research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(di­methyl­amino)­pyridinium cis-di­aqua­bis­­(oxalato-κ2O,O′)ferrate(III) hemihydrate

aDepartment of Inorganic Chemistry, University of Yaounde 1, POB 812 Yaounde, Cameroon, bUnité de Catalyse et de Chimie du Solide, UMR 8181, École Nationale Supérieure de Chimie de Lille, Université Lille-1, 59650 Villeneuve d'Ascq Cedex, France, and cUFR de Physique, Université Lille-1, 59650 Villeneuve d'Ascq Cedex, France
*Correspondence e-mail: jnenwa@yahoo.fr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 22 June 2015; accepted 9 July 2015; online 15 July 2015)

The FeIII ions in the hybrid title salt, (C7H11N2)[Fe(C2O4)2(H2O)2]·0.5H2O, show a distorted octa­hedral coordination environment, with four O atoms from two chelating oxalate dianions and two O atoms from two cis aqua ligands. The average Fe—O(oxalate) bond length [2.00 (2) Å] is shorter than the average Fe—O(water) bond length [2.027 (19) Å]. The ionic components are connected via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.

1. Chemical context

Over the past years, the design and synthesis of organic–inorganic hybrid salts have attracted much attention not only because of their fascinating network topologies, but also to obtain a better understanding of the correlations between their structural and physical properties (Bloomquist et al., 1981[Bloomquist, D. R., Hansen, J. J., Landee, C. P., Willett, R. D. & Buder, R. (1981). Inorg. Chem. 20, 3308-3314.]; Geiser et al., 1987[Geiser, U., Ramakrishna, B. L., Willett, R. D., Hulsbergen, F. B. & Reedijk, J. (1987). Inorg. Chem. 26, 3750-3756.]; Pardo et al., 2012[Pardo, E., Train, C., Boubekeur, K., Gontard, G., Cano, J., Lloret, F., Nakatani, K. & Verdaguer, M. (2012). Inorg. Chem. 51, 11582-11593.]). In this context, the bis-oxalato complexes of transition metals, [MIII(C2O4)2(H2O)2], are extremely versatile building blocks for the synthesis of organic–inorganic hybrid salts. Although several salts of general formula A[MIII(C2O4)2(H2O)2xH2O (A+ = aromatic iminium cation, 0≤x≤1) have been explored to date (Bélombé et al., 2009[Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. New Cryst. Struct. 224,239-240.]; Nenwa et al., 2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]; Chérif et al., 2011[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648-m1649.]; Chérif, Abdelhak et al., 2012[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824-m825.]; Chérif, Zid et al., 2012[Chérif, I., Zid, M. F., El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900-m901.]; Nenwa et al., 2012a[Nenwa, J., Bebga, G., Martin, S., Bélombé, M. M., Mbarki, M. & Fokwa, B. P. T. (2012a). Acta Cryst. E68, m1325-m1326.],b[Nenwa, J., Befolo, O., Gouet, B., Mbarki, M. & Fokwa, B. P. T. (2012b). Acta Cryst. E68, m1434.]; Dridi et al., 2013[Dridi, R., Namouchi Cherni, S., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m489-m490.]; Bebga et al., 2013[Bebga, G., Signé, M., Nenwa, J., Mbarki, M. & Fokwa, B. P. T. (2013). Acta Cryst. E69, m567.]), the predictable and consistent formation of networks is still in its infancy. In most cases, the network topologies are influenced by the organic counter-cations, metal coordination spheres, pH values, guest mol­ecules and the crystallization solvent. So far, most of the self-assembly processes involving anionic species, [MIII(C2O4)2(H2O)2], and aromatic iminium cations have led to salts with trans-di­aqua­bis­(oxalate)metallate(III) complex anions (Bélombé et al., 2009[Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. New Cryst. Struct. 224,239-240.], Nenwa et al., 2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.], 2012a[Nenwa, J., Bebga, G., Martin, S., Bélombé, M. M., Mbarki, M. & Fokwa, B. P. T. (2012a). Acta Cryst. E68, m1325-m1326.]; Chérif, Zid et al., 2012[Chérif, I., Zid, M. F., El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900-m901.]; Dridi et al., 2013[Dridi, R., Namouchi Cherni, S., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m489-m490.]; Gouet et al., 2013[Gouet et al. (2013). Please supply full reference.]). The cis configuration of the complex anion [MIII(C2O4)2(H2O)2] is less common in the literature, and has been observed in salts with 2-amino-5-chloro­pyridinium (Chérif, Abdelhak et al., 2012[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824-m825.]) or with pyridinium (Nenwa et al., 2012b[Nenwa, J., Befolo, O., Gouet, B., Mbarki, M. & Fokwa, B. P. T. (2012b). Acta Cryst. E68, m1434.]) as aromatic iminium cations. In this work, we extend this family of salts involving the complex anion [MIII(C2O4)2(H2O)2] in its cis-configuration by reporting the structural characterization of the title compound with composition (C7H11N2)[Fe(C2O4)2(H2O)2]·0.5H2O.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound shown in Fig. 1[link] consists of one protonated 4-(di­methyl­amino)­pyridine mol­ecule (C7H11N2)+, one anionic complex [Fe(C2O4)2(H2O)2] in a cis-aqua configuration and one-half solvent water mol­ecule. Atom O3W of this water mol­ecule of solvation lies on a crystallographic twofold rotation axis. The main geometric parameters of the (C7H11N2)+ cation are in agreement with those found in a similar salt with the same cationic entity (Nenwa et al., 2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]). The iron(III) site in the complex anion has a distorted octa­hedral coordination environment built up by two O atoms (O1W, O2W) from two cis-aqua ligands and four O atoms (O3, O4, O5, O6) from two chelating oxalate dianions. The average Fe—O(oxalate) bond length [2.00 (2) Å] is shorter than the average Fe—O(water) bond length [2.027 (19) Å]. The bond lengths in the [Fe(C2O4)2(H2O)2] anion are similar to those observed in homologous compounds with a cis-aqua configuration of the [MIII(C2O4)2(H2O)2] anionic units (Chérif, Abdelhak et al., 2012[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824-m825.]; Nenwa et al., 2012b[Nenwa, J., Befolo, O., Gouet, B., Mbarki, M. & Fokwa, B. P. T. (2012b). Acta Cryst. E68, m1434.]).

[Figure 1]
Figure 1
View of the mol­ecular components of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Within the crystal packing, the charged components are connected by an extensive hydrogen-bonding network. Hydrogen bonds of the type O—H⋯O involving coordinating water mol­ecules as donor groups and auxilliary O atoms of the oxalate dianions as acceptor groups inter­connect neighboring [Fe(C2O4)2(H2O)2] anionic units (Table 1[link], Fig. 2[link]). Together with the relatively weaker N—H⋯O hydrogen bonds of the protonated imine N atoms of the 4-(di­methyl­amino)­pyridine mol­ecules to the oxalate dianions, a three-dimensional framework is formed (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.81 (2) 1.94 (2) 2.720 (3) 162 (4)
O1W—H1WB⋯O7ii 0.77 (2) 2.40 (3) 2.988 (3) 134 (4)
O1W—H1WB⋯O3Wiii 0.77 (2) 2.34 (3) 2.9699 (19) 139 (4)
O2W—H2WA⋯O8iv 0.82 (2) 1.84 (2) 2.664 (3) 176 (3)
O2W—H2WB⋯O1v 0.83 (2) 1.88 (2) 2.702 (2) 171 (3)
N1—H1⋯O1v 0.86 2.11 2.931 (3) 160
N1—H1⋯O2v 0.86 2.46 3.043 (3) 125
O3W—H3W⋯O7vi 0.84 (2) 2.36 (5) 3.040 (2) 138 (6)
O3W—H3W⋯O8vi 0.84 (2) 2.09 (5) 2.782 (3) 140 (6)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z; (iv) [x-{\script{1\over 2}}, -y+2, z]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The environment of the [Fe(C2O4)2(H2O)2] octa­hedron. Dashed lines denote hydrogen bonds.
[Figure 3]
Figure 3
A (100) projection of the crystal structure of the title compound. Hydrogen bonds are shown as dashed lines.

4. Synthesis and crystallization

The salt Fe(NO3)3·6H2O (1 mmol, 400 mg) was dissolved in 20 ml of water, leading to a yellowish solution. This solution was added in successive small portions in 30 ml of a mixture of oxalic acid (2 mmol, 253 mg) and 4-(di­methyl­amino)­pyridine (1 mmol, 122 mg) with stirring at 323 K for 2 h. The resulting greenish solution was left at room temperature; crystals suitable for X-ray diffraction were obtained after two weeks upon slow evaporation.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed at 0.93 and 0.96 Å for aromatic and methyl C atoms, respectively. The N—H distance was fixed at 0.86 Å. The Uiso(H) values were equal to 1.2 and 1.5 times Ueq of the corresponding C(sp2) and C(sp3) atoms, and 1.2 times Ueq of the N atom. All water H atoms were located from a difference-Fourier map and refined with soft restraints on the O—H and H⋯H distances [O—H = 0.82 (2) and H⋯H = 1.30 (4) Å] with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula (C7H11N2)[Fe(C2O4)2(H2O)2]·0.5H2O
Mr 800.22
Crystal system, space group Monoclinic, I2/a
Temperature (K) 296
a, b, c (Å) 14.7960 (7), 10.4422 (4), 21.7751 (10)
β (°) 108.352 (3)
V3) 3193.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.26 × 0.22 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.679, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 48070, 4880, 3435
Rint 0.044
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.06
No. of reflections 4880
No. of parameters 239
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.85, −0.58
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

4-(Dimethylamino)pyridinium cis-diaquabis(oxalato-κ2O,O')ferrate(III) hemihydrate top
Crystal data top
(C7H11N2)[Fe(C2O4)2(H2O)2]·0.5H2OF(000) = 1648
Mr = 800.22Dx = 1.665 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 14.7960 (7) ÅCell parameters from 9923 reflections
b = 10.4422 (4) Åθ = 2.2–27.3°
c = 21.7751 (10) ŵ = 1.00 mm1
β = 108.352 (3)°T = 296 K
V = 3193.2 (2) Å3Irregular, yellow
Z = 40.26 × 0.22 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
3435 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.044
φ and ω scansθmax = 30.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS2014; Bruker, 2014)
h = 2121
Tmin = 0.679, Tmax = 0.746k = 1414
48070 measured reflectionsl = 3131
4880 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0528P)2 + 5.0524P]
where P = (Fo2 + 2Fc2)/3
4880 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.85 e Å3
8 restraintsΔρmin = 0.58 e Å3
Special details top

Experimental. Absorption correction: SADABS-2014/3 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0678 before and 0.0491 after correction. The Ratio of minimum to maximum transmission is 0.9094. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.33846 (2)0.99760 (3)0.33390 (2)0.02994 (10)
O10.27198 (13)0.84143 (16)0.15711 (7)0.0393 (4)
O1W0.31148 (18)1.14895 (18)0.38270 (9)0.0511 (5)
H1WA0.287 (3)1.216 (2)0.3669 (16)0.077*
H1WB0.321 (3)1.132 (4)0.4186 (10)0.077*
O20.23808 (16)1.10293 (17)0.14845 (8)0.0524 (5)
O2W0.21255 (12)0.91604 (16)0.33264 (9)0.0381 (4)
H2WA0.187 (2)0.941 (3)0.3590 (13)0.057*
H2WB0.223 (2)0.8379 (17)0.3394 (15)0.057*
O30.33473 (12)0.86776 (14)0.26407 (7)0.0343 (3)
O40.29136 (13)1.10922 (15)0.25610 (7)0.0389 (4)
O50.39926 (12)0.89364 (16)0.41206 (8)0.0398 (4)
O60.47565 (13)1.04452 (18)0.34780 (8)0.0408 (4)
O70.53967 (14)0.85689 (19)0.48747 (9)0.0504 (5)
O80.62163 (14)1.0053 (2)0.41370 (12)0.0625 (6)
C10.29387 (15)0.9073 (2)0.20675 (10)0.0293 (4)
C20.27184 (17)1.0531 (2)0.20161 (10)0.0338 (5)
C30.49036 (17)0.9055 (2)0.43727 (11)0.0335 (5)
C40.53485 (18)0.9927 (2)0.39683 (12)0.0377 (5)
N10.34280 (18)0.5649 (3)0.47049 (11)0.0564 (6)
H10.31070.57350.43020.068*
N20.49507 (17)0.5221 (2)0.66339 (10)0.0442 (5)
C50.44607 (18)0.5376 (2)0.60033 (11)0.0371 (5)
C60.4118 (3)0.4314 (3)0.55903 (14)0.0609 (9)
H60.42410.34880.57560.073*
C70.3617 (3)0.4484 (4)0.49606 (15)0.0683 (10)
H70.34000.37710.47000.082*
C80.3735 (2)0.6686 (3)0.50711 (14)0.0518 (7)
H80.35990.74930.48850.062*
C90.42434 (19)0.6587 (3)0.57107 (13)0.0438 (6)
H90.44480.73240.59550.053*
C100.5313 (2)0.6307 (3)0.70562 (14)0.0521 (7)
H10A0.57880.67420.69190.078*
H10B0.55910.60110.74930.078*
H10C0.48010.68850.70360.078*
C110.5175 (3)0.3955 (3)0.69141 (16)0.0704 (10)
H11A0.46000.34670.68330.106*
H11B0.54800.40300.73720.106*
H11C0.55960.35300.67230.106*
O3W0.25000.1564 (4)0.50000.117 (2)
H3W0.302 (3)0.115 (5)0.512 (3)0.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03909 (18)0.02585 (16)0.02228 (15)0.00039 (12)0.00595 (11)0.00107 (11)
O10.0583 (11)0.0306 (8)0.0283 (8)0.0001 (7)0.0126 (7)0.0071 (6)
O1W0.0945 (16)0.0285 (9)0.0335 (9)0.0046 (9)0.0247 (10)0.0040 (7)
O20.0879 (15)0.0359 (9)0.0250 (8)0.0134 (9)0.0059 (9)0.0014 (7)
O2W0.0401 (9)0.0323 (8)0.0426 (9)0.0015 (7)0.0141 (7)0.0069 (7)
O30.0490 (10)0.0253 (7)0.0270 (7)0.0055 (6)0.0099 (7)0.0007 (6)
O40.0615 (11)0.0244 (8)0.0252 (7)0.0070 (7)0.0058 (7)0.0026 (6)
O50.0411 (9)0.0398 (9)0.0349 (8)0.0073 (7)0.0070 (7)0.0109 (7)
O60.0430 (9)0.0422 (9)0.0349 (9)0.0037 (7)0.0089 (7)0.0125 (7)
O70.0505 (11)0.0505 (11)0.0431 (10)0.0023 (8)0.0047 (8)0.0186 (8)
O80.0355 (10)0.0863 (17)0.0660 (14)0.0012 (10)0.0163 (9)0.0341 (12)
C10.0349 (11)0.0266 (10)0.0281 (10)0.0003 (8)0.0121 (8)0.0021 (8)
C20.0442 (12)0.0283 (10)0.0273 (10)0.0042 (9)0.0088 (9)0.0016 (8)
C30.0412 (12)0.0280 (10)0.0308 (10)0.0008 (9)0.0106 (9)0.0051 (8)
C40.0377 (12)0.0379 (12)0.0390 (12)0.0001 (9)0.0140 (10)0.0058 (10)
N10.0565 (14)0.0824 (19)0.0260 (10)0.0018 (13)0.0071 (10)0.0052 (11)
N20.0548 (13)0.0377 (11)0.0308 (10)0.0045 (9)0.0001 (9)0.0004 (8)
C50.0457 (13)0.0341 (11)0.0293 (11)0.0038 (10)0.0086 (9)0.0016 (9)
C60.090 (2)0.0377 (15)0.0408 (14)0.0106 (14)0.0006 (14)0.0075 (12)
C70.088 (3)0.063 (2)0.0414 (16)0.0035 (18)0.0019 (15)0.0201 (15)
C80.0521 (16)0.0561 (17)0.0468 (15)0.0012 (13)0.0152 (12)0.0233 (13)
C90.0515 (15)0.0350 (13)0.0418 (13)0.0050 (10)0.0101 (11)0.0070 (10)
C100.0519 (16)0.0573 (17)0.0395 (13)0.0063 (13)0.0032 (11)0.0116 (12)
C110.087 (2)0.0517 (18)0.0514 (17)0.0136 (17)0.0089 (16)0.0126 (14)
O3W0.076 (3)0.057 (2)0.154 (4)0.0000.056 (3)0.000
Geometric parameters (Å, º) top
Fe1—O1W2.0133 (18)N1—C71.330 (5)
Fe1—O2W2.0407 (18)N1—C81.337 (4)
Fe1—O32.0250 (15)N2—C51.345 (3)
Fe1—O41.9927 (16)N2—C101.452 (3)
Fe1—O51.9799 (16)N2—C111.450 (4)
Fe1—O62.0163 (18)C5—C61.417 (4)
O1—C11.235 (3)C5—C91.407 (3)
O1W—H1WA0.809 (17)C6—H60.9300
O1W—H1WB0.771 (17)C6—C71.349 (4)
O2—C21.223 (3)C7—H70.9300
O2W—H2WA0.824 (17)C8—H80.9300
O2W—H2WB0.834 (17)C8—C91.363 (4)
O3—C11.272 (3)C9—H90.9300
O4—C21.272 (3)C10—H10A0.9600
O5—C31.291 (3)C10—H10B0.9600
O6—C41.269 (3)C10—H10C0.9600
O7—C31.218 (3)C11—H11A0.9600
O8—C41.226 (3)C11—H11B0.9600
C1—C21.554 (3)C11—H11C0.9600
C3—C41.550 (3)O3W—H3W0.842 (19)
N1—H10.8600
O1W—Fe1—O2W90.16 (8)O8—C4—O6125.9 (2)
O1W—Fe1—O3163.51 (8)O8—C4—C3119.0 (2)
O1W—Fe1—O695.03 (9)C7—N1—H1119.9
O3—Fe1—O2W84.35 (7)C7—N1—C8120.2 (2)
O4—Fe1—O1W85.14 (7)C8—N1—H1119.9
O4—Fe1—O2W99.16 (8)C5—N2—C10121.7 (2)
O4—Fe1—O380.42 (6)C5—N2—C11121.2 (2)
O4—Fe1—O692.95 (7)C11—N2—C10117.1 (2)
O5—Fe1—O1W95.09 (8)N2—C5—C6121.6 (2)
O5—Fe1—O2W87.05 (7)N2—C5—C9122.9 (2)
O5—Fe1—O3100.13 (7)C9—C5—C6115.5 (2)
O5—Fe1—O4173.78 (7)C5—C6—H6119.5
O5—Fe1—O680.84 (7)C7—C6—C5121.0 (3)
O6—Fe1—O2W167.19 (7)C7—C6—H6119.5
O6—Fe1—O393.64 (7)N1—C7—C6121.4 (3)
Fe1—O1W—H1WA126 (3)N1—C7—H7119.3
Fe1—O1W—H1WB110 (3)C6—C7—H7119.3
H1WA—O1W—H1WB123 (3)N1—C8—H8119.2
Fe1—O2W—H2WA118 (2)N1—C8—C9121.5 (3)
Fe1—O2W—H2WB107 (2)C9—C8—H8119.2
H2WA—O2W—H2WB107 (3)C5—C9—H9119.8
C1—O3—Fe1114.30 (13)C8—C9—C5120.3 (3)
C2—O4—Fe1116.08 (14)C8—C9—H9119.8
C3—O5—Fe1116.33 (14)N2—C10—H10A109.5
C4—O6—Fe1114.72 (15)N2—C10—H10B109.5
O1—C1—O3126.2 (2)N2—C10—H10C109.5
O1—C1—C2119.43 (19)H10A—C10—H10B109.5
O3—C1—C2114.39 (17)H10A—C10—H10C109.5
O2—C2—O4126.3 (2)H10B—C10—H10C109.5
O2—C2—C1119.91 (19)N2—C11—H11A109.5
O4—C2—C1113.77 (18)N2—C11—H11B109.5
O5—C3—C4112.84 (19)N2—C11—H11C109.5
O7—C3—O5126.3 (2)H11A—C11—H11B109.5
O7—C3—C4120.9 (2)H11A—C11—H11C109.5
O6—C4—C3115.1 (2)H11B—C11—H11C109.5
Fe1—O3—C1—O1170.06 (19)O7—C3—C4—O6175.6 (2)
Fe1—O3—C1—C210.4 (2)O7—C3—C4—O85.0 (4)
Fe1—O4—C2—O2176.4 (2)N1—C8—C9—C50.1 (4)
Fe1—O4—C2—C13.0 (3)N2—C5—C6—C7179.1 (3)
Fe1—O5—C3—O7174.7 (2)N2—C5—C9—C8179.2 (3)
Fe1—O5—C3—C44.7 (3)C5—C6—C7—N10.1 (6)
Fe1—O6—C4—O8178.3 (2)C6—C5—C9—C80.0 (4)
Fe1—O6—C4—C31.1 (3)C7—N1—C8—C90.2 (5)
O1—C1—C2—O24.1 (4)C8—N1—C7—C60.1 (5)
O1—C1—C2—O4175.3 (2)C9—C5—C6—C70.2 (5)
O3—C1—C2—O2175.4 (2)C10—N2—C5—C6179.2 (3)
O3—C1—C2—O45.2 (3)C10—N2—C5—C91.6 (4)
O5—C3—C4—O63.8 (3)C11—N2—C5—C61.9 (5)
O5—C3—C4—O8175.6 (2)C11—N2—C5—C9178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.81 (2)1.94 (2)2.720 (3)162 (4)
O1W—H1WB···O7ii0.77 (2)2.40 (3)2.988 (3)134 (4)
O1W—H1WB···O3Wiii0.77 (2)2.34 (3)2.9699 (19)139 (4)
O2W—H2WA···O8iv0.82 (2)1.84 (2)2.664 (3)176 (3)
O2W—H2WB···O1v0.83 (2)1.88 (2)2.702 (2)171 (3)
N1—H1···O1v0.862.112.931 (3)160
N1—H1···O2v0.862.463.043 (3)125
O3W—H3W···O7vi0.84 (2)2.36 (5)3.040 (2)138 (6)
O3W—H3W···O8vi0.84 (2)2.09 (5)2.782 (3)140 (6)
Symmetry codes: (i) x+1/2, y+5/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x1/2, y+2, z; (v) x+1/2, y+3/2, z+1/2; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Professor Simeon Kouam Fogue (Higher Teacher Training College, Chemistry Department, University of Yaounde I) for the donation of 4-(di­methyl­amino)­pyridine. The Fonds Européen de Développement Régional (FEDER), CNRS, Région Nord Pas-de-Calais and Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche are acknowledged for funding the X-ray diffractometers.

References

First citationBebga, G., Signé, M., Nenwa, J., Mbarki, M. & Fokwa, B. P. T. (2013). Acta Cryst. E69, m567.  CSD CrossRef IUCr Journals Google Scholar
First citationBélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. New Cryst. Struct. 224,239–240.  Google Scholar
First citationBloomquist, D. R., Hansen, J. J., Landee, C. P., Willett, R. D. & Buder, R. (1981). Inorg. Chem. 20, 3308–3314.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648–m1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824–m825.  CSD CrossRef IUCr Journals Google Scholar
First citationChérif, I., Zid, M. F., El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900–m901.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDridi, R., Namouchi Cherni, S., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m489–m490.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGeiser, U., Ramakrishna, B. L., Willett, R. D., Hulsbergen, F. B. & Reedijk, J. (1987). Inorg. Chem. 26, 3750–3756.  CSD CrossRef CAS Web of Science Google Scholar
First citationGouet et al. (2013). Please supply full reference.  Google Scholar
First citationNenwa, J., Bebga, G., Martin, S., Bélombé, M. M., Mbarki, M. & Fokwa, B. P. T. (2012a). Acta Cryst. E68, m1325–m1326.  CSD CrossRef IUCr Journals Google Scholar
First citationNenwa, J., Befolo, O., Gouet, B., Mbarki, M. & Fokwa, B. P. T. (2012b). Acta Cryst. E68, m1434.  CSD CrossRef IUCr Journals Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPardo, E., Train, C., Boubekeur, K., Gontard, G., Cano, J., Lloret, F., Nakatani, K. & Verdaguer, M. (2012). Inorg. Chem. 51, 11582–11593.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds