (18)0.073 (3)0.0500 (17)0.0062 (16)0.0034 (14)0.0135 (15)
C70.0410 (15)0.0563 (17)0.0541 (17)0.0060 (13)0.0095 (12)0.0153 (14)
C80.0478 (15)0.0354 (13)0.0473 (15)0.0018 (11)0.0166 (12)0.0128 (11)
C90.0433 (14)0.0390 (13)0.0459 (14)0.0024 (11)0.0140 (11)0.0140 (11)
C100.0423 (14)0.0408 (14)0.0508 (15)0.0066 (11)0.0143 (12)0.0151 (12)
C110.0510 (18)0.070 (2)0.0513 (17)0.0107 (15)0.0031 (14)0.0209 (15)
C120.071 (3)0.065 (2)0.0568 (19)0.0050 (17)0.0084 (16)0.0161 (16)
C130.0484 (16)0.0412 (14)0.0547 (16)0.0092 (12)0.0160 (13)0.0174 (12)
C140.0468 (15)0.0405 (14)0.0492 (15)0.0089 (12)0.0147 (12)0.0129 (12)
C150.0494 (15)0.0368 (13)0.0441 (14)0.0140 (11)0.0128 (12)0.0104 (11)
C160.0624 (18)0.0424 (15)0.0464 (15)0.0067 (13)0.0138 (13)0.0149 (12)
C170.070 (2)0.0594 (19)0.0595 (19)0.0027 (16)0.0224 (16)0.0203 (15)
C180.0578 (19)0.076 (3)0.069 (2)0.0039 (17)0.0299 (17)0.0203 (18)
C190.0485 (16)0.0542 (17)0.0586 (18)0.0124 (13)0.0173 (14)0.0162 (14)
C200.0473 (15)0.0372 (13)0.0392 (13)0.0068 (11)0.0082 (11)0.0085 (11)
C210.0424 (14)0.0389 (13)0.0436 (14)0.0086 (11)0.0102 (11)0.0106 (11)
C220.0505 (17)0.0473 (16)0.0614 (18)0.0093 (13)0.0188 (14)0.0155 (14)
C230.077 (3)0.091 (3)0.115 (4)0.020 (3)0.054 (3)0.044 (3)
C240.102 (4)0.101 (4)0.108 (4)0.009 (3)0.053 (3)0.034 (3)
Geometric parameters (Å, º) top
Cl1—C71.731 (3)C15—C201.471 (5)
Cl2—C191.734 (4)C16—C171.356 (6)
O1—C31.234 (4)C16—C201.410 (5)
O2—C101.203 (4)C17—C181.394 (5)
O3—C101.338 (4)C18—C191.371 (7)
O3—C111.459 (4)C19—C211.398 (5)
O4—C151.233 (4)C20—C211.403 (4)
O5—C221.197 (4)C23—C241.434 (9)
O6—C221.336 (5)N1—H1A0.860
O6—C231.452 (7)N2—H20.860
N1—C11.333 (4)C1—H10.930
N1—C91.375 (4)C4—H40.930
N2—C131.325 (5)C5—H50.930
N2—C211.380 (5)C6—H60.930
C1—C21.376 (4)C11—H11A0.970
C2—C31.448 (4)C11—H11B0.970
C2—C101.472 (4)C12—H12A0.960
C3—C81.479 (4)C12—H12B0.960
C4—C51.366 (5)C12—H12C0.960
C4—C81.406 (4)C13—H130.930
C5—C61.386 (5)C16—H160.930
C6—C71.374 (5)C17—H170.930
C7—C91.412 (4)C18—H180.930
C8—C91.393 (4)C23—H23A0.970
C11—C121.470 (5)C23—H23B0.970
C13—C141.378 (4)C24—H24A0.960
C14—C151.451 (5)C24—H24B0.960
C14—C221.465 (6)C24—H24C0.960
Cl1···N13.000 (3)C9···H4ix3.3960
Cl2···N23.015 (4)C9···H12Bxiv3.3338
O1···O22.786 (3)C9···H24Bx3.5847
O1···C13.593 (4)C10···H2iv3.2052
O1···C42.795 (4)C10···H11Bv3.3254
O1···C102.924 (4)C10···H16v3.5387
O2···C13.584 (4)C10···H173.5173
O2···C32.920 (4)C11···H6xvi3.3472
O2···C112.641 (4)C11···H16v3.1099
O3···C12.664 (4)C11···H173.3049
O4···O52.806 (5)C12···H6xvi3.5409
O4···C133.591 (4)C12···H13viii3.3546
O4···C162.786 (5)C12···H173.3672
O4···C222.917 (5)C12···H24Bviii3.0707
O5···C133.579 (4)C13···H12Aviii3.3475
O5···C152.935 (5)C13···H17viii3.4514
O5···C232.630 (7)C13···H23Axv3.4444
O6···C132.669 (5)C13···H24Axv2.9146
N1···C32.829 (4)C14···H1Avi3.5009
N2···C152.830 (4)C14···H24Axv3.0131
C1···C82.759 (4)C15···H1Avi2.9607
C2···C92.810 (4)C15···H24Axv3.4101
C4···C72.762 (5)C16···H5ix3.0022
C5···C92.787 (4)C16···H6ix3.5518
C6···C82.786 (4)C16···H11Av3.3311
C13···C202.752 (5)C17···H5ix2.9835
C14···C212.818 (5)C17···H12A3.4729
C16···C192.763 (5)C18···H5ix3.3207
C17···C212.787 (6)C18···H18iii3.2531
C18···C202.783 (6)C19···H23Bi3.4975
C22···C243.574 (8)C20···H5ix3.3515
Cl1···O4i3.445 (3)C21···H16viii3.5751
Cl1···O5i3.539 (3)C21···H24Axv3.5848
Cl1···C22i3.582 (4)C21···H24Cxv3.5887
Cl2···O1ii3.569 (4)C22···H1Avi3.2020
Cl2···O2ii3.552 (4)C22···H4vii3.5808
Cl2···C12iii3.575 (4)C22···H12Aviii3.5259
O1···Cl2iv3.569 (4)C23···H4vii2.9753
O1···N2iv2.777 (4)C23···H24Cxvii3.3501
O1···C13iv3.250 (4)C24···H4xi3.4444
O2···Cl2iv3.552 (4)C24···H12Cviii3.5293
O2···N2iv3.064 (4)H1···Cl2iii3.4520
O2···C11v3.582 (6)H1···O4i2.9724
O2···C16v3.411 (4)H1···O5i3.4911
O4···Cl1vi3.445 (3)H1···H5ix3.5789
O4···N1vi2.748 (4)H1···H11Axiv3.2713
O4···C1vi3.264 (4)H1···H12Bxiv3.3710
O5···Cl1vi3.539 (3)H1···H173.2601
O5···N1vi3.035 (4)H1A···O4i1.9806
O5···C1vi3.595 (4)H1A···O5i2.5061
O5···C4vii3.530 (5)H1A···C14i3.5009
N1···O4i2.748 (4)H1A···C15i2.9607
N1···O5i3.035 (4)H1A···C22i3.2020
N2···O1ii2.777 (4)H1A···H4ix3.5893
N2···O2ii3.064 (4)H1A···H11Axiv3.1323
N2···C16viii3.536 (4)H1A···H12Bxiv3.5003
C1···O4i3.264 (4)H2···O1ii2.0354
C1···O5i3.595 (4)H2···O2ii2.4827
C3···C6ix3.391 (6)H2···C2ii3.4993
C4···O5vii3.530 (5)H2···C3ii2.9860
C4···C8ix3.561 (5)H2···C10ii3.2052
C4···C9ix3.320 (6)H2···H16viii3.4976
C4···C24x3.394 (8)H2···H23Axv3.3595
C5···C8ix3.547 (6)H4···O5vii2.8000
C5···C9ix3.580 (6)H4···N1ix3.5232
C6···C3ix3.391 (6)H4···C7ix3.4967
C8···C4ix3.561 (5)H4···C9ix3.3960
C8···C5ix3.547 (6)H4···C22vii3.5808
C9···C4ix3.320 (6)H4···C23vii2.9753
C9···C5ix3.580 (6)H4···C24x3.4444
C11···O2v3.582 (6)H4···H1Aix3.5893
C12···Cl2iii3.575 (4)H4···H23Avii2.3028
C13···O1ii3.250 (4)H4···H23Bvii2.8255
C13···C17viii3.565 (5)H4···H24Bx3.2960
C15···C18viii3.496 (5)H4···H24Cx2.7346
C15···C19viii3.569 (4)H5···O5vii3.3522
C16···O2v3.411 (4)H5···N1ix3.5029
C16···N2viii3.536 (4)H5···C1ix3.3232
C16···C21viii3.452 (4)H5···C2ix3.4991
C17···C13viii3.565 (5)H5···C16ix3.0022
C18···C15viii3.496 (5)H5···C17ix2.9835
C19···C15viii3.569 (4)H5···C18ix3.3207
C20···C20viii3.592 (4)H5···C20ix3.3515
C20···C21viii3.555 (4)H5···H1ix3.5789
C21···C16viii3.452 (4)H5···H16ix3.3282
C21···C20viii3.555 (4)H5···H17ix3.2919
C22···Cl1vi3.582 (4)H5···H24Cx3.2924
C24···C4xi3.394 (8)H6···C3ix3.4919
Cl1···H1A2.5955H6···C11xii3.3472
Cl1···H62.7913H6···C12xii3.5409
Cl2···H22.6194H6···C16ix3.5518
Cl2···H182.7763H6···H11Axii3.0507
O1···H42.5092H6···H11Bxii3.0432
O2···H11A2.6635H6···H12Cxii2.8622
O2···H11B2.5628H6···H16ix3.2512
O3···H12.2987H11A···O4v2.7435
O3···H12A2.5189H11A···N1xiv3.3055
O3···H12B2.5684H11A···C1xiv3.3821
O3···H12C3.2006H11A···C16v3.3311
O4···H162.4985H11A···H1xiv3.2713
O5···H23A2.6999H11A···H1Axiv3.1323
O5···H23B2.5016H11A···H6xvi3.0507
O6···H132.3136H11A···H16v2.4474
O6···H24A2.5027H11B···O2v2.6385
O6···H24B2.5533H11B···C10v3.3254
O6···H24C3.1812H11B···H6xvi3.0432
C2···H1A3.1484H11B···H11Bv3.1324
C3···H13.2749H11B···H16v2.9670
C3···H42.6459H11B···H173.1192
C4···H63.2247H12A···Cl2iii3.1724
C6···H43.2250H12A···O6viii3.0510
C7···H1A2.5766H12A···C13viii3.3475
C7···H53.2255H12A···C173.4729
C8···H1A3.1641H12A···C22viii3.5259
C8···H53.2474H12A···H13viii2.8037
C9···H13.1894H12A···H172.6339
C9···H43.2535H12A···H24Bviii3.1621
C9···H63.2616H12B···Cl2iii3.0802
C10···H12.5882H12B···N1xiv3.0986
C10···H11A2.6394H12B···C1xiv2.9743
C10···H11B2.5927H12B···C2xiv3.0787
C14···H23.1480H12B···C3xiv3.3085
C15···H133.2727H12B···C8xiv3.4431
C15···H162.6415H12B···C9xiv3.3338
C16···H183.2230H12B···H1xiv3.3710
C18···H163.2258H12B···H1Axiv3.5003
C19···H22.5841H12B···H24Bviii2.8090
C19···H173.2289H12C···Cl1xvi3.0035
C20···H23.1707H12C···O6viii3.4495
C20···H173.2437H12C···C24viii3.5293
C21···H133.1862H12C···H6xvi2.8622
C21···H163.2643H12C···H13viii3.0454
C21···H183.2495H12C···H24Bviii2.7388
C22···H132.5883H13···O1ii2.9311
C22···H23A2.6455H13···O2ii3.4981
C22···H23B2.5678H13···C12viii3.3546
H1···H1A2.1951H13···H12Aviii2.8037
H2···H132.1819H13···H12Cviii3.0454
H4···H52.2876H13···H17viii3.5783
H5···H62.3133H13···H23Axv3.2242
H11A···H12A2.7948H13···H24Axv3.1982
H11A···H12B2.2943H16···O2v2.6581
H11A···H12C2.3285H16···N2viii3.4800
H11B···H12A2.3300H16···C10v3.5387
H11B···H12B2.7947H16···C11v3.1099
H11B···H12C2.2929H16···C21viii3.5751
H16···H172.2784H16···H2viii3.4976
H17···H182.3222H16···H5ix3.3282
H23A···H24A2.2952H16···H6ix3.2512
H23A···H24B2.7647H16···H11Av2.4474
H23A···H24C2.2536H16···H11Bv2.9670
H23B···H24A2.7650H17···O2v3.5157
H23B···H24B2.2578H17···O32.9058
H23B···H24C2.2908H17···C103.5173
Cl1···H12Cxii3.0035H17···C113.3049
Cl1···H24Axiii3.0728H17···C123.3672
Cl1···H24Bxiii3.4138H17···C13viii3.4514
Cl2···H1iii3.4520H17···H13.2601
Cl2···H12Aiii3.1724H17···H5ix3.2919
Cl2···H12Biii3.0802H17···H11B3.1192
Cl2···H23Bi3.1372H17···H12A2.6339
O1···H2iv2.0354H17···H13viii3.5783
O1···H13iv2.9311H18···O5i3.2961
O1···H23Avii2.7404H18···C18iii3.2531
O2···H2iv2.4827H18···H18iii2.3421
O2···H11Bv2.6385H23A···O1vii2.7404
O2···H13iv3.4981H23A···N2xv3.5095
O2···H16v2.6581H23A···C4vii3.1923
O2···H17v3.5157H23A···C13xv3.4444
O3···H172.9058H23A···H2xv3.3595
O4···H1vi2.9724H23A···H4vii2.3028
O4···H1Avi1.9806H23A···H13xv3.2242
O4···H11Av2.7435H23A···H24Cxvii3.1658
O5···H1vi3.4911H23B···Cl2vi3.1372
O5···H1Avi2.5061H23B···C19vi3.4975
O5···H4vii2.8000H23B···H4vii2.8255
O5···H5vii3.3522H23B···H24Cxvii2.7935
O5···H18vi3.2961H24A···Cl1xiii3.0728
O6···H12Aviii3.0510H24A···N2xv3.2174
O6···H12Cviii3.4495H24A···C13xv2.9146
N1···H4ix3.5232H24A···C14xv3.0131
N1···H5ix3.5029H24A···C15xv3.4101
N1···H11Axiv3.3055H24A···C21xv3.5848
N1···H12Bxiv3.0986H24A···H13xv3.1982
N2···H16viii3.4800H24B···Cl1xiii3.4138
N2···H23Axv3.5095H24B···C3xi3.5623
N2···H24Axv3.2174H24B···C4xi3.0695
N2···H24Cxv3.4565H24B···C5xi3.4891
C1···H5ix3.3232H24B···C8xi3.1021
C1···H11Axiv3.3821H24B···C9xi3.5847
C1···H12Bxiv2.9743H24B···C12viii3.0707
C2···H2iv3.4993H24B···H4xi3.2960
C2···H5ix3.4991H24B···H12Aviii3.1621
C2···H12Bxiv3.0787H24B···H12Bviii2.8090
C3···H2iv2.9860H24B···H12Cviii2.7388
C3···H6ix3.4919H24C···N2xv3.4565
C3···H12Bxiv3.3085H24C···C4xi2.8703
C3···H24Bx3.5623H24C···C5xi3.2032
C4···H23Avii3.1923H24C···C8xi3.5332
C4···H24Bx3.0695H24C···C21xv3.5887
C4···H24Cx2.8703H24C···C23xvii3.3501
C5···H24Bx3.4891H24C···H4xi2.7346
C5···H24Cx3.2032H24C···H5xi3.2924
C7···H4ix3.4967H24C···H23Axvii3.1658
C8···H12Bxiv3.4431H24C···H23Bxvii2.7935
C8···H24Bx3.1021H24C···H24Cxvii3.2614
C8···H24Cx3.5332
C10—O3—C11116.0 (3)O5—C22—O6122.1 (4)
C22—O6—C23116.2 (3)O5—C22—C14126.0 (4)
C1—N1—C9121.5 (3)O6—C22—C14111.8 (3)
C13—N2—C21121.6 (3)O6—C23—C24108.7 (4)
N1—C1—C2123.5 (3)C1—N1—H1A119.268
C1—C2—C3119.6 (3)C9—N1—H1A119.263
C1—C2—C10119.8 (3)C13—N2—H2119.225
C3—C2—C10120.7 (3)C21—N2—H2119.224
O1—C3—C2125.2 (3)N1—C1—H1118.267
O1—C3—C8119.6 (3)C2—C1—H1118.268
C2—C3—C8115.1 (3)C5—C4—H4119.631
C5—C4—C8120.7 (3)C8—C4—H4119.632
C4—C5—C6120.4 (3)C4—C5—H5119.785
C5—C6—C7119.9 (3)C6—C5—H5119.782
Cl1—C7—C6119.9 (3)C5—C6—H6120.055
Cl1—C7—C9119.3 (3)C7—C6—H6120.052
C6—C7—C9120.8 (3)O3—C11—H11A110.210
C3—C8—C4119.9 (3)O3—C11—H11B110.206
C3—C8—C9120.7 (3)C12—C11—H11A110.205
C4—C8—C9119.3 (3)C12—C11—H11B110.201
N1—C9—C7121.7 (3)H11A—C11—H11B108.495
N1—C9—C8119.6 (3)C11—C12—H12A109.473
C7—C9—C8118.8 (3)C11—C12—H12B109.470
O2—C10—O3122.5 (3)C11—C12—H12C109.478
O2—C10—C2125.3 (3)H12A—C12—H12B109.463
O3—C10—C2112.2 (3)H12A—C12—H12C109.472
O3—C11—C12107.5 (3)H12B—C12—H12C109.471
N2—C13—C14124.1 (4)N2—C13—H13117.980
C13—C14—C15119.1 (4)C14—C13—H13117.965
C13—C14—C22120.1 (4)C17—C16—H16119.658
C15—C14—C22120.8 (3)C20—C16—H16119.643
O4—C15—C14125.0 (4)C16—C17—H17119.773
O4—C15—C20119.7 (4)C18—C17—H17119.776
C14—C15—C20115.3 (3)C17—C18—H18120.092
C17—C16—C20120.7 (3)C19—C18—H18120.094
C16—C17—C18120.5 (4)O6—C23—H23A109.956
C17—C18—C19119.8 (4)O6—C23—H23B109.955
Cl2—C19—C18119.2 (3)C24—C23—H23A109.957
Cl2—C19—C21119.7 (3)C24—C23—H23B109.953
C18—C19—C21121.1 (3)H23A—C23—H23B108.342
C15—C20—C16119.7 (3)C23—C24—H24A109.475
C15—C20—C21121.1 (3)C23—C24—H24B109.472
C16—C20—C21119.1 (3)C23—C24—H24C109.473
N2—C21—C19122.4 (3)H24A—C24—H24B109.472
N2—C21—C20118.9 (3)H24A—C24—H24C109.470
C19—C21—C20118.8 (4)H24B—C24—H24C109.466
C10—O3—C11—C12176.3 (3)C3—C8—C9—N12.5 (5)
C10—O3—C11—H11A63.6C3—C8—C9—C7177.9 (3)
C10—O3—C11—H11B56.2C4—C8—C9—N1177.7 (3)
C11—O3—C10—O21.3 (5)C4—C8—C9—C71.9 (5)
C11—O3—C10—C2178.9 (3)O3—C11—C12—H12A56.7
C22—O6—C23—C24173.8 (3)O3—C11—C12—H12B63.3
C22—O6—C23—H23A65.8O3—C11—C12—H12C176.7
C22—O6—C23—H23B53.4H11A—C11—C12—H12A176.8
C23—O6—C22—O55.1 (4)H11A—C11—C12—H12B56.8
C23—O6—C22—C14173.6 (3)H11A—C11—C12—H12C63.2
C1—N1—C9—C7179.6 (3)H11B—C11—C12—H12A63.5
C1—N1—C9—C80.0 (5)H11B—C11—C12—H12B176.6
C9—N1—C1—C21.2 (5)H11B—C11—C12—H12C56.5
C9—N1—C1—H1178.8N2—C13—C14—C151.0 (4)
H1A—N1—C1—C2178.8N2—C13—C14—C22179.8 (2)
H1A—N1—C1—H11.2H13—C13—C14—C15179.0
H1A—N1—C9—C70.4H13—C13—C14—C220.2
H1A—N1—C9—C8180.0C13—C14—C15—O4177.9 (3)
C13—N2—C21—C19179.0 (2)C13—C14—C15—C201.0 (4)
C13—N2—C21—C200.4 (4)C13—C14—C22—O5168.2 (3)
C21—N2—C13—C140.7 (4)C13—C14—C22—O613.1 (4)
C21—N2—C13—H13179.3C15—C14—C22—O512.6 (4)
H2—N2—C13—C14179.3C15—C14—C22—O6166.0 (2)
H2—N2—C13—H130.7C22—C14—C15—O41.4 (4)
H2—N2—C21—C191.0C22—C14—C15—C20179.8 (2)
H2—N2—C21—C20179.6O4—C15—C20—C161.9 (4)
N1—C1—C2—C30.2 (5)O4—C15—C20—C21178.2 (2)
N1—C1—C2—C10179.2 (3)C14—C15—C20—C16179.21 (19)
H1—C1—C2—C3179.8C14—C15—C20—C210.7 (3)
H1—C1—C2—C100.8C17—C16—C20—C15178.5 (3)
C1—C2—C3—O1176.1 (3)C17—C16—C20—C211.6 (4)
C1—C2—C3—C82.5 (5)C20—C16—C17—C180.7 (4)
C1—C2—C10—O2173.2 (4)C20—C16—C17—H17179.3
C1—C2—C10—O36.5 (5)H16—C16—C17—C18179.3
C3—C2—C10—O26.2 (6)H16—C16—C17—H170.7
C3—C2—C10—O3174.1 (3)H16—C16—C20—C151.5
C10—C2—C3—O14.5 (6)H16—C16—C20—C21178.4
C10—C2—C3—C8176.9 (3)C16—C17—C18—C190.8 (5)
O1—C3—C8—C44.8 (5)C16—C17—C18—H18179.2
O1—C3—C8—C9175.0 (3)H17—C17—C18—C19179.2
C2—C3—C8—C4176.5 (3)H17—C17—C18—H180.8
C2—C3—C8—C93.6 (5)C17—C18—C19—Cl2178.0 (3)
C5—C4—C8—C3178.1 (4)C17—C18—C19—C211.3 (5)
C5—C4—C8—C91.7 (6)H18—C18—C19—Cl22.0
C8—C4—C5—C60.4 (6)H18—C18—C19—C21178.7
C8—C4—C5—H5179.6Cl2—C19—C21—N21.6 (4)
H4—C4—C5—C6179.6Cl2—C19—C21—C20179.00 (16)
H4—C4—C5—H50.4C18—C19—C21—N2179.0 (3)
H4—C4—C8—C31.9C18—C19—C21—C200.4 (4)
H4—C4—C8—C9178.2C15—C20—C21—N20.4 (4)
C4—C5—C6—C70.7 (7)C15—C20—C21—C19178.99 (19)
C4—C5—C6—H6179.3C16—C20—C21—N2179.5 (2)
H5—C5—C6—C7179.3C16—C20—C21—C191.1 (4)
H5—C5—C6—H60.7O6—C23—C24—H24A56.6
C5—C6—C7—Cl1178.8 (4)O6—C23—C24—H24B63.4
C5—C6—C7—C90.5 (7)O6—C23—C24—H24C176.6
H6—C6—C7—Cl11.2H23A—C23—C24—H24A63.8
H6—C6—C7—C9179.5H23A—C23—C24—H24B176.2
Cl1—C7—C9—N10.6 (5)H23A—C23—C24—H24C56.2
Cl1—C7—C9—C8179.8 (3)H23B—C23—C24—H24A177.0
C6—C7—C9—N1178.7 (4)H23B—C23—C24—H24B57.0
C6—C7—C9—C80.9 (6)H23B—C23—C24—H24C63.0
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z; (v) x+2, y+1, z+1; (vi) x+1, y, z; (vii) x+2, y+1, z+2; (viii) x+2, y+2, z+1; (ix) x+1, y+1, z+2; (x) x1, y1, z; (xi) x+1, y+1, z; (xii) x1, y, z+1; (xiii) x+1, y+2, z+2; (xiv) x+1, y+1, z+1; (xv) x+2, y+2, z+2; (xvi) x+1, y, z1; (xvii) x+3, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.982.748 (4)148
N1—H1A···O5i0.862.513.035 (4)121
N2—H2···O1ii0.862.042.777 (4)144
N2—H2···O2ii0.862.483.064 (4)126
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.9812.748 (4)148
N1—H1A···O5i0.862.5063.035 (4)121
N2—H2···O1ii0.862.0352.777 (4)144
N2—H2···O2ii0.862.4833.064 (4)126
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was partly supported by JSPS KAKENHI grant No. 24590141. We acknowledge the University of Shizuoka for instrumental support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBisacchi, G. S. (2015). J. Med. Chem. 58, 4874–4882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGarudachari, B., Islor, A. M., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3304–o3305.  CSD CrossRef IUCr Journals Google Scholar
First citationGarudachari, B., Islor, A. M., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. 228, 301-302.  CAS Google Scholar
First citationIshikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221–225.  CrossRef PubMed Google Scholar
First citationIshikawa, Y. & Yoshida, N. (2014). Acta Cryst. E70, o719.  CSD CrossRef IUCr Journals Google Scholar
First citationMugnaini, C., Pasquini, S. & Corelli, F. (2009). Curr. Med. Chem. 16, 1746–1767.  CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOzeki, K., Ishizuka, Y., Sawada, M., Ichikawa, T., Sato, M. & Yaginuma, H. (1987). Yakugaku Zasshi, 107, 123–134.  CAS PubMed Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds