research communications
cis-diaquabis(oxalato-κ2O,O′)ferrate(III) hemihydrate
of 4-(dimethylamino)pyridiniumaDepartment of Inorganic Chemistry, University of Yaounde 1, POB 812 Yaounde, Cameroon, bUnité de Catalyse et de Chimie du Solide, UMR 8181, École Nationale Supérieure de Chimie de Lille, Université Lille-1, 59650 Villeneuve d'Ascq Cedex, France, and cUFR de Physique, Université Lille-1, 59650 Villeneuve d'Ascq Cedex, France
*Correspondence e-mail: jnenwa@yahoo.fr
The FeIII ions in the hybrid title salt, (C7H11N2)[Fe(C2O4)2(H2O)2]·0.5H2O, show a distorted octahedral coordination environment, with four O atoms from two chelating oxalate dianions and two O atoms from two cis aqua ligands. The average Fe—O(oxalate) bond length [2.00 (2) Å] is shorter than the average Fe—O(water) bond length [2.027 (19) Å]. The ionic components are connected via intermolecular N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.
Keywords: crystal structure; 4-(dimethylamino)pyridine; bis(oxalate)ferrate(III) complex; hybrid salt; hydrogen bonding.
CCDC reference: 1400489
1. Chemical context
Over the past years, the design and synthesis of organic–inorganic hybrid salts have attracted much attention not only because of their fascinating network topologies, but also to obtain a better understanding of the correlations between their structural and physical properties (Bloomquist et al., 1981; Geiser et al., 1987; Pardo et al., 2012). In this context, the bis-oxalato complexes of transition metals, [MIII(C2O4)2(H2O)2]−, are extremely versatile building blocks for the synthesis of organic–inorganic hybrid salts. Although several salts of general formula A[MIII(C2O4)2(H2O)2]·xH2O (A+ = aromatic iminium cation, 0≤x≤1) have been explored to date (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011; Chérif, Abdelhak et al., 2012; Chérif, Zid et al., 2012; Nenwa et al., 2012a,b; Dridi et al., 2013; Bebga et al., 2013), the predictable and consistent formation of networks is still in its infancy. In most cases, the network topologies are influenced by the organic counter-cations, metal coordination spheres, pH values, guest molecules and the crystallization solvent. So far, most of the self-assembly processes involving anionic species, [MIII(C2O4)2(H2O)2]−, and aromatic iminium cations have led to salts with trans-diaquabis(oxalate)metallate(III) complex anions (Bélombé et al., 2009, Nenwa et al., 2010, 2012a; Chérif, Zid et al., 2012; Dridi et al., 2013; Gouet et al., 2013). The cis configuration of the complex anion [MIII(C2O4)2(H2O)2]− is less common in the literature, and has been observed in salts with 2-amino-5-chloropyridinium (Chérif, Abdelhak et al., 2012) or with pyridinium (Nenwa et al., 2012b) as aromatic iminium cations. In this work, we extend this family of salts involving the complex anion [MIII(C2O4)2(H2O)2]− in its cis-configuration by reporting the structural characterization of the title compound with composition (C7H11N2)[Fe(C2O4)2(H2O)2]·0.5H2O.
2. Structural commentary
The consists of one protonated 4-(dimethylamino)pyridine molecule (C7H11N2)+, one anionic complex [Fe(C2O4)2(H2O)2]− in a cis-aqua configuration and one-half solvent water molecule. Atom O3W of this water molecule of solvation lies on a crystallographic twofold rotation axis. The main geometric parameters of the (C7H11N2)+ cation are in agreement with those found in a similar salt with the same cationic entity (Nenwa et al., 2010). The iron(III) site in the complex anion has a distorted octahedral coordination environment built up by two O atoms (O1W, O2W) from two cis-aqua ligands and four O atoms (O3, O4, O5, O6) from two chelating oxalate dianions. The average Fe—O(oxalate) bond length [2.00 (2) Å] is shorter than the average Fe—O(water) bond length [2.027 (19) Å]. The bond lengths in the [Fe(C2O4)2(H2O)2]− anion are similar to those observed in homologous compounds with a cis-aqua configuration of the [MIII(C2O4)2(H2O)2]− anionic units (Chérif, Abdelhak et al., 2012; Nenwa et al., 2012b).
of the title compound shown in Fig. 13. Supramolecular features
Within the crystal packing, the charged components are connected by an extensive hydrogen-bonding network. Hydrogen bonds of the type O—H⋯O involving coordinating water molecules as donor groups and auxilliary O atoms of the oxalate dianions as acceptor groups interconnect neighboring [Fe(C2O4)2(H2O)2]− anionic units (Table 1, Fig. 2). Together with the relatively weaker N—H⋯O hydrogen bonds of the protonated imine N atoms of the 4-(dimethylamino)pyridine molecules to the oxalate dianions, a three-dimensional framework is formed (Table 1, Fig. 3).
4. Synthesis and crystallization
The salt Fe(NO3)3·6H2O (1 mmol, 400 mg) was dissolved in 20 ml of water, leading to a yellowish solution. This solution was added in successive small portions in 30 ml of a mixture of oxalic acid (2 mmol, 253 mg) and 4-(dimethylamino)pyridine (1 mmol, 122 mg) with stirring at 323 K for 2 h. The resulting greenish solution was left at room temperature; crystals suitable for X-ray diffraction were obtained after two weeks upon slow evaporation.
5. Refinement
Crystal data, data collection and structure . H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed at 0.93 and 0.96 Å for aromatic and methyl C atoms, respectively. The N—H distance was fixed at 0.86 Å. The Uiso(H) values were equal to 1.2 and 1.5 times Ueq of the corresponding C(sp2) and C(sp3) atoms, and 1.2 times Ueq of the N atom. All water H atoms were located from a difference-Fourier map and refined with soft restraints on the O—H and H⋯H distances [O—H = 0.82 (2) and H⋯H = 1.30 (4) Å] with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1400489
https://doi.org/10.1107/S2056989015013213/vn2095sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015013213/vn2095Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).(C7H11N2)[Fe(C2O4)2(H2O)2]·0.5H2O | F(000) = 1648 |
Mr = 800.22 | Dx = 1.665 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 14.7960 (7) Å | Cell parameters from 9923 reflections |
b = 10.4422 (4) Å | θ = 2.2–27.3° |
c = 21.7751 (10) Å | µ = 1.00 mm−1 |
β = 108.352 (3)° | T = 296 K |
V = 3193.2 (2) Å3 | Irregular, yellow |
Z = 4 | 0.26 × 0.22 × 0.13 mm |
Bruker APEXII CCD diffractometer | 3435 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.044 |
φ and ω scans | θmax = 30.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS2014; Bruker, 2014) | h = −21→21 |
Tmin = 0.679, Tmax = 0.746 | k = −14→14 |
48070 measured reflections | l = −31→31 |
4880 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: mixed |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0528P)2 + 5.0524P] where P = (Fo2 + 2Fc2)/3 |
4880 reflections | (Δ/σ)max = 0.001 |
239 parameters | Δρmax = 0.85 e Å−3 |
8 restraints | Δρmin = −0.58 e Å−3 |
Experimental. Absorption correction: SADABS-2014/3 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0678 before and 0.0491 after correction. The Ratio of minimum to maximum transmission is 0.9094. The λ/2 correction factor is 0.00150. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.33846 (2) | 0.99760 (3) | 0.33390 (2) | 0.02994 (10) | |
O1 | 0.27198 (13) | 0.84143 (16) | 0.15711 (7) | 0.0393 (4) | |
O1W | 0.31148 (18) | 1.14895 (18) | 0.38270 (9) | 0.0511 (5) | |
H1WA | 0.287 (3) | 1.216 (2) | 0.3669 (16) | 0.077* | |
H1WB | 0.321 (3) | 1.132 (4) | 0.4186 (10) | 0.077* | |
O2 | 0.23808 (16) | 1.10293 (17) | 0.14845 (8) | 0.0524 (5) | |
O2W | 0.21255 (12) | 0.91604 (16) | 0.33264 (9) | 0.0381 (4) | |
H2WA | 0.187 (2) | 0.941 (3) | 0.3590 (13) | 0.057* | |
H2WB | 0.223 (2) | 0.8379 (17) | 0.3394 (15) | 0.057* | |
O3 | 0.33473 (12) | 0.86776 (14) | 0.26407 (7) | 0.0343 (3) | |
O4 | 0.29136 (13) | 1.10922 (15) | 0.25610 (7) | 0.0389 (4) | |
O5 | 0.39926 (12) | 0.89364 (16) | 0.41206 (8) | 0.0398 (4) | |
O6 | 0.47565 (13) | 1.04452 (18) | 0.34780 (8) | 0.0408 (4) | |
O7 | 0.53967 (14) | 0.85689 (19) | 0.48747 (9) | 0.0504 (5) | |
O8 | 0.62163 (14) | 1.0053 (2) | 0.41370 (12) | 0.0625 (6) | |
C1 | 0.29387 (15) | 0.9073 (2) | 0.20675 (10) | 0.0293 (4) | |
C2 | 0.27184 (17) | 1.0531 (2) | 0.20161 (10) | 0.0338 (5) | |
C3 | 0.49036 (17) | 0.9055 (2) | 0.43727 (11) | 0.0335 (5) | |
C4 | 0.53485 (18) | 0.9927 (2) | 0.39683 (12) | 0.0377 (5) | |
N1 | 0.34280 (18) | 0.5649 (3) | 0.47049 (11) | 0.0564 (6) | |
H1 | 0.3107 | 0.5735 | 0.4302 | 0.068* | |
N2 | 0.49507 (17) | 0.5221 (2) | 0.66339 (10) | 0.0442 (5) | |
C5 | 0.44607 (18) | 0.5376 (2) | 0.60033 (11) | 0.0371 (5) | |
C6 | 0.4118 (3) | 0.4314 (3) | 0.55903 (14) | 0.0609 (9) | |
H6 | 0.4241 | 0.3488 | 0.5756 | 0.073* | |
C7 | 0.3617 (3) | 0.4484 (4) | 0.49606 (15) | 0.0683 (10) | |
H7 | 0.3400 | 0.3771 | 0.4700 | 0.082* | |
C8 | 0.3735 (2) | 0.6686 (3) | 0.50711 (14) | 0.0518 (7) | |
H8 | 0.3599 | 0.7493 | 0.4885 | 0.062* | |
C9 | 0.42434 (19) | 0.6587 (3) | 0.57107 (13) | 0.0438 (6) | |
H9 | 0.4448 | 0.7324 | 0.5955 | 0.053* | |
C10 | 0.5313 (2) | 0.6307 (3) | 0.70562 (14) | 0.0521 (7) | |
H10A | 0.5788 | 0.6742 | 0.6919 | 0.078* | |
H10B | 0.5591 | 0.6011 | 0.7493 | 0.078* | |
H10C | 0.4801 | 0.6885 | 0.7036 | 0.078* | |
C11 | 0.5175 (3) | 0.3955 (3) | 0.69141 (16) | 0.0704 (10) | |
H11A | 0.4600 | 0.3467 | 0.6833 | 0.106* | |
H11B | 0.5480 | 0.4030 | 0.7372 | 0.106* | |
H11C | 0.5596 | 0.3530 | 0.6723 | 0.106* | |
O3W | 0.2500 | 0.1564 (4) | 0.5000 | 0.117 (2) | |
H3W | 0.302 (3) | 0.115 (5) | 0.512 (3) | 0.176* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.03909 (18) | 0.02585 (16) | 0.02228 (15) | −0.00039 (12) | 0.00595 (11) | −0.00107 (11) |
O1 | 0.0583 (11) | 0.0306 (8) | 0.0283 (8) | −0.0001 (7) | 0.0126 (7) | −0.0071 (6) |
O1W | 0.0945 (16) | 0.0285 (9) | 0.0335 (9) | 0.0046 (9) | 0.0247 (10) | −0.0040 (7) |
O2 | 0.0879 (15) | 0.0359 (9) | 0.0250 (8) | 0.0134 (9) | 0.0059 (9) | 0.0014 (7) |
O2W | 0.0401 (9) | 0.0323 (8) | 0.0426 (9) | 0.0015 (7) | 0.0141 (7) | −0.0069 (7) |
O3 | 0.0490 (10) | 0.0253 (7) | 0.0270 (7) | 0.0055 (6) | 0.0099 (7) | −0.0007 (6) |
O4 | 0.0615 (11) | 0.0244 (8) | 0.0252 (7) | 0.0070 (7) | 0.0058 (7) | −0.0026 (6) |
O5 | 0.0411 (9) | 0.0398 (9) | 0.0349 (8) | −0.0073 (7) | 0.0070 (7) | 0.0109 (7) |
O6 | 0.0430 (9) | 0.0422 (9) | 0.0349 (9) | −0.0037 (7) | 0.0089 (7) | 0.0125 (7) |
O7 | 0.0505 (11) | 0.0505 (11) | 0.0431 (10) | 0.0023 (8) | 0.0047 (8) | 0.0186 (8) |
O8 | 0.0355 (10) | 0.0863 (17) | 0.0660 (14) | 0.0012 (10) | 0.0163 (9) | 0.0341 (12) |
C1 | 0.0349 (11) | 0.0266 (10) | 0.0281 (10) | 0.0003 (8) | 0.0121 (8) | −0.0021 (8) |
C2 | 0.0442 (12) | 0.0283 (10) | 0.0273 (10) | 0.0042 (9) | 0.0088 (9) | −0.0016 (8) |
C3 | 0.0412 (12) | 0.0280 (10) | 0.0308 (10) | 0.0008 (9) | 0.0106 (9) | 0.0051 (8) |
C4 | 0.0377 (12) | 0.0379 (12) | 0.0390 (12) | 0.0001 (9) | 0.0140 (10) | 0.0058 (10) |
N1 | 0.0565 (14) | 0.0824 (19) | 0.0260 (10) | 0.0018 (13) | 0.0071 (10) | 0.0052 (11) |
N2 | 0.0548 (13) | 0.0377 (11) | 0.0308 (10) | 0.0045 (9) | −0.0001 (9) | −0.0004 (8) |
C5 | 0.0457 (13) | 0.0341 (11) | 0.0293 (11) | 0.0038 (10) | 0.0086 (9) | −0.0016 (9) |
C6 | 0.090 (2) | 0.0377 (15) | 0.0408 (14) | 0.0106 (14) | 0.0006 (14) | −0.0075 (12) |
C7 | 0.088 (3) | 0.063 (2) | 0.0414 (16) | 0.0035 (18) | 0.0019 (15) | −0.0201 (15) |
C8 | 0.0521 (16) | 0.0561 (17) | 0.0468 (15) | −0.0012 (13) | 0.0152 (12) | 0.0233 (13) |
C9 | 0.0515 (15) | 0.0350 (13) | 0.0418 (13) | −0.0050 (10) | 0.0101 (11) | 0.0070 (10) |
C10 | 0.0519 (16) | 0.0573 (17) | 0.0395 (13) | −0.0063 (13) | 0.0032 (11) | −0.0116 (12) |
C11 | 0.087 (2) | 0.0517 (18) | 0.0514 (17) | 0.0136 (17) | −0.0089 (16) | 0.0126 (14) |
O3W | 0.076 (3) | 0.057 (2) | 0.154 (4) | 0.000 | −0.056 (3) | 0.000 |
Fe1—O1W | 2.0133 (18) | N1—C7 | 1.330 (5) |
Fe1—O2W | 2.0407 (18) | N1—C8 | 1.337 (4) |
Fe1—O3 | 2.0250 (15) | N2—C5 | 1.345 (3) |
Fe1—O4 | 1.9927 (16) | N2—C10 | 1.452 (3) |
Fe1—O5 | 1.9799 (16) | N2—C11 | 1.450 (4) |
Fe1—O6 | 2.0163 (18) | C5—C6 | 1.417 (4) |
O1—C1 | 1.235 (3) | C5—C9 | 1.407 (3) |
O1W—H1WA | 0.809 (17) | C6—H6 | 0.9300 |
O1W—H1WB | 0.771 (17) | C6—C7 | 1.349 (4) |
O2—C2 | 1.223 (3) | C7—H7 | 0.9300 |
O2W—H2WA | 0.824 (17) | C8—H8 | 0.9300 |
O2W—H2WB | 0.834 (17) | C8—C9 | 1.363 (4) |
O3—C1 | 1.272 (3) | C9—H9 | 0.9300 |
O4—C2 | 1.272 (3) | C10—H10A | 0.9600 |
O5—C3 | 1.291 (3) | C10—H10B | 0.9600 |
O6—C4 | 1.269 (3) | C10—H10C | 0.9600 |
O7—C3 | 1.218 (3) | C11—H11A | 0.9600 |
O8—C4 | 1.226 (3) | C11—H11B | 0.9600 |
C1—C2 | 1.554 (3) | C11—H11C | 0.9600 |
C3—C4 | 1.550 (3) | O3W—H3W | 0.842 (19) |
N1—H1 | 0.8600 | ||
O1W—Fe1—O2W | 90.16 (8) | O8—C4—O6 | 125.9 (2) |
O1W—Fe1—O3 | 163.51 (8) | O8—C4—C3 | 119.0 (2) |
O1W—Fe1—O6 | 95.03 (9) | C7—N1—H1 | 119.9 |
O3—Fe1—O2W | 84.35 (7) | C7—N1—C8 | 120.2 (2) |
O4—Fe1—O1W | 85.14 (7) | C8—N1—H1 | 119.9 |
O4—Fe1—O2W | 99.16 (8) | C5—N2—C10 | 121.7 (2) |
O4—Fe1—O3 | 80.42 (6) | C5—N2—C11 | 121.2 (2) |
O4—Fe1—O6 | 92.95 (7) | C11—N2—C10 | 117.1 (2) |
O5—Fe1—O1W | 95.09 (8) | N2—C5—C6 | 121.6 (2) |
O5—Fe1—O2W | 87.05 (7) | N2—C5—C9 | 122.9 (2) |
O5—Fe1—O3 | 100.13 (7) | C9—C5—C6 | 115.5 (2) |
O5—Fe1—O4 | 173.78 (7) | C5—C6—H6 | 119.5 |
O5—Fe1—O6 | 80.84 (7) | C7—C6—C5 | 121.0 (3) |
O6—Fe1—O2W | 167.19 (7) | C7—C6—H6 | 119.5 |
O6—Fe1—O3 | 93.64 (7) | N1—C7—C6 | 121.4 (3) |
Fe1—O1W—H1WA | 126 (3) | N1—C7—H7 | 119.3 |
Fe1—O1W—H1WB | 110 (3) | C6—C7—H7 | 119.3 |
H1WA—O1W—H1WB | 123 (3) | N1—C8—H8 | 119.2 |
Fe1—O2W—H2WA | 118 (2) | N1—C8—C9 | 121.5 (3) |
Fe1—O2W—H2WB | 107 (2) | C9—C8—H8 | 119.2 |
H2WA—O2W—H2WB | 107 (3) | C5—C9—H9 | 119.8 |
C1—O3—Fe1 | 114.30 (13) | C8—C9—C5 | 120.3 (3) |
C2—O4—Fe1 | 116.08 (14) | C8—C9—H9 | 119.8 |
C3—O5—Fe1 | 116.33 (14) | N2—C10—H10A | 109.5 |
C4—O6—Fe1 | 114.72 (15) | N2—C10—H10B | 109.5 |
O1—C1—O3 | 126.2 (2) | N2—C10—H10C | 109.5 |
O1—C1—C2 | 119.43 (19) | H10A—C10—H10B | 109.5 |
O3—C1—C2 | 114.39 (17) | H10A—C10—H10C | 109.5 |
O2—C2—O4 | 126.3 (2) | H10B—C10—H10C | 109.5 |
O2—C2—C1 | 119.91 (19) | N2—C11—H11A | 109.5 |
O4—C2—C1 | 113.77 (18) | N2—C11—H11B | 109.5 |
O5—C3—C4 | 112.84 (19) | N2—C11—H11C | 109.5 |
O7—C3—O5 | 126.3 (2) | H11A—C11—H11B | 109.5 |
O7—C3—C4 | 120.9 (2) | H11A—C11—H11C | 109.5 |
O6—C4—C3 | 115.1 (2) | H11B—C11—H11C | 109.5 |
Fe1—O3—C1—O1 | −170.06 (19) | O7—C3—C4—O6 | −175.6 (2) |
Fe1—O3—C1—C2 | 10.4 (2) | O7—C3—C4—O8 | 5.0 (4) |
Fe1—O4—C2—O2 | 176.4 (2) | N1—C8—C9—C5 | 0.1 (4) |
Fe1—O4—C2—C1 | −3.0 (3) | N2—C5—C6—C7 | 179.1 (3) |
Fe1—O5—C3—O7 | 174.7 (2) | N2—C5—C9—C8 | −179.2 (3) |
Fe1—O5—C3—C4 | −4.7 (3) | C5—C6—C7—N1 | 0.1 (6) |
Fe1—O6—C4—O8 | 178.3 (2) | C6—C5—C9—C8 | 0.0 (4) |
Fe1—O6—C4—C3 | −1.1 (3) | C7—N1—C8—C9 | −0.2 (5) |
O1—C1—C2—O2 | −4.1 (4) | C8—N1—C7—C6 | 0.1 (5) |
O1—C1—C2—O4 | 175.3 (2) | C9—C5—C6—C7 | −0.2 (5) |
O3—C1—C2—O2 | 175.4 (2) | C10—N2—C5—C6 | 179.2 (3) |
O3—C1—C2—O4 | −5.2 (3) | C10—N2—C5—C9 | −1.6 (4) |
O5—C3—C4—O6 | 3.8 (3) | C11—N2—C5—C6 | 1.9 (5) |
O5—C3—C4—O8 | −175.6 (2) | C11—N2—C5—C9 | −178.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2i | 0.81 (2) | 1.94 (2) | 2.720 (3) | 162 (4) |
O1W—H1WB···O7ii | 0.77 (2) | 2.40 (3) | 2.988 (3) | 134 (4) |
O1W—H1WB···O3Wiii | 0.77 (2) | 2.34 (3) | 2.9699 (19) | 139 (4) |
O2W—H2WA···O8iv | 0.82 (2) | 1.84 (2) | 2.664 (3) | 176 (3) |
O2W—H2WB···O1v | 0.83 (2) | 1.88 (2) | 2.702 (2) | 171 (3) |
N1—H1···O1v | 0.86 | 2.11 | 2.931 (3) | 160 |
N1—H1···O2v | 0.86 | 2.46 | 3.043 (3) | 125 |
O3W—H3W···O7vi | 0.84 (2) | 2.36 (5) | 3.040 (2) | 138 (6) |
O3W—H3W···O8vi | 0.84 (2) | 2.09 (5) | 2.782 (3) | 140 (6) |
Symmetry codes: (i) −x+1/2, −y+5/2, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) x, y+1, z; (iv) x−1/2, −y+2, z; (v) −x+1/2, −y+3/2, −z+1/2; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank Professor Simeon Kouam Fogue (Higher Teacher Training College, Chemistry Department, University of Yaounde I) for the donation of 4-(dimethylamino)pyridine. The Fonds Européen de Développement Régional (FEDER), CNRS, Région Nord Pas-de-Calais and Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche are acknowledged for funding the X-ray diffractometers.
References
Bebga, G., Signé, M., Nenwa, J., Mbarki, M. & Fokwa, B. P. T. (2013). Acta Cryst. E69, m567. CSD CrossRef IUCr Journals Google Scholar
Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. New Cryst. Struct. 224,239–240. Google Scholar
Bloomquist, D. R., Hansen, J. J., Landee, C. P., Willett, R. D. & Buder, R. (1981). Inorg. Chem. 20, 3308–3314. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648–m1649. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824–m825. CSD CrossRef IUCr Journals Google Scholar
Chérif, I., Zid, M. F., El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900–m901. CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dridi, R., Namouchi Cherni, S., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m489–m490. CSD CrossRef CAS IUCr Journals Google Scholar
Geiser, U., Ramakrishna, B. L., Willett, R. D., Hulsbergen, F. B. & Reedijk, J. (1987). Inorg. Chem. 26, 3750–3756. CSD CrossRef CAS Web of Science Google Scholar
Gouet et al. (2013). Please supply full reference. Google Scholar
Nenwa, J., Bebga, G., Martin, S., Bélombé, M. M., Mbarki, M. & Fokwa, B. P. T. (2012a). Acta Cryst. E68, m1325–m1326. CSD CrossRef IUCr Journals Google Scholar
Nenwa, J., Befolo, O., Gouet, B., Mbarki, M. & Fokwa, B. P. T. (2012b). Acta Cryst. E68, m1434. CSD CrossRef IUCr Journals Google Scholar
Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pardo, E., Train, C., Boubekeur, K., Gontard, G., Cano, J., Lloret, F., Nakatani, K. & Verdaguer, M. (2012). Inorg. Chem. 51, 11582–11593. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.