organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-bromo-2,4,6-tri­methyl-3-[(2-methyl­phen­yl)sulfin­yl]-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 14 July 2015; accepted 19 July 2015; online 25 July 2015)

In the title compound, C18H17BrO2S, the dihedral angle between the mean planes of the benzo­furan [r.m.s. deviation = 0.025 (2) Å] and the 2-methyl­benzene rings is 87.87 (5)°. In the crystal, mol­ecules are linked into supra­molecular layers parallel to (0-11) by C—H⋯O hydrogen bonds and Br⋯Br [3.4521 (5) Å] contacts. These are connected into a three-dimensional architecture via C—H⋯π inter­actions, which link inversion-related mol­ecules into dimers, and ππ inter­actions between the benzene and furan rings [centroid–centroid distance = 3.573 (2) Å].

1. Related literature

For the pharmacological properties of benzo­furan compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Wahab Khan et al. (2005[Wahab Khan, M., Jahangir Alam, M., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]); Ono et al. (2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). For a related structure, see: Choi et al. (2014[Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o381.]). For synthetic details, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H17BrO2S

  • Mr = 377.29

  • Triclinic, [P \overline 1]

  • a = 7.4011 (2) Å

  • b = 10.6609 (2) Å

  • c = 11.1857 (2) Å

  • α = 67.265 (1)°

  • β = 86.593 (1)°

  • γ = 79.384 (1)°

  • V = 800.00 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 173 K

  • 0.60 × 0.54 × 0.48 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.269, Tmax = 0.746

  • 14745 measured reflections

  • 3982 independent reflections

  • 3297 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.05

  • 3982 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2 0.98 2.33 3.274 (3) 162
C11—H11C⋯O2i 0.98 2.32 3.276 (2) 166
C15—H15⋯Cg1ii 0.95 2.88 3.659 (3) 140
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg,1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Many compounds involving a benzofuran skeleton show interesting pharmacological properties such as anti-bacterial, anti-fungal, anti-tumour and anti-viral activities (Aslam et al., 2009; Galal et al., 2009; Wahab Khan et al., 2005), and potential inhibitor of β-amyloid aggregation (Howlett et al., 1999; Ono et al., 2002). As a part of our continuing project on benzofuran derivatives (Choi et al., 2014), we report herein the crystal structure of the title compound. In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.025 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran ring and the 2-methylbenzene ring is 87.87 (5) Å. In the crystal structure (Fig. 2), molecules are linked by C—H···O hydrogen bonds (Table 1) and Br1···Br1iv [3.4521 (5) Å] contacts in the (0 -1 1) plane. Further, inversion-related molecules are paired into dimers via C—H···π interactions (Fig. 3, Table 1, Cg1 is the centroid of the C2–C7 benzene ring). These dimers are further linked by ππ interactions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2ii distance of 3.573 (1) Å and an interplanar distance of 3.488 (2) Å resulting in a slippage of 0.775 (2) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the pharmacological properties of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Wahab Khan et al. (2005); Ono et al. (2002). For a related structure, see: Choi et al. (2014). For synthetic details, see: Choi et al. (1999).

Experimental top

The starting material 5-bromo-2,4,6-trimethyl-3-(2-methylphenylsulfanyl)-1-benzofuran was prepared by the literature method (Choi et al., 1999). 3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-2,4,6-trimethyl-3-(2-methylphenylsulfanyl)-1-benzofuran (285 mg, 0.9 mmol) in dichloromethane (25 ml) at 273 K. After being stirred at room temperature for 8 h, the mixture was washed with a saturated sodium bicarbonate solution (2 x 10 ml). The organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 68% (226 mg); m.p.: 466–467 K; Rf = 0.51 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (21 mg) in ethyl acetate (20 ml) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 A for methyl H atoms, Uiso(H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms.

Structure description top

Many compounds involving a benzofuran skeleton show interesting pharmacological properties such as anti-bacterial, anti-fungal, anti-tumour and anti-viral activities (Aslam et al., 2009; Galal et al., 2009; Wahab Khan et al., 2005), and potential inhibitor of β-amyloid aggregation (Howlett et al., 1999; Ono et al., 2002). As a part of our continuing project on benzofuran derivatives (Choi et al., 2014), we report herein the crystal structure of the title compound. In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.025 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran ring and the 2-methylbenzene ring is 87.87 (5) Å. In the crystal structure (Fig. 2), molecules are linked by C—H···O hydrogen bonds (Table 1) and Br1···Br1iv [3.4521 (5) Å] contacts in the (0 -1 1) plane. Further, inversion-related molecules are paired into dimers via C—H···π interactions (Fig. 3, Table 1, Cg1 is the centroid of the C2–C7 benzene ring). These dimers are further linked by ππ interactions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2ii distance of 3.573 (1) Å and an interplanar distance of 3.488 (2) Å resulting in a slippage of 0.775 (2) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring).

For the pharmacological properties of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Wahab Khan et al. (2005); Ono et al. (2002). For a related structure, see: Choi et al. (2014). For synthetic details, see: Choi et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg,1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and Br···Br interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (iv) - x, - y + 2, - z + 1; (v) x - 1, y, z.]
[Figure 3] Fig. 3. A view of the C—H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (ii) - x + 1, - y + 2, - z; (iii) - x + 1, - y + 1, - z + 1.]
5-Bromo-2,4,6-trimethyl-3-[(2-methylphenyl)sulfinyl]-1-benzofuran top
Crystal data top
C18H17BrO2SZ = 2
Mr = 377.29F(000) = 384
Triclinic, P1Dx = 1.566 Mg m3
a = 7.4011 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6609 (2) ÅCell parameters from 7576 reflections
c = 11.1857 (2) Åθ = 2.8–28.3°
α = 67.265 (1)°µ = 2.70 mm1
β = 86.593 (1)°T = 173 K
γ = 79.384 (1)°Block, colourless
V = 800.00 (3) Å30.60 × 0.54 × 0.48 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3982 independent reflections
Radiation source: rotating anode3297 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.046
φ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.269, Tmax = 0.746k = 1414
14745 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.3816P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3982 reflectionsΔρmax = 0.48 e Å3
204 parametersΔρmin = 0.79 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (2)
Crystal data top
C18H17BrO2Sγ = 79.384 (1)°
Mr = 377.29V = 800.00 (3) Å3
Triclinic, P1Z = 2
a = 7.4011 (2) ÅMo Kα radiation
b = 10.6609 (2) ŵ = 2.70 mm1
c = 11.1857 (2) ÅT = 173 K
α = 67.265 (1)°0.60 × 0.54 × 0.48 mm
β = 86.593 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3297 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.746Rint = 0.046
14745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
3982 reflectionsΔρmin = 0.79 e Å3
204 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 8.01 (d, J = 7.52 Hz, 1H), 7.35-7.44 (m, 2H), 7.15-7.23 (m, 2H), 2.64 (s, 3H), 2.53 (s, 3H), 2.50 (s, 3H), 2.15 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18479 (4)0.88031 (3)0.48841 (3)0.04996 (12)
S10.47494 (6)0.56515 (5)0.10695 (5)0.02289 (12)
O10.82901 (18)0.52534 (15)0.36828 (13)0.0255 (3)
O20.29324 (19)0.52076 (15)0.14556 (15)0.0318 (3)
C10.5830 (2)0.5705 (2)0.24007 (18)0.0215 (4)
C20.5307 (2)0.63609 (19)0.33233 (18)0.0212 (4)
C30.3713 (3)0.7126 (2)0.36069 (19)0.0252 (4)
C40.3916 (3)0.7625 (2)0.4560 (2)0.0305 (5)
C50.5531 (3)0.7344 (2)0.5293 (2)0.0320 (5)
C60.7045 (3)0.6511 (2)0.5047 (2)0.0292 (4)
H60.81510.62580.55380.035*
C70.6896 (3)0.6060 (2)0.40654 (18)0.0232 (4)
C80.7605 (3)0.5054 (2)0.26755 (19)0.0230 (4)
C90.1912 (3)0.7347 (2)0.2948 (2)0.0353 (5)
H9A0.09230.72540.35830.053*
H9B0.19510.66580.25640.053*
H9C0.16820.82750.22650.053*
C100.5626 (4)0.7902 (3)0.6331 (2)0.0456 (6)
H10A0.68260.75320.67710.068*
H10B0.46530.76240.69610.068*
H10C0.54600.89120.59360.068*
C110.8919 (3)0.4230 (2)0.2093 (2)0.0315 (5)
H11A0.83260.41740.13600.047*
H11B0.93030.32980.27450.047*
H11C0.99990.46740.17900.047*
C120.4240 (3)0.7459 (2)0.00352 (18)0.0237 (4)
C130.2409 (3)0.8030 (2)0.0253 (2)0.0354 (5)
H130.14820.74980.01480.042*
C140.1930 (3)0.9375 (3)0.1124 (3)0.0458 (6)
H140.06710.97750.13150.055*
C150.3276 (4)1.0137 (3)0.1718 (2)0.0425 (6)
H150.29501.10650.23120.051*
C160.5101 (3)0.9544 (2)0.1444 (2)0.0356 (5)
H160.60191.00780.18580.043*
C170.5636 (3)0.8195 (2)0.05849 (19)0.0266 (4)
C180.7640 (3)0.7562 (3)0.0369 (2)0.0373 (5)
H18A0.83620.81420.10520.056*
H18B0.78260.66370.03910.056*
H18C0.80370.74940.04780.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05418 (19)0.03685 (17)0.05438 (19)0.00746 (11)0.01541 (12)0.02160 (13)
S10.0205 (2)0.0245 (3)0.0253 (2)0.00667 (18)0.00178 (17)0.0098 (2)
O10.0211 (7)0.0289 (8)0.0257 (7)0.0014 (5)0.0027 (5)0.0104 (6)
O20.0237 (7)0.0313 (8)0.0385 (8)0.0127 (6)0.0026 (6)0.0074 (7)
C10.0181 (8)0.0234 (10)0.0229 (9)0.0051 (7)0.0006 (7)0.0081 (8)
C20.0211 (9)0.0195 (9)0.0206 (9)0.0045 (7)0.0020 (7)0.0047 (7)
C30.0254 (9)0.0205 (10)0.0240 (10)0.0038 (7)0.0041 (7)0.0028 (8)
C40.0375 (11)0.0194 (10)0.0291 (11)0.0006 (8)0.0082 (8)0.0062 (8)
C50.0500 (13)0.0205 (10)0.0221 (10)0.0050 (9)0.0016 (9)0.0051 (8)
C60.0370 (11)0.0247 (11)0.0234 (10)0.0047 (8)0.0046 (8)0.0059 (8)
C70.0245 (9)0.0200 (10)0.0220 (9)0.0033 (7)0.0003 (7)0.0047 (8)
C80.0208 (9)0.0244 (10)0.0241 (10)0.0058 (7)0.0003 (7)0.0089 (8)
C90.0229 (10)0.0347 (12)0.0435 (13)0.0015 (8)0.0022 (9)0.0128 (10)
C100.0743 (18)0.0328 (13)0.0322 (13)0.0039 (12)0.0018 (12)0.0173 (11)
C110.0218 (9)0.0345 (12)0.0386 (12)0.0011 (8)0.0011 (8)0.0172 (10)
C120.0271 (9)0.0242 (10)0.0205 (9)0.0055 (8)0.0020 (7)0.0086 (8)
C130.0252 (10)0.0353 (12)0.0372 (12)0.0051 (9)0.0058 (9)0.0040 (10)
C140.0367 (13)0.0393 (14)0.0466 (15)0.0009 (10)0.0116 (11)0.0022 (11)
C150.0552 (15)0.0263 (12)0.0369 (13)0.0047 (11)0.0060 (11)0.0022 (10)
C160.0467 (13)0.0309 (12)0.0300 (11)0.0169 (10)0.0021 (9)0.0082 (9)
C170.0299 (10)0.0317 (11)0.0232 (10)0.0108 (8)0.0013 (8)0.0136 (9)
C180.0287 (11)0.0438 (14)0.0376 (12)0.0146 (10)0.0073 (9)0.0110 (10)
Geometric parameters (Å, º) top
Br1—C41.905 (2)C9—H9C0.9800
Br1—Br1i3.4521 (5)C10—H10A0.9800
S1—O21.4921 (14)C10—H10B0.9800
S1—C11.7561 (19)C10—H10C0.9800
S1—C121.805 (2)C11—H11A0.9800
O1—C81.366 (2)C11—H11B0.9800
O1—C71.376 (2)C11—H11C0.9800
C1—C81.360 (3)C12—C131.381 (3)
C1—C21.454 (3)C12—C171.399 (3)
C2—C71.395 (3)C13—C141.381 (3)
C2—C31.399 (3)C13—H130.9500
C3—C41.389 (3)C14—C151.377 (4)
C3—C91.498 (3)C14—H140.9500
C4—C51.409 (3)C15—C161.379 (4)
C5—C61.381 (3)C15—H150.9500
C5—C101.505 (3)C16—C171.384 (3)
C6—C71.375 (3)C16—H160.9500
C6—H60.9500C17—C181.504 (3)
C8—C111.481 (3)C18—H18A0.9800
C9—H9A0.9800C18—H18B0.9800
C9—H9B0.9800C18—H18C0.9800
C4—Br1—Br1i173.50 (6)C5—C10—H10B109.5
O2—S1—C1110.19 (9)H10A—C10—H10B109.5
O2—S1—C12105.80 (9)C5—C10—H10C109.5
C1—S1—C12101.64 (9)H10A—C10—H10C109.5
C8—O1—C7106.53 (14)H10B—C10—H10C109.5
C8—C1—C2106.98 (16)C8—C11—H11A109.5
C8—C1—S1117.93 (15)C8—C11—H11B109.5
C2—C1—S1135.02 (15)H11A—C11—H11B109.5
C7—C2—C3119.21 (18)C8—C11—H11C109.5
C7—C2—C1104.32 (16)H11A—C11—H11C109.5
C3—C2—C1136.46 (18)H11B—C11—H11C109.5
C4—C3—C2115.32 (18)C13—C12—C17121.35 (19)
C4—C3—C9122.90 (19)C13—C12—S1116.73 (15)
C2—C3—C9121.76 (19)C17—C12—S1121.36 (15)
C3—C4—C5125.3 (2)C14—C13—C12119.8 (2)
C3—C4—Br1117.17 (16)C14—C13—H13120.1
C5—C4—Br1117.52 (16)C12—C13—H13120.1
C6—C5—C4117.8 (2)C15—C14—C13120.0 (2)
C6—C5—C10120.1 (2)C15—C14—H14120.0
C4—C5—C10122.0 (2)C13—C14—H14120.0
C7—C6—C5117.64 (19)C14—C15—C16119.6 (2)
C7—C6—H6121.2C14—C15—H15120.2
C5—C6—H6121.2C16—C15—H15120.2
C6—C7—O1124.63 (17)C15—C16—C17122.1 (2)
C6—C7—C2124.46 (19)C15—C16—H16119.0
O1—C7—C2110.91 (16)C17—C16—H16119.0
C1—C8—O1111.23 (17)C16—C17—C12117.10 (19)
C1—C8—C11133.54 (19)C16—C17—C18120.40 (19)
O1—C8—C11115.20 (16)C12—C17—C18122.48 (19)
C3—C9—H9A109.5C17—C18—H18A109.5
C3—C9—H9B109.5C17—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C3—C9—H9C109.5C17—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C5—C10—H10A109.5
O2—S1—C1—C8130.07 (16)C3—C2—C7—C62.7 (3)
C12—S1—C1—C8118.10 (16)C1—C2—C7—C6178.32 (19)
O2—S1—C1—C253.3 (2)C3—C2—C7—O1177.36 (16)
C12—S1—C1—C258.6 (2)C1—C2—C7—O11.6 (2)
C8—C1—C2—C71.7 (2)C2—C1—C8—O11.1 (2)
S1—C1—C2—C7175.25 (16)S1—C1—C8—O1176.39 (13)
C8—C1—C2—C3177.1 (2)C2—C1—C8—C11179.1 (2)
S1—C1—C2—C36.0 (4)S1—C1—C8—C111.6 (3)
C7—C2—C3—C45.3 (3)C7—O1—C8—C10.1 (2)
C1—C2—C3—C4176.1 (2)C7—O1—C8—C11178.51 (17)
C7—C2—C3—C9173.01 (18)O2—S1—C12—C133.79 (19)
C1—C2—C3—C95.6 (3)C1—S1—C12—C13118.91 (17)
C2—C3—C4—C54.3 (3)O2—S1—C12—C17175.31 (16)
C9—C3—C4—C5174.0 (2)C1—S1—C12—C1769.58 (17)
C2—C3—C4—Br1174.84 (13)C17—C12—C13—C143.1 (3)
C9—C3—C4—Br16.9 (3)S1—C12—C13—C14174.6 (2)
C3—C4—C5—C60.3 (3)C12—C13—C14—C151.0 (4)
Br1—C4—C5—C6178.87 (15)C13—C14—C15—C160.5 (4)
C3—C4—C5—C10178.6 (2)C14—C15—C16—C170.0 (4)
Br1—C4—C5—C102.2 (3)C15—C16—C17—C122.0 (3)
C4—C5—C6—C72.7 (3)C15—C16—C17—C18176.6 (2)
C10—C5—C6—C7178.4 (2)C13—C12—C17—C163.5 (3)
C5—C6—C7—O1178.41 (18)S1—C12—C17—C16174.66 (16)
C5—C6—C7—C21.5 (3)C13—C12—C17—C18175.1 (2)
C8—O1—C7—C6178.95 (19)S1—C12—C17—C183.9 (3)
C8—O1—C7—C21.0 (2)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O20.982.333.274 (3)162
C11—H11C···O2ii0.982.323.276 (2)166
C15—H15···Cg1iii0.952.883.659 (3)140
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O20.982.333.274 (3)162
C11—H11C···O2i0.982.323.276 (2)166
C15—H15···Cg1ii0.952.883.659 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o381.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWahab Khan, M., Jahangir Alam, M., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds