research communications
μ2-aqua-aquasodium] 4-amino-3,5,6-trichloropyridine-2-carboxylate trihydrate], the sodium salt of the herbicide picloram
of poly[[di-aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the title complex, {[Na(H2O)3](C6H2Cl3N2O2)·3H2O}n, the sodium salt of the herbicide picloram, the cation adopts a polymeric chain structure, based on μ2-aqua-bridged NaO5 trigonal–bipyramidal complex units which have, in addition, a singly bonded water molecule. Each of the bridges within the chain, which extends parallel to the a axis, is centrosymmetric, with Na⋯Na separations of 3.4807 (16) and 3.5109 (16) Å. In the crystal, there are three water molecules of solvation and these, as well as the coordinating water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion, are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O atoms, as well as the pyridine N atom. Among these associations is a centrosymmetric cyclic tetrawater R44(8) motif, resulting in an overall three-dimensional structure.
Keywords: crystal structure; picloram; Tordon; herbicide; sodium salt; coordination polymer; sodium–water cationic chain; hydrogen bonding.
CCDC reference: 1409779
1. Chemical context
4-Amino-3,5,6-trichloropyridine-2-carboxylic acid (picloram) is a commercial herbicide (Mullinson, 1985) introduced by Dow Chemicals as Tordon (O'Neil, 2001). Although it has potential as a metal-chelating ligand similar to picolinic acid, there are only five metal complexes with picloramate anions in the crystallographic literature. Examples include picloram as a bidentate N,O chelating ligand with MnII (Smith et al., 1981a) and CuII (two structures, one a mixed-ligand complex with 2-aminopyrimidine; O'Reilly et al., 1983) and caesium (Smith, 2013). In the Mg complex (Smith et al., 1981b), the picloramate anions act as counter-ions to the [Mg(H2O)6]2+ cation. Although the structure of picloram has not been reported, that of the guanidinium salt is known (Parthasarathi et al., 1982). The reaction of picloram with sodium bicarbonate in aqueous ethanol gave crystals of the title complex salt {[Na(H2O)3]+·C6H2Cl3N2O2−·3H2O}n, and the structure is reported herein.
2. Structural commentary
In the structure of the title salt, (Fig. 1), polymeric cationic chains based on μ2-water-bridged NaO5 trigonal–bipyramidal complex units are formed, comprising centrosymmetric four-membered water-bridged Na2O2 rings with both O1W and O3W [Na⋯Nai and Na⋯Naii = 3.4807 (16) and 3.5109 (16) Å, respectively; for symmetry codes, see Table 1]. In the fifth Na coordination site is the third water molecule (O2W) in a non-bridging mode [overall Na—O range, 2.3183 (17)–2.4185 (16) Å: Table 1]. Although the μ2-water-bridged cationic chains are relatively common, the NaO5 coordination with one non-bridging water is rare, compared to the more usual octahedral NaO6 coordination involving two non-bridging water molecules in other examples, e.g. in the biphenyl-4,4′-diphosphonate salt (Kinnibrugh et al., 2012).
|
The structure of the title salt also contains non-coordinating picloramate anions and three water molecules of solvation (O4W–O6W). In this anion, the carboxyl group lies close to perpendicular to the pyridine ring [torsion angle N1—C2—C21—O21 = 89.1 (2)°], which is similar to that in the anhydrous guanidinium picloramate salt (73.3°) (Parthasarathi et al., 1982), while the amine group gives lateral intramolecular N4—H41⋯Cl3 and N4—H41⋯O6W interactions [2.9956 (17), 3.080 (2) Å].
3. Supramolecular features
In the crystal there are numerous inter-species water O—H⋯Ocarboxyl,water, O—H⋯Npyridine and O—H⋯Cl hydrogen-bonding interactions (Table 2), including a centrosymmetric tetra-water cyclic ring involving O2W—H⋯O5W and O5W—H⋯O2Wvi [graph set R44(8)], giving a three-dimensional structure (Fig. 2). Cyclic tetra-water moieties such as found in the present structure are being identified in an increasing number in labile water-stabilized salt hydrates, e.g. in the brucinium L-glycerate 4.75-hydrate salt (Białońska et al., 2005). Also found in the structure of the title salt is a short intermolecular Cl3⋯Cl5xi contact [3.2108 (7) Å; symmetry code (xi): x, y − 1, z].
4. Database survey
The (μ2-aqua)-bridged Na2(H2O)2 units in the coordination polymeric cationic chains in the title structure have precedents in a large number of reported crystal structures. However, with few exceptions, these are based on NaO6 polyhedra, with octahedral or distorted octahedral stereochemistry, having two non-bridging water molecules [Na2(H2O)82+], compared to one non-bridging water molecule in the NaO5 coordination [Na2(H2O)62+] of the title complex. The [Na2(H2O)82+] dications may be discrete, such as found in the anionic aryltelluronic anhydride salt (Beckmann et al., 2012) and the anionic dimethylarsenate (cacodylate) salt (Lennartson & Håkansson, 2008), or they may be found as [Na4(H2O)164+] tetra-cations as found in the dianionic biphenyl-4,4′-diphosphonate salt (Kinnibrugh et al., 2012) and the monoanionic salt of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione; Guzei et al., 2013). However, more commonly, they are polymeric [Na2(H2O)8]n, e.g. in the monoanionic salt of the anti-allergic drug tranilast ({2-[3-(3,4-dimethoxyphenyl)acrolyl]amino}benzoic acid; Geng et al., 2013), but often associated with metal complex anions, e.g. the CuII complex with pyrophosphate, [Cu(H2O)(phen)(P2O7)]2− (phen = 1,10-phenanthroline; Marino et al., 2010), the mixed-valent di-RuII,III complex with 1-hydroxyethane 1,1-diphosphonate (hedp) [Ru2(hedp)2X]4− (X = Cl, Br; Yi et al., 2005) and the dioxo-Np complex anion salt with dipicolinate (dipic), [NpO2(dipic)(H2O)2]− (Tian et al., 2009).
5. Synthesis and crystallization
The title compound was synthesized by briefly heating together 0.5 mmol of 4-amino-3,5,6-trichloropicolinic acid (picloram) with excess NaHCO3 in 10 ml of 10% (v/v) ethanol–water. Room temperature evaporation of the solution to dryness gave minor colourless crystal blocks of the title complex from which a specimen was cleaved for the X-ray analysis.
6. details
Crystal data, data collection and structure . Hydrogen atoms of the water molecules and the amine group were located in a difference-Fourier synthesis but were subsequently constrained in the with the isotropic displacement parameters allowed to ride, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1409779
https://doi.org/10.1107/S2056989015012633/wm5173sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015012633/wm5173Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).[Na(H2O)3](C6H2Cl3N2O2)·3H2O | Z = 2 |
Mr = 371.53 | F(000) = 380 |
Triclinic, P1 | Dx = 1.665 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5625 (5) Å | Cell parameters from 2548 reflections |
b = 8.4574 (6) Å | θ = 3.8–28.8° |
c = 13.8553 (10) Å | µ = 0.68 mm−1 |
α = 78.747 (6)° | T = 200 K |
β = 79.374 (6)° | Block, colourless |
γ = 88.864 (6)° | 0.35 × 0.35 × 0.22 mm |
V = 741.17 (9) Å3 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2905 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2487 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −10→10 |
Tmin = 0.947, Tmax = 0.980 | l = −17→13 |
6040 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2264P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
2905 reflections | Δρmax = 0.30 e Å−3 |
182 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.050 (3) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl3 | 0.73580 (8) | 0.09272 (5) | 0.52593 (4) | 0.0257 (2) | |
Cl5 | 0.76678 (8) | 0.74102 (5) | 0.46993 (4) | 0.0240 (2) | |
Cl6 | 0.67863 (9) | 0.70381 (6) | 0.70472 (4) | 0.0295 (2) | |
O21 | 0.4767 (2) | 0.04778 (17) | 0.77535 (11) | 0.0287 (5) | |
O22 | 0.8188 (2) | 0.04407 (17) | 0.77067 (11) | 0.0292 (5) | |
N1 | 0.6684 (2) | 0.39495 (18) | 0.71307 (12) | 0.0196 (5) | |
N4 | 0.7849 (3) | 0.42747 (19) | 0.40294 (12) | 0.0213 (5) | |
C2 | 0.6814 (3) | 0.2631 (2) | 0.67196 (14) | 0.0172 (5) | |
C3 | 0.7193 (3) | 0.2696 (2) | 0.57064 (14) | 0.0170 (5) | |
C4 | 0.7473 (3) | 0.4178 (2) | 0.50250 (14) | 0.0168 (6) | |
C5 | 0.7335 (3) | 0.5539 (2) | 0.54712 (14) | 0.0173 (5) | |
C6 | 0.6946 (3) | 0.5361 (2) | 0.64975 (15) | 0.0186 (6) | |
C21 | 0.6561 (3) | 0.1034 (2) | 0.74534 (14) | 0.0204 (6) | |
Na1 | 0.24455 (12) | 0.42819 (9) | 1.01558 (6) | 0.0268 (3) | |
O1W | 0.0817 (2) | 0.53070 (17) | 0.87914 (10) | 0.0299 (5) | |
O2W | 0.1503 (2) | 0.15728 (17) | 1.05390 (11) | 0.0300 (5) | |
O3W | 0.4202 (2) | 0.62279 (17) | 1.07140 (10) | 0.0272 (5) | |
O4W | 0.1371 (2) | 0.27585 (17) | 0.77676 (12) | 0.0317 (5) | |
O5W | 0.2700 (2) | −0.10534 (18) | 0.95986 (11) | 0.0325 (5) | |
O6W | 0.1709 (2) | 0.82429 (17) | 0.73270 (11) | 0.0298 (5) | |
H41 | 0.80460 | 0.32820 | 0.37840 | 0.0260* | |
H42 | 0.80680 | 0.53330 | 0.36040 | 0.0260* | |
H11W | 0.09740 | 0.45450 | 0.85000 | 0.0450* | |
H12W | 0.10510 | 0.62480 | 0.83710 | 0.0450* | |
H21W | 0.15180 | 0.09520 | 1.11820 | 0.0450* | |
H22W | 0.19310 | 0.08550 | 1.02150 | 0.0450* | |
H31W | 0.38250 | 0.71930 | 1.04480 | 0.0410* | |
H32W | 0.40980 | 0.61800 | 1.13770 | 0.0410* | |
H41W | 0.02360 | 0.20490 | 0.77150 | 0.0480* | |
H42W | 0.25100 | 0.20920 | 0.77350 | 0.0480* | |
H51W | 0.34890 | −0.07030 | 0.89970 | 0.0490* | |
H52W | 0.15590 | −0.13130 | 0.93860 | 0.18 (2)* | |
H61W | 0.06160 | 0.89510 | 0.72480 | 0.0450* | |
H62W | 0.30130 | 0.87260 | 0.72460 | 0.0450* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl3 | 0.0359 (3) | 0.0159 (2) | 0.0269 (3) | 0.0007 (2) | −0.0044 (2) | −0.0091 (2) |
Cl5 | 0.0280 (3) | 0.0146 (2) | 0.0282 (3) | −0.0001 (2) | −0.0049 (2) | −0.0012 (2) |
Cl6 | 0.0412 (3) | 0.0196 (3) | 0.0309 (3) | 0.0023 (2) | −0.0063 (2) | −0.0131 (2) |
O21 | 0.0247 (8) | 0.0260 (8) | 0.0314 (9) | −0.0065 (6) | −0.0013 (6) | 0.0013 (6) |
O22 | 0.0290 (8) | 0.0250 (8) | 0.0318 (9) | 0.0043 (6) | −0.0089 (7) | 0.0013 (6) |
N1 | 0.0202 (9) | 0.0195 (8) | 0.0195 (9) | 0.0004 (6) | −0.0025 (7) | −0.0060 (7) |
N4 | 0.0263 (9) | 0.0197 (8) | 0.0178 (8) | 0.0009 (7) | −0.0031 (7) | −0.0042 (6) |
C2 | 0.0128 (9) | 0.0164 (9) | 0.0220 (10) | 0.0008 (7) | −0.0024 (7) | −0.0037 (7) |
C3 | 0.0152 (9) | 0.0147 (9) | 0.0224 (10) | 0.0005 (7) | −0.0038 (7) | −0.0063 (7) |
C4 | 0.0106 (9) | 0.0193 (10) | 0.0216 (10) | 0.0008 (7) | −0.0044 (7) | −0.0053 (8) |
C5 | 0.0141 (9) | 0.0144 (9) | 0.0228 (10) | 0.0002 (7) | −0.0041 (7) | −0.0019 (7) |
C6 | 0.0160 (10) | 0.0167 (9) | 0.0252 (10) | 0.0015 (7) | −0.0040 (8) | −0.0090 (8) |
C21 | 0.0251 (11) | 0.0192 (9) | 0.0177 (10) | 0.0014 (8) | −0.0028 (8) | −0.0068 (7) |
Na1 | 0.0249 (5) | 0.0264 (4) | 0.0291 (5) | −0.0002 (3) | −0.0031 (3) | −0.0068 (3) |
O1W | 0.0360 (9) | 0.0275 (8) | 0.0252 (8) | 0.0022 (6) | −0.0021 (7) | −0.0065 (6) |
O2W | 0.0390 (9) | 0.0239 (8) | 0.0246 (8) | 0.0020 (6) | −0.0008 (7) | −0.0039 (6) |
O3W | 0.0322 (9) | 0.0264 (8) | 0.0223 (8) | 0.0022 (6) | −0.0020 (6) | −0.0064 (6) |
O4W | 0.0282 (8) | 0.0283 (8) | 0.0399 (9) | 0.0023 (6) | −0.0067 (7) | −0.0097 (7) |
O5W | 0.0342 (9) | 0.0353 (9) | 0.0247 (8) | 0.0009 (7) | −0.0010 (7) | −0.0020 (7) |
O6W | 0.0257 (8) | 0.0311 (8) | 0.0330 (9) | −0.0003 (6) | −0.0043 (7) | −0.0079 (6) |
Na1—O1Wi | 2.4185 (16) | O4W—H42W | 0.9300 |
Na1—O3Wii | 2.3803 (16) | O4W—H41W | 0.9900 |
Na1—O1W | 2.3529 (16) | O5W—H52W | 0.9000 |
Na1—O2W | 2.3183 (17) | O5W—H51W | 0.9000 |
Na1—O3W | 2.3530 (16) | O6W—H61W | 0.9300 |
Cl3—C3 | 1.7216 (18) | O6W—H62W | 0.9300 |
Cl5—C5 | 1.7213 (18) | N1—C2 | 1.342 (2) |
Cl6—C6 | 1.7289 (19) | N1—C6 | 1.330 (2) |
O21—C21 | 1.243 (2) | N4—C4 | 1.342 (2) |
O22—C21 | 1.250 (2) | N4—H41 | 0.9600 |
O1W—H12W | 0.8900 | N4—H42 | 0.9700 |
O1W—H11W | 0.8200 | C2—C3 | 1.370 (3) |
O2W—H21W | 0.9400 | C2—C21 | 1.515 (3) |
O2W—H22W | 0.8400 | C3—C4 | 1.407 (3) |
O3W—H31W | 0.8800 | C4—C5 | 1.403 (2) |
O3W—H32W | 0.9000 | C5—C6 | 1.376 (3) |
O1Wi—Na1—O3Wii | 173.66 (6) | H41W—O4W—H42W | 103.00 |
O1W—Na1—O3W | 114.69 (6) | H51W—O5W—H52W | 98.00 |
O1W—Na1—O1Wi | 86.32 (5) | H61W—O6W—H62W | 116.00 |
O1W—Na1—O3Wii | 100.02 (6) | C2—N1—C6 | 116.35 (16) |
O2W—Na1—O3W | 141.97 (6) | C4—N4—H41 | 118.00 |
O1Wi—Na1—O2W | 85.88 (6) | C4—N4—H42 | 118.00 |
O2W—Na1—O3Wii | 92.71 (6) | H41—N4—H42 | 124.00 |
O1W—Na1—O2W | 103.20 (6) | N1—C2—C3 | 123.14 (17) |
O3W—Na1—O3Wii | 84.24 (5) | N1—C2—C21 | 115.53 (16) |
O1Wi—Na1—O3W | 93.06 (5) | C3—C2—C21 | 121.32 (16) |
Na1—O1W—Na1i | 93.68 (5) | Cl3—C3—C2 | 119.28 (14) |
Na1—O3W—Na1ii | 95.76 (6) | Cl3—C3—C4 | 119.39 (14) |
Na1—O1W—H11W | 100.00 | C2—C3—C4 | 121.32 (16) |
Na1i—O1W—H11W | 121.00 | N4—C4—C3 | 122.49 (16) |
Na1—O1W—H12W | 128.00 | N4—C4—C5 | 122.95 (17) |
H11W—O1W—H12W | 112.00 | C3—C4—C5 | 114.55 (17) |
Na1i—O1W—H12W | 103.00 | Cl5—C5—C4 | 118.07 (14) |
Na1—O2W—H22W | 128.00 | Cl5—C5—C6 | 121.71 (14) |
H21W—O2W—H22W | 97.00 | C4—C5—C6 | 120.22 (16) |
Na1—O2W—H21W | 121.00 | Cl6—C6—N1 | 115.37 (15) |
Na1—O3W—H32W | 119.00 | Cl6—C6—C5 | 120.21 (14) |
H31W—O3W—H32W | 108.00 | N1—C6—C5 | 124.42 (17) |
Na1—O3W—H31W | 109.00 | O21—C21—O22 | 127.24 (18) |
Na1ii—O3W—H32W | 115.00 | O21—C21—C2 | 116.83 (17) |
Na1ii—O3W—H31W | 109.00 | O22—C21—C2 | 115.91 (17) |
O3Wii—Na1—O3W—Na1ii | 0.00 (6) | N1—C2—C21—O21 | 89.1 (2) |
O1W—Na1—O1Wi—Na1i | 0.00 (6) | N1—C2—C3—Cl3 | 179.26 (15) |
O2W—Na1—O1Wi—Na1i | −103.53 (6) | N1—C2—C3—C4 | 0.0 (3) |
O3W—Na1—O1Wi—Na1i | 114.57 (6) | C21—C2—C3—Cl3 | 0.7 (3) |
O1W—Na1—O3Wii—Na1ii | 114.11 (6) | C3—C2—C21—O22 | 89.4 (2) |
O2W—Na1—O3Wii—Na1ii | −141.98 (6) | N1—C2—C21—O22 | −89.3 (2) |
O3W—Na1—O3Wii—Na1ii | −0.02 (8) | C3—C2—C21—O21 | −92.2 (2) |
O2W—Na1—O3W—Na1ii | 87.03 (10) | C2—C3—C4—C5 | 0.1 (3) |
O1Wi—Na1—O3W—Na1ii | 174.25 (5) | Cl3—C3—C4—N4 | 0.6 (3) |
O2W—Na1—O1W—Na1i | 84.89 (6) | Cl3—C3—C4—C5 | −179.13 (15) |
O3W—Na1—O1W—Na1i | −91.68 (6) | C2—C3—C4—N4 | 179.9 (2) |
O1Wi—Na1—O1W—Na1i | 0.00 (5) | C3—C4—C5—Cl5 | 179.71 (15) |
O3Wii—Na1—O1W—Na1i | −179.91 (5) | N4—C4—C5—Cl5 | −0.1 (3) |
O1W—Na1—O3W—Na1ii | −98.40 (6) | N4—C4—C5—C6 | −180.0 (2) |
C6—N1—C2—C21 | 178.63 (17) | C3—C4—C5—C6 | −0.2 (3) |
C2—N1—C6—Cl6 | −179.62 (14) | C4—C5—C6—N1 | 0.2 (3) |
C6—N1—C2—C3 | 0.0 (3) | Cl5—C5—C6—Cl6 | −0.2 (3) |
C2—N1—C6—C5 | −0.1 (3) | Cl5—C5—C6—N1 | −179.72 (15) |
C21—C2—C3—C4 | −178.59 (18) | C4—C5—C6—Cl6 | 179.74 (16) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O4W | 0.82 | 1.97 | 2.786 (2) | 178 |
O1W—H12W···O6W | 0.89 | 1.99 | 2.877 (2) | 174 |
O2W—H21W···O22iii | 0.94 | 1.79 | 2.721 (2) | 171 |
O2W—H22W···O5W | 0.84 | 1.98 | 2.816 (2) | 172 |
O3W—H31W···O5Wiv | 0.88 | 1.93 | 2.781 (2) | 163 |
O3W—H32W···N1ii | 0.90 | 2.02 | 2.910 (2) | 170 |
O4W—H41W···O22v | 0.99 | 1.93 | 2.916 (2) | 173 |
O4W—H42W···O21 | 0.93 | 1.99 | 2.918 (2) | 174 |
O5W—H51W···O21 | 0.90 | 1.87 | 2.748 (2) | 166 |
O5W—H52W···O2Wvi | 0.90 | 2.01 | 2.8481 (19) | 155 |
O6W—H61W···O22vii | 0.93 | 2.10 | 2.972 (2) | 156 |
O6W—H62W···Cl6 | 0.93 | 2.83 | 3.4400 (15) | 124 |
O6W—H62W···O21iv | 0.93 | 2.19 | 2.996 (2) | 144 |
N4—H41···Cl3 | 0.96 | 2.54 | 2.9956 (17) | 109 |
N4—H41···O6Wviii | 0.96 | 2.18 | 3.080 (2) | 156 |
N4—H42···Cl5 | 0.97 | 2.52 | 2.9690 (17) | 108 |
N4—H42···O4Wviii | 0.97 | 2.22 | 3.146 (2) | 160 |
Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y, −z+2; (iv) x, y+1, z; (v) x−1, y, z; (vi) −x, −y, −z+2; (vii) x−1, y+1, z; (viii) −x+1, −y+1, −z+1. |
Acknowledgements
The author acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology, Brisbane.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Beckmann, J., Duthie, A., Gesing, T. M., Koehne, T. & Lork, E. (2012). Organometallics, 31, 3451–3454. Web of Science CSD CrossRef CAS Google Scholar
Białońska, A., Ciunik, Z., Popek, T. & Lis, T. (2005). Acta Cryst. C61, o88–o91. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Geng, N., Chen, J. M., Li, Z.-J., Jiang, L. & Lu, T.-B. (2013). Cryst. Growth Des. 13, 3546–3553. Web of Science CSD CrossRef CAS Google Scholar
Guzei, I. A., Kim, M.-H. & West, R. (2013). J. Coord. Chem. 66, 3722–3739. Web of Science CSD CrossRef CAS Google Scholar
Kinnibrugh, T., Garcia, N. & Clearfield, A. (2012). J. Solid State Chem. 187, 149–158. Web of Science CSD CrossRef CAS Google Scholar
Lennartson, A. & Håkansson, M. (2008). Acta Cryst. C64, m13–m16. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marino, N., Vortherms, A. R., Hoffman, R. L. & Doyle, R. P. (2010). Inorg. Chem. 49, 6790–6792. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mullinson, W. R. (1985). Proc. Western Soc. Weed Sci. 38, 21–92. Google Scholar
O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., pp. 1325–1326. Whitehouse Station, NJ, USA: Merck & Co. Inc. Google Scholar
O'Reilly, E. J., Smith, G., Kennard, C. H. L. & White, A. H. (1983). Aust. J. Chem. 36, 183–190. CAS Google Scholar
Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Cryst. Struct. Commun. 11, 1519–1524. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2013). Acta Cryst. E69, m22–m23. CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981a). Aust. J. Chem. 34, 891–896. CSD CrossRef CAS Google Scholar
Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981b). Cryst. Struct. Commun. 10, 1277–1282. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, G., Rao, L. & Teat, S. J. (2009). Inorg. Chem. 48, 10158–10164. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yi, X.-Y., Liu, B., Jiménez-Aparicio, R., Urbanos, F. A., Gao, S., Xu, W., Chen, J.-S., Song, Y. & Zheng, L.-M. (2005). Inorg. Chem. 44, 4309–4314. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.