organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-oxo-4H-chromene-3-carb­­oxy­lic acid

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 13 July 2015; accepted 14 July 2015; online 17 July 2015)

In the title compound, C10H6O4, also known as 3-carb­oxy­chromone, the non-H atoms of the chromone ring are essentially coplanar (r.m.s. deviation = 0.0057 Å), with the maximum deviation from their least-squares plane [0.011 (2) Å] being for a pyran C atom. The dihedral angle between the fused ring and plane of the carb­oxy group is 3.06 (2)°. An intra­molecular hydrogen bond is formed between the ring carbonyl O atom and the carb­oxy O—H atom, closing an S(6) loop. In the crystal, mol­ecules are assembled by stacking inter­actions [centroid–centroid distance between the benzene and pyran rings = 3.844 (3) Å] and C—H⋯O hydrogen bonds, generating a three-dimensional network. Short contacts are also observed between the carb­oxy O and C atoms [C=O⋯C=O = 3.002 (3) Å].

1. Related literature

For the biological activities of the title compound and its related compounds, see: Alcaro et al. (2010[Alcaro, S., Gaspar, A., Ortuso, F., Milhazes, N., Orallo, F., Uriarte, E., Yáñez, M. & Borges, F. (2010). Bioorg. Med. Chem. Lett. 20, 2709-2712.]); Gaspar et al. (2012[Gaspar, A., Reis, J., Kachler, S., Paoletta, S., Uriarte, E., Klotz, K. N., Moro, S. & Borges, F. (2012). Biochem. Pharmacol. 84, 21-29.]); Legoabe et al. (2012[Legoabe, L. J., Petzer, A. & Petzer, J. P. (2012). Bioorg. Med. Chem. Lett. 22, 5480-5484.]); Papaneophytou et al. (2015[Papaneophytou, C., Alexiou, P., Papakyriakou, A., Ntougkos, E., Tsiliouka, K., Maranti, A., Liepouri, F., Strongilos, A., Mettou, A., Couladouros, E., Eliopoulos, E., Douni, E., Kollias, G. & Kontopidis, G. (2015). Med. Chem. Commun. 6, 1196-1209.]). For the synthesis of the title compound, see: Helguera et al. (2013[Helguera, A. M., Pérez-Garrido, A., Gaspar, A., Reis, J., Cagide, F., Vina, D., Cordeiro, M. N. & Borges, F. (2013). Eur. J. Med. Chem. 59, 75-90.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H6O4

  • Mr = 190.15

  • Monoclinic, P 21 /n

  • a = 18.017 (8) Å

  • b = 5.549 (3) Å

  • c = 8.017 (5) Å

  • β = 92.49 (4)°

  • V = 800.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.37 × 0.35 × 0.05 mm

2.2. Data collection

  • Rigaku AFC-7R diffractometer

  • 2228 measured reflections

  • 1831 independent reflections

  • 1183 reflections with F2 > 2.0σ(F2)

  • Rint = 0.098

  • 3 standard reflections every 150 reflections intensity decay: −1.6%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.04

  • 1831 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H6⋯O2 0.84 1.79 2.570 (3) 153
C4—H2⋯O2i 0.95 2.45 3.298 (3) 149
C1—H1⋯O4ii 0.95 2.41 3.346 (3) 168
C6—H4⋯O4iii 0.95 2.45 3.232 (3) 140
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound (3-carboxychromone) and its derivatives are reported as monoamine oxidase inhibitors (Alcaro et al., 2010; Legoabe et al., 2012), A3 adenosine receptor ligands (Gaspar et al., 2012) and tumor necrosis factor inhibitors (Papaneophytou et al., 2015).

The mean deviation of the least-square planes for the non-H atoms of the chromone ring is 0.0057 Å, and the largest deviation is 0.011 (2) Å for C2. These mean that these atoms are essentially coplanar (Fig. 1). The dihedral angle between the fused-ring and carboxy plane is 3.06 (2)°. Intramolecular hydrogen bond is formed between the α,β-unsaturated carbonyl O atom and the carboxy O—H atom.

In the crystal packing, the molecules are assembled by stacking interactions [centroid–centroid distance between the benzene and pyran rings of the 4H-chromene units = 3.844 (3) Å] and C–H···O hydrogen bonds, as shown in Fig. 2. Shorter contacts than the sum of van der Waals radii are observed between the carboxy O4 and C10i atoms [O4···C10i = 3.002 (3) Å, i: –x + 1, y + 1/2, –z + 3/2].

Related literature top

For the biological activities of the title compound and its related compounds, see: Alcaro et al. (2010); Gaspar et al. (2012); Legoabe et al. (2012); Papaneophytou et al. (2015). For the synthesis of the title compound, see: Helguera et al. (2013).

Experimental top

The title compound was synthesized from 3-formylchromone according to the literature method (Helguera et al. 2013). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution of the title compound at room temperature.

Refinement top

All hydrogen atoms were placed in geometric positions [C–H 0.95 Å and O–H 0.84 Å], and refined using a riding model with Uiso(H) = 1.2Ueq of the parent atoms.

Structure description top

The title compound (3-carboxychromone) and its derivatives are reported as monoamine oxidase inhibitors (Alcaro et al., 2010; Legoabe et al., 2012), A3 adenosine receptor ligands (Gaspar et al., 2012) and tumor necrosis factor inhibitors (Papaneophytou et al., 2015).

The mean deviation of the least-square planes for the non-H atoms of the chromone ring is 0.0057 Å, and the largest deviation is 0.011 (2) Å for C2. These mean that these atoms are essentially coplanar (Fig. 1). The dihedral angle between the fused-ring and carboxy plane is 3.06 (2)°. Intramolecular hydrogen bond is formed between the α,β-unsaturated carbonyl O atom and the carboxy O—H atom.

In the crystal packing, the molecules are assembled by stacking interactions [centroid–centroid distance between the benzene and pyran rings of the 4H-chromene units = 3.844 (3) Å] and C–H···O hydrogen bonds, as shown in Fig. 2. Shorter contacts than the sum of van der Waals radii are observed between the carboxy O4 and C10i atoms [O4···C10i = 3.002 (3) Å, i: –x + 1, y + 1/2, –z + 3/2].

For the biological activities of the title compound and its related compounds, see: Alcaro et al. (2010); Gaspar et al. (2012); Legoabe et al. (2012); Papaneophytou et al. (2015). For the synthesis of the title compound, see: Helguera et al. (2013).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: CrystalStructure (Rigaku, 2010); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular interactions of the title compound. Intramolecular O—H···O and intermolecular C—H···O hydrogen bonds are represented as dashed lines.
4-Oxo-4H-chromene-3-carboxylic acid top
Crystal data top
C10H6O4F(000) = 392.00
Mr = 190.15Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 18.017 (8) Åθ = 15.0–17.3°
b = 5.549 (3) ŵ = 0.12 mm1
c = 8.017 (5) ÅT = 100 K
β = 92.49 (4)°Plate, colourless
V = 800.8 (8) Å30.37 × 0.35 × 0.05 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 2323
2228 measured reflectionsk = 07
1831 independent reflectionsl = 105
1183 reflections with F2 > 2.0σ(F2)3 standard reflections every 150 reflections
Rint = 0.098 intensity decay: 1.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0457P]
where P = (Fo2 + 2Fc2)/3
1831 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H6O4V = 800.8 (8) Å3
Mr = 190.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.017 (8) ŵ = 0.12 mm1
b = 5.549 (3) ÅT = 100 K
c = 8.017 (5) Å0.37 × 0.35 × 0.05 mm
β = 92.49 (4)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.098
2228 measured reflections3 standard reflections every 150 reflections
1831 independent reflections intensity decay: 1.6%
1183 reflections with F2 > 2.0σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
1831 reflectionsΔρmin = 0.24 e Å3
128 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05120 (7)1.2950 (3)0.66885 (17)0.0166 (4)
O20.09613 (7)0.6952 (3)0.95238 (17)0.0190 (4)
O30.22945 (8)0.8524 (3)1.00156 (19)0.0230 (4)
O40.26339 (8)1.1851 (3)0.87416 (19)0.0233 (4)
C10.11926 (10)1.2529 (4)0.7381 (3)0.0165 (5)
C20.13725 (10)1.0587 (4)0.8324 (3)0.0147 (4)
C30.08209 (10)0.8780 (4)0.8660 (3)0.0145 (4)
C40.05085 (10)0.7609 (4)0.8086 (3)0.0158 (4)
C50.11971 (11)0.8094 (4)0.7329 (3)0.0184 (5)
C60.13077 (11)1.0194 (4)0.6379 (3)0.0192 (5)
C70.07373 (11)1.1805 (4)0.6183 (3)0.0167 (4)
C80.00821 (10)0.9221 (4)0.7888 (3)0.0150 (4)
C90.00452 (10)1.1301 (4)0.6937 (3)0.0143 (4)
C100.21539 (11)1.0393 (4)0.9027 (3)0.0171 (5)
H10.15721.36760.71930.0197*
H20.04350.61910.87370.0190*
H30.15960.69990.74540.0221*
H40.17831.05090.58640.0231*
H50.08151.32340.55460.0200*
H60.19090.76841.00770.0276*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0147 (7)0.0167 (7)0.0185 (7)0.0005 (6)0.0009 (6)0.0031 (6)
O20.0196 (7)0.0168 (7)0.0205 (8)0.0020 (6)0.0015 (6)0.0056 (6)
O30.0172 (7)0.0263 (9)0.0251 (8)0.0013 (7)0.0030 (6)0.0042 (7)
O40.0167 (7)0.0240 (8)0.0290 (9)0.0021 (7)0.0005 (6)0.0028 (7)
C10.0129 (9)0.0190 (10)0.0176 (10)0.0012 (8)0.0020 (8)0.0018 (8)
C20.0147 (9)0.0156 (10)0.0140 (9)0.0006 (8)0.0026 (8)0.0008 (8)
C30.0164 (9)0.0154 (10)0.0118 (9)0.0013 (8)0.0015 (7)0.0044 (8)
C40.0174 (9)0.0144 (10)0.0156 (10)0.0001 (8)0.0017 (8)0.0006 (8)
C50.0153 (9)0.0201 (10)0.0200 (10)0.0037 (8)0.0018 (8)0.0022 (9)
C60.0165 (10)0.0250 (11)0.0160 (10)0.0046 (9)0.0018 (8)0.0042 (9)
C70.0197 (9)0.0155 (10)0.0147 (9)0.0043 (8)0.0009 (8)0.0011 (8)
C80.0159 (9)0.0154 (10)0.0139 (9)0.0002 (8)0.0020 (7)0.0022 (8)
C90.0154 (9)0.0143 (10)0.0135 (9)0.0013 (8)0.0026 (7)0.0015 (8)
C100.0167 (10)0.0203 (11)0.0141 (9)0.0036 (8)0.0004 (8)0.0041 (9)
Geometric parameters (Å, º) top
O1—C11.344 (3)C5—C61.402 (3)
O1—C91.379 (3)C6—C71.377 (3)
O2—C31.248 (3)C7—C91.390 (3)
O3—C101.323 (3)C8—C91.397 (3)
O4—C101.213 (3)O3—H60.840
C1—C21.348 (3)C1—H10.950
C2—C31.445 (3)C4—H20.950
C2—C101.497 (3)C5—H30.950
C3—C81.464 (3)C6—H40.950
C4—C51.384 (3)C7—H50.950
C4—C81.404 (3)
O1···C32.843 (3)H3···H42.3436
O2···O32.570 (3)H4···H52.3300
O2···C13.573 (3)O1···H2i3.0150
O2···C42.865 (3)O1···H5xii2.8421
O2···C102.915 (3)O2···H1iii2.8607
O3···C32.828 (3)O2···H2iv2.4493
O4···C12.798 (3)O2···H3iv3.4273
C1···C73.589 (3)O3···H1vi2.7625
C1···C82.758 (3)O3···H3v3.4773
C2···C92.770 (3)O3···H3vii2.7495
C4···C72.804 (3)O3···H4v3.5090
C5···C92.762 (3)O3···H4vii2.8526
C6···C82.786 (3)O4···H1vi2.4100
O1···O2i3.255 (3)O4···H4ix2.4481
O1···C4i3.391 (3)O4···H5ix3.0909
O1···C5ii3.547 (3)O4···H6viii3.2381
O1···C6ii3.384 (3)C1···H2v3.5240
O1···C7ii3.537 (3)C1···H4ii3.3137
O2···O1iii3.255 (3)C1···H5xii3.3703
O2···C1iii3.035 (3)C2···H2v3.4555
O2···C4iv3.298 (3)C2···H4ii3.5224
O2···C7v3.550 (3)C3···H1iii3.3721
O2···C8v3.562 (3)C3···H2iv3.5458
O2···C9v3.482 (3)C3···H2v3.5707
O3···O4vi3.160 (3)C3···H5ii3.5517
O3···C1vi3.447 (3)C4···H5iii3.2013
O3···C5v3.511 (3)C5···H5iii3.1424
O3···C5vii3.346 (3)C5···H6v3.4189
O3···C6v3.531 (3)C6···H1ii3.5945
O3···C6vii3.399 (3)C6···H6v3.3010
O4···O3viii3.160 (3)C7···H2i3.2116
O4···O4vi3.437 (3)C7···H3i3.4460
O4···O4viii3.437 (3)C8···H5ii3.3906
O4···C1vi3.346 (3)C9···H2i3.1673
O4···C2viii3.241 (3)C10···H1vi2.7081
O4···C6ix3.232 (3)C10···H3v3.3630
O4···C7ix3.536 (3)C10···H4ix3.2814
O4···C10viii3.002 (3)H1···O2i2.8607
C1···O2i3.035 (3)H1···O3viii2.7625
C1···O3viii3.447 (3)H1···O4viii2.4100
C1···O4viii3.346 (3)H1···C3i3.3721
C1···C6ii3.386 (4)H1···C6ii3.5945
C2···O4vi3.241 (3)H1···C10viii2.7081
C2···C4v3.478 (4)H1···H4ii3.4096
C2···C5v3.588 (4)H1···H5xii3.0597
C3···C4v3.356 (3)H1···H6i3.2466
C3···C8v3.454 (3)H1···H6viii3.3979
C4···O1iii3.391 (3)H2···O1iii3.0150
C4···O2iv3.298 (3)H2···O2iv2.4493
C4···C2v3.478 (4)H2···C1v3.5240
C4···C3v3.356 (3)H2···C2v3.4555
C4···C7iii3.580 (4)H2···C3iv3.5458
C5···O1ii3.547 (3)H2···C3v3.5707
C5···O3v3.511 (3)H2···C7iii3.2116
C5···O3x3.346 (3)H2···C9iii3.1673
C5···C2v3.588 (4)H2···H2iv2.8347
C5···C10v3.556 (4)H2···H5iii3.0909
C6···O1ii3.384 (3)H2···H6iv3.5767
C6···O3v3.531 (3)H3···O2iv3.4273
C6···O3x3.399 (3)H3···O3v3.4773
C6···O4xi3.232 (3)H3···O3x2.7495
C6···C1ii3.386 (4)H3···C7iii3.4460
C7···O1ii3.537 (3)H3···C10v3.3630
C7···O2v3.550 (3)H3···H4xiii3.3726
C7···O4xi3.536 (3)H3···H5iii2.9785
C7···C4i3.580 (4)H3···H6iv3.3289
C7···C8ii3.565 (4)H3···H6x3.2355
C7···C9ii3.394 (4)H4···O3v3.5090
C8···O2v3.562 (3)H4···O3x2.8526
C8···C3v3.454 (3)H4···O4xi2.4481
C8···C7ii3.565 (4)H4···C1ii3.3137
C8···C8v3.519 (4)H4···C2ii3.5224
C9···O2v3.482 (3)H4···C10xi3.2814
C9···C7ii3.394 (4)H4···H1ii3.4096
C9···C9ii3.434 (4)H4···H3xiv3.3726
C10···O4vi3.002 (3)H4···H6v3.4215
C10···C5v3.556 (4)H4···H6x2.9941
O1···H52.5280H5···O1xii2.8421
O2···H22.6023H5···O4xi3.0909
O2···H61.7919H5···C1xii3.3703
O4···H12.4544H5···C3ii3.5517
O4···H62.8847H5···C4i3.2013
C2···H62.3211H5···C5i3.1424
C3···H13.2756H5···C8ii3.3906
C3···H22.6839H5···H1xii3.0597
C3···H62.3046H5···H2i3.0909
C4···H43.2675H5···H3i2.9785
C5···H53.2769H6···O4vi3.2381
C6···H23.2735H6···C5v3.4189
C7···H33.2685H6···C6v3.3010
C8···H33.2704H6···H1iii3.2466
C8···H53.2912H6···H1vi3.3979
C9···H13.1956H6···H2iv3.5767
C9···H23.2716H6···H3iv3.3289
C9···H43.2400H6···H3vii3.2355
C10···H12.5390H6···H4v3.4215
H2···H32.3338H6···H4vii2.9941
C1—O1—C9118.80 (16)O1—C9—C8121.58 (17)
O1—C1—C2124.29 (18)C7—C9—C8121.78 (18)
C1—C2—C3120.57 (17)O3—C10—O4121.07 (19)
C1—C2—C10117.90 (18)O3—C10—C2115.74 (18)
C3—C2—C10121.53 (17)O4—C10—C2123.19 (19)
O2—C3—C2122.87 (17)C10—O3—H6109.466
O2—C3—C8121.96 (17)O1—C1—H1117.850
C2—C3—C8115.17 (17)C2—C1—H1117.864
C5—C4—C8119.74 (19)C5—C4—H2120.128
C4—C5—C6120.23 (19)C8—C4—H2120.133
C5—C6—C7120.86 (19)C4—C5—H3119.885
C6—C7—C9118.65 (19)C6—C5—H3119.886
C3—C8—C4121.68 (18)C5—C6—H4119.563
C3—C8—C9119.59 (17)C7—C6—H4119.572
C4—C8—C9118.73 (17)C6—C7—H5120.665
O1—C9—C7116.64 (17)C9—C7—H5120.682
C1—O1—C9—C7179.46 (15)C5—C4—C8—C90.6 (3)
C1—O1—C9—C80.1 (3)C8—C4—C5—C60.5 (3)
C9—O1—C1—C20.4 (3)C8—C4—C5—H3179.5
C9—O1—C1—H1179.6H2—C4—C5—C6179.5
H6—O3—C10—O4179.4H2—C4—C5—H30.5
H6—O3—C10—C21.5H2—C4—C8—C30.2
O1—C1—C2—C30.1 (3)H2—C4—C8—C9179.4
O1—C1—C2—C10179.20 (16)C4—C5—C6—C70.1 (3)
H1—C1—C2—C3179.9C4—C5—C6—H4180.0
H1—C1—C2—C100.8H3—C5—C6—C7180.0
C1—C2—C3—O2179.94 (17)H3—C5—C6—H40.0
C1—C2—C3—C80.9 (3)C5—C6—C7—C90.5 (3)
C1—C2—C10—O3176.58 (17)C5—C6—C7—H5179.5
C1—C2—C10—O42.5 (3)H4—C6—C7—C9179.5
C3—C2—C10—O32.5 (3)H4—C6—C7—H50.5
C3—C2—C10—O4178.41 (17)C6—C7—C9—O1179.18 (17)
C10—C2—C3—O21.0 (3)C6—C7—C9—C80.4 (3)
C10—C2—C3—C8179.91 (15)H5—C7—C9—O10.8
O2—C3—C8—C40.2 (3)H5—C7—C9—C8179.6
O2—C3—C8—C9179.82 (16)C3—C8—C9—O10.6 (3)
C2—C3—C8—C4179.26 (15)C3—C8—C9—C7179.78 (16)
C2—C3—C8—C91.1 (3)C4—C8—C9—O1179.71 (16)
C5—C4—C8—C3179.76 (16)C4—C8—C9—C70.1 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x, y+1, z+2; (v) x, y+2, z+2; (vi) x+1/2, y1/2, z+3/2; (vii) x+1/2, y+3/2, z+1/2; (viii) x+1/2, y+1/2, z+3/2; (ix) x+1/2, y+5/2, z+1/2; (x) x1/2, y+3/2, z1/2; (xi) x1/2, y+5/2, z1/2; (xii) x, y+3, z+1; (xiii) x1/2, y1/2, z+3/2; (xiv) x1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O20.841.792.570 (3)153
C4—H2···O2iv0.952.453.298 (3)149
C1—H1···O4viii0.952.413.346 (3)168
C6—H4···O4xi0.952.453.232 (3)140
Symmetry codes: (iv) x, y+1, z+2; (viii) x+1/2, y+1/2, z+3/2; (xi) x1/2, y+5/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O20.841.792.570 (3)153
C4—H2···O2i0.952.453.298 (3)149
C1—H1···O4ii0.952.413.346 (3)168
C6—H4···O4iii0.952.453.232 (3)140
Symmetry codes: (i) x, y+1, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x1/2, y+5/2, z1/2.
 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationAlcaro, S., Gaspar, A., Ortuso, F., Milhazes, N., Orallo, F., Uriarte, E., Yáñez, M. & Borges, F. (2010). Bioorg. Med. Chem. Lett. 20, 2709–2712.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGaspar, A., Reis, J., Kachler, S., Paoletta, S., Uriarte, E., Klotz, K. N., Moro, S. & Borges, F. (2012). Biochem. Pharmacol. 84, 21–29.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHelguera, A. M., Pérez-Garrido, A., Gaspar, A., Reis, J., Cagide, F., Vina, D., Cordeiro, M. N. & Borges, F. (2013). Eur. J. Med. Chem. 59, 75–90.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLegoabe, L. J., Petzer, A. & Petzer, J. P. (2012). Bioorg. Med. Chem. Lett. 22, 5480–5484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPapaneophytou, C., Alexiou, P., Papakyriakou, A., Ntougkos, E., Tsiliouka, K., Maranti, A., Liepouri, F., Strongilos, A., Mettou, A., Couladouros, E., Eliopoulos, E., Douni, E., Kollias, G. & Kontopidis, G. (2015). Med. Chem. Commun. 6, 1196–1209.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds