research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[di-μ2-aqua-aqua­sodium] 4-amino-3,5,6-tri­chloro­pyridine-2-carboxyl­ate trihydrate], the sodium salt of the herbicide picloram

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 June 2015; accepted 30 June 2015; online 15 July 2015)

In the structure of the title complex, {[Na(H2O)3](C6H2Cl3N2O2)·3H2O}n, the sodium salt of the herbicide picloram, the cation adopts a polymeric chain structure, based on μ2-aqua-bridged NaO5 trigonal–bipyramidal complex units which have, in addition, a singly bonded water mol­ecule. Each of the bridges within the chain, which extends parallel to the a axis, is centrosymmetric, with Na⋯Na separations of 3.4807 (16) and 3.5109 (16) Å. In the crystal, there are three water mol­ecules of solvation and these, as well as the coordinating water mol­ecules and the amino group of the 4-amino-3,5,6-tri­chloro­picolinate anion, are involved in extensive inter-species hydrogen-bonding inter­actions with carboxyl and water O atoms, as well as the pyridine N atom. Among these associations is a centrosymmetric cyclic tetra­water R44(8) motif, resulting in an overall three-dimensional structure.

1. Chemical context

4-Amino-3,5,6-tri­chloro­pyridine-2-carb­oxy­lic acid (picloram) is a commercial herbicide (Mullinson, 1985[Mullinson, W. R. (1985). Proc. Western Soc. Weed Sci. 38, 21-92.]) introduced by Dow Chemicals as Tordon (O'Neil, 2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., pp. 1325-1326. Whitehouse Station, NJ, USA: Merck & Co. Inc.]). Although it has potential as a metal-chelating ligand similar to picolinic acid, there are only five metal complexes with picloramate anions in the crystallographic literature. Examples include picloram as a bidentate N,O chelating ligand with MnII (Smith et al., 1981a[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981a). Aust. J. Chem. 34, 891-896.]) and CuII (two structures, one a mixed-ligand complex with 2-amino­pyrimidine; O'Reilly et al., 1983[O'Reilly, E. J., Smith, G., Kennard, C. H. L. & White, A. H. (1983). Aust. J. Chem. 36, 183-190.]) and caesium (Smith, 2013[Smith, G. (2013). Acta Cryst. E69, m22-m23.]). In the Mg complex (Smith et al., 1981b[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981b). Cryst. Struct. Commun. 10, 1277-1282.]), the picloramate anions act as counter-ions to the [Mg(H2O)6]2+ cation. Although the structure of picloram has not been reported, that of the guanidinium salt is known (Parthasarathi et al., 1982[Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Cryst. Struct. Commun. 11, 1519-1524.]). The reaction of picloram with sodium bicarbonate in aqueous ethanol gave crystals of the title complex salt {[Na(H2O)3]+·C6H2Cl3N2O2·3H2O}n, and the structure is reported herein.

[Scheme 1]

2. Structural commentary

In the structure of the title salt, (Fig. 1[link]), polymeric cationic chains based on μ2-water-bridged NaO5 trigonal–bipyramidal complex units are formed, comprising centrosymmetric four-membered water-bridged Na2O2 rings with both O1W and O3W [Na⋯Nai and Na⋯Naii = 3.4807 (16) and 3.5109 (16) Å, respectively; for symmetry codes, see Table 1[link]]. In the fifth Na coordination site is the third water mol­ecule (O2W) in a non-bridging mode [overall Na—O range, 2.3183 (17)–2.4185 (16) Å: Table 1[link]]. Although the μ2-water-bridged cationic chains are relatively common, the NaO5 coordination with one non-bridging water is rare, compared to the more usual octa­hedral NaO6 coordination involving two non-bridging water mol­ecules in other examples, e.g. in the biphenyl-4,4′-di­phospho­nate salt (Kinnibrugh et al., 2012[Kinnibrugh, T., Garcia, N. & Clearfield, A. (2012). J. Solid State Chem. 187, 149-158.]).

Table 1
Selected bond lengths (Å)

Na1—O1Wi 2.4185 (16) Na1—O2W 2.3183 (17)
Na1—O3Wii 2.3803 (16) Na1—O3W 2.3530 (16)
Na1—O1W 2.3529 (16)    
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2.
[Figure 1]
Figure 1
The atom-numbering scheme for the hydrated title salt, with non-H atoms drawn as 40% probability ellipsoids. Inter-species hydrogen bonds are shown as dashed lines. Symmetry codes: (ix) x + 1, y, z; (x) x − 1, y, z. For other symmetry codes, see Table 1[link].

The structure of the title salt also contains non-coordinating picloramate anions and three water mol­ecules of solvation (O4W–O6W). In this anion, the carboxyl group lies close to perpendicular to the pyridine ring [torsion angle N1—C2—C21—O21 = 89.1 (2)°], which is similar to that in the anhydrous guanidinium picloramate salt (73.3°) (Parthasarathi et al., 1982[Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Cryst. Struct. Commun. 11, 1519-1524.]), while the amine group gives lateral intra­molecular N4—H41⋯Cl3 and N4—H41⋯O6W inter­actions [2.9956 (17), 3.080 (2) Å].

3. Supra­molecular features

In the crystal there are numerous inter-species water O—H⋯Ocarboxyl,water, O—H⋯Npyridine and O—H⋯Cl hydrogen-bonding inter­actions (Table 2[link]), including a centrosymmetric tetra-water cyclic ring involving O2W—H⋯O5W and O5W—H⋯O2Wvi [graph set R44(8)], giving a three-dimensional structure (Fig. 2[link]). Cyclic tetra-water moieties such as found in the present structure are being identified in an increasing number in labile water-stabilized salt hydrates, e.g. in the brucinium L-glycerate 4.75-hydrate salt (Białońska et al., 2005[Białońska, A., Ciunik, Z., Popek, T. & Lis, T. (2005). Acta Cryst. C61, o88-o91.]). Also found in the structure of the title salt is a short inter­molecular Cl3⋯Cl5xi contact [3.2108 (7) Å; symmetry code (xi): x, y − 1, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O4W 0.82 1.97 2.786 (2) 178
O1W—H12W⋯O6W 0.89 1.99 2.877 (2) 174
O2W—H21W⋯O22iii 0.94 1.79 2.721 (2) 171
O2W—H22W⋯O5W 0.84 1.98 2.816 (2) 172
O3W—H31W⋯O5Wiv 0.88 1.93 2.781 (2) 163
O3W—H32W⋯N1ii 0.90 2.02 2.910 (2) 170
O4W—H41W⋯O22v 0.99 1.93 2.916 (2) 173
O4W—H42W⋯O21 0.93 1.99 2.918 (2) 174
O5W—H51W⋯O21 0.90 1.87 2.748 (2) 166
O5W—H52W⋯O2Wvi 0.90 2.01 2.8481 (19) 155
O6W—H61W⋯O22vii 0.93 2.10 2.972 (2) 156
O6W—H62W⋯O21iv 0.93 2.19 2.996 (2) 144
N4—H41⋯O6Wviii 0.96 2.18 3.080 (2) 156
N4—H42⋯O4Wviii 0.97 2.22 3.146 (2) 160
Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y, -z+2; (iv) x, y+1, z; (v) x-1, y, z; (vi) -x, -y, -z+2; (vii) x-1, y+1, z; (viii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The three-dimensional hydrogen-bonded structure, with inter-species hydrogen bonds and intra­molecular N—H⋯Cl associations shown as dashed lines. For symmetry codes, see Fig. 1[link] and Table 2[link].

4. Database survey

The (μ2-aqua)-bridged Na2(H2O)2 units in the coordination polymeric cationic chains in the title structure have precedents in a large number of reported crystal structures. However, with few exceptions, these are based on NaO6 polyhedra, with octa­hedral or distorted octa­hedral stereochemistry, having two non-bridging water mol­ecules [Na2(H2O)82+], compared to one non-bridging water mol­ecule in the NaO5 coordination [Na2(H2O)62+] of the title complex. The [Na2(H2O)82+] dicat­ions may be discrete, such as found in the anionic aryl­telluronic anhydride salt (Beckmann et al., 2012[Beckmann, J., Duthie, A., Gesing, T. M., Koehne, T. & Lork, E. (2012). Organometallics, 31, 3451-3454.]) and the anionic di­methyl­arsenate (cacodylate) salt (Lennartson & Håkansson, 2008[Lennartson, A. & Håkansson, M. (2008). Acta Cryst. C64, m13-m16.]), or they may be found as [Na4(H2O)164+] tetra-cations as found in the dianionic biphenyl-4,4′-di­phospho­nate salt (Kinnibrugh et al., 2012[Kinnibrugh, T., Garcia, N. & Clearfield, A. (2012). J. Solid State Chem. 187, 149-158.]) and the monoanionic salt of luminol (5-amino-2,3-di­hydro-1,4-phthal­azinedione; Guzei et al., 2013[Guzei, I. A., Kim, M.-H. & West, R. (2013). J. Coord. Chem. 66, 3722-3739.]). However, more commonly, they are polymeric [Na2(H2O)8]n, e.g. in the monoanionic salt of the anti-allergic drug tranilast ({2-[3-(3,4-di­meth­oxy­phen­yl)acrol­yl]amino}­benzoic acid; Geng et al., 2013[Geng, N., Chen, J. M., Li, Z.-J., Jiang, L. & Lu, T.-B. (2013). Cryst. Growth Des. 13, 3546-3553.]), but often associated with metal complex anions, e.g. the CuII complex with pyrophosphate, [Cu(H2O)(phen)(P2O7)]2− (phen = 1,10-phenanthroline; Marino et al., 2010[Marino, N., Vortherms, A. R., Hoffman, R. L. & Doyle, R. P. (2010). Inorg. Chem. 49, 6790-6792.]), the mixed-valent di-RuII,III complex with 1-hy­droxy­ethane 1,1-di­phospho­nate (hedp) [Ru2(hedp)2X]4− (X = Cl, Br; Yi et al., 2005[Yi, X.-Y., Liu, B., Jiménez-Aparicio, R., Urbanos, F. A., Gao, S., Xu, W., Chen, J.-S., Song, Y. & Zheng, L.-M. (2005). Inorg. Chem. 44, 4309-4314.]) and the dioxo-Np complex anion salt with dipicolin­ate (dipic), [NpO2(dipic)(H2O)2] (Tian et al., 2009[Tian, G., Rao, L. & Teat, S. J. (2009). Inorg. Chem. 48, 10158-10164.]).

5. Synthesis and crystallization

The title compound was synthesized by briefly heating together 0.5 mmol of 4-amino-3,5,6-tri­chloro­picolinic acid (picloram) with excess NaHCO3 in 10 ml of 10% (v/v) ethanol–water. Room temperature evaporation of the solution to dryness gave minor colourless crystal blocks of the title complex from which a specimen was cleaved for the X-ray analysis.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms of the water mol­ecules and the amine group were located in a difference-Fourier synthesis but were subsequently constrained in the refinement with the isotropic displacement parameters allowed to ride, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Na(H2O)3](C6H2Cl3N2O2)·3H2O
Mr 371.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 6.5625 (5), 8.4574 (6), 13.8553 (10)
α, β, γ (°) 78.747 (6), 79.374 (6), 88.864 (6)
V3) 741.17 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.68
Crystal size (mm) 0.35 × 0.35 × 0.22
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.])
Tmin, Tmax 0.947, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 6040, 2905, 2487
Rint 0.025
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.00
No. of reflections 2905
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.28
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Poly[[di-µ2-aqua-aquasodium] 4-amino-3,5,6-trichloropyridine-2-carboxylate trihydrate] top
Crystal data top
[Na(H2O)3](C6H2Cl3N2O2)·3H2OZ = 2
Mr = 371.53F(000) = 380
Triclinic, P1Dx = 1.665 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5625 (5) ÅCell parameters from 2548 reflections
b = 8.4574 (6) Åθ = 3.8–28.8°
c = 13.8553 (10) ŵ = 0.68 mm1
α = 78.747 (6)°T = 200 K
β = 79.374 (6)°Block, colourless
γ = 88.864 (6)°0.35 × 0.35 × 0.22 mm
V = 741.17 (9) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2905 independent reflections
Radiation source: Enhance (Mo) X-ray source2487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1010
Tmin = 0.947, Tmax = 0.980l = 1713
6040 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2264P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2905 reflectionsΔρmax = 0.30 e Å3
182 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (3)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl30.73580 (8)0.09272 (5)0.52593 (4)0.0257 (2)
Cl50.76678 (8)0.74102 (5)0.46993 (4)0.0240 (2)
Cl60.67863 (9)0.70381 (6)0.70472 (4)0.0295 (2)
O210.4767 (2)0.04778 (17)0.77535 (11)0.0287 (5)
O220.8188 (2)0.04407 (17)0.77067 (11)0.0292 (5)
N10.6684 (2)0.39495 (18)0.71307 (12)0.0196 (5)
N40.7849 (3)0.42747 (19)0.40294 (12)0.0213 (5)
C20.6814 (3)0.2631 (2)0.67196 (14)0.0172 (5)
C30.7193 (3)0.2696 (2)0.57064 (14)0.0170 (5)
C40.7473 (3)0.4178 (2)0.50250 (14)0.0168 (6)
C50.7335 (3)0.5539 (2)0.54712 (14)0.0173 (5)
C60.6946 (3)0.5361 (2)0.64975 (15)0.0186 (6)
C210.6561 (3)0.1034 (2)0.74534 (14)0.0204 (6)
Na10.24455 (12)0.42819 (9)1.01558 (6)0.0268 (3)
O1W0.0817 (2)0.53070 (17)0.87914 (10)0.0299 (5)
O2W0.1503 (2)0.15728 (17)1.05390 (11)0.0300 (5)
O3W0.4202 (2)0.62279 (17)1.07140 (10)0.0272 (5)
O4W0.1371 (2)0.27585 (17)0.77676 (12)0.0317 (5)
O5W0.2700 (2)0.10534 (18)0.95986 (11)0.0325 (5)
O6W0.1709 (2)0.82429 (17)0.73270 (11)0.0298 (5)
H410.804600.328200.378400.0260*
H420.806800.533300.360400.0260*
H11W0.097400.454500.850000.0450*
H12W0.105100.624800.837100.0450*
H21W0.151800.095201.118200.0450*
H22W0.193100.085501.021500.0450*
H31W0.382500.719301.044800.0410*
H32W0.409800.618001.137700.0410*
H41W0.023600.204900.771500.0480*
H42W0.251000.209200.773500.0480*
H51W0.348900.070300.899700.0490*
H52W0.155900.131300.938600.18 (2)*
H61W0.061600.895100.724800.0450*
H62W0.301300.872600.724600.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl30.0359 (3)0.0159 (2)0.0269 (3)0.0007 (2)0.0044 (2)0.0091 (2)
Cl50.0280 (3)0.0146 (2)0.0282 (3)0.0001 (2)0.0049 (2)0.0012 (2)
Cl60.0412 (3)0.0196 (3)0.0309 (3)0.0023 (2)0.0063 (2)0.0131 (2)
O210.0247 (8)0.0260 (8)0.0314 (9)0.0065 (6)0.0013 (6)0.0013 (6)
O220.0290 (8)0.0250 (8)0.0318 (9)0.0043 (6)0.0089 (7)0.0013 (6)
N10.0202 (9)0.0195 (8)0.0195 (9)0.0004 (6)0.0025 (7)0.0060 (7)
N40.0263 (9)0.0197 (8)0.0178 (8)0.0009 (7)0.0031 (7)0.0042 (6)
C20.0128 (9)0.0164 (9)0.0220 (10)0.0008 (7)0.0024 (7)0.0037 (7)
C30.0152 (9)0.0147 (9)0.0224 (10)0.0005 (7)0.0038 (7)0.0063 (7)
C40.0106 (9)0.0193 (10)0.0216 (10)0.0008 (7)0.0044 (7)0.0053 (8)
C50.0141 (9)0.0144 (9)0.0228 (10)0.0002 (7)0.0041 (7)0.0019 (7)
C60.0160 (10)0.0167 (9)0.0252 (10)0.0015 (7)0.0040 (8)0.0090 (8)
C210.0251 (11)0.0192 (9)0.0177 (10)0.0014 (8)0.0028 (8)0.0068 (7)
Na10.0249 (5)0.0264 (4)0.0291 (5)0.0002 (3)0.0031 (3)0.0068 (3)
O1W0.0360 (9)0.0275 (8)0.0252 (8)0.0022 (6)0.0021 (7)0.0065 (6)
O2W0.0390 (9)0.0239 (8)0.0246 (8)0.0020 (6)0.0008 (7)0.0039 (6)
O3W0.0322 (9)0.0264 (8)0.0223 (8)0.0022 (6)0.0020 (6)0.0064 (6)
O4W0.0282 (8)0.0283 (8)0.0399 (9)0.0023 (6)0.0067 (7)0.0097 (7)
O5W0.0342 (9)0.0353 (9)0.0247 (8)0.0009 (7)0.0010 (7)0.0020 (7)
O6W0.0257 (8)0.0311 (8)0.0330 (9)0.0003 (6)0.0043 (7)0.0079 (6)
Geometric parameters (Å, º) top
Na1—O1Wi2.4185 (16)O4W—H42W0.9300
Na1—O3Wii2.3803 (16)O4W—H41W0.9900
Na1—O1W2.3529 (16)O5W—H52W0.9000
Na1—O2W2.3183 (17)O5W—H51W0.9000
Na1—O3W2.3530 (16)O6W—H61W0.9300
Cl3—C31.7216 (18)O6W—H62W0.9300
Cl5—C51.7213 (18)N1—C21.342 (2)
Cl6—C61.7289 (19)N1—C61.330 (2)
O21—C211.243 (2)N4—C41.342 (2)
O22—C211.250 (2)N4—H410.9600
O1W—H12W0.8900N4—H420.9700
O1W—H11W0.8200C2—C31.370 (3)
O2W—H21W0.9400C2—C211.515 (3)
O2W—H22W0.8400C3—C41.407 (3)
O3W—H31W0.8800C4—C51.403 (2)
O3W—H32W0.9000C5—C61.376 (3)
O1Wi—Na1—O3Wii173.66 (6)H41W—O4W—H42W103.00
O1W—Na1—O3W114.69 (6)H51W—O5W—H52W98.00
O1W—Na1—O1Wi86.32 (5)H61W—O6W—H62W116.00
O1W—Na1—O3Wii100.02 (6)C2—N1—C6116.35 (16)
O2W—Na1—O3W141.97 (6)C4—N4—H41118.00
O1Wi—Na1—O2W85.88 (6)C4—N4—H42118.00
O2W—Na1—O3Wii92.71 (6)H41—N4—H42124.00
O1W—Na1—O2W103.20 (6)N1—C2—C3123.14 (17)
O3W—Na1—O3Wii84.24 (5)N1—C2—C21115.53 (16)
O1Wi—Na1—O3W93.06 (5)C3—C2—C21121.32 (16)
Na1—O1W—Na1i93.68 (5)Cl3—C3—C2119.28 (14)
Na1—O3W—Na1ii95.76 (6)Cl3—C3—C4119.39 (14)
Na1—O1W—H11W100.00C2—C3—C4121.32 (16)
Na1i—O1W—H11W121.00N4—C4—C3122.49 (16)
Na1—O1W—H12W128.00N4—C4—C5122.95 (17)
H11W—O1W—H12W112.00C3—C4—C5114.55 (17)
Na1i—O1W—H12W103.00Cl5—C5—C4118.07 (14)
Na1—O2W—H22W128.00Cl5—C5—C6121.71 (14)
H21W—O2W—H22W97.00C4—C5—C6120.22 (16)
Na1—O2W—H21W121.00Cl6—C6—N1115.37 (15)
Na1—O3W—H32W119.00Cl6—C6—C5120.21 (14)
H31W—O3W—H32W108.00N1—C6—C5124.42 (17)
Na1—O3W—H31W109.00O21—C21—O22127.24 (18)
Na1ii—O3W—H32W115.00O21—C21—C2116.83 (17)
Na1ii—O3W—H31W109.00O22—C21—C2115.91 (17)
O3Wii—Na1—O3W—Na1ii0.00 (6)N1—C2—C21—O2189.1 (2)
O1W—Na1—O1Wi—Na1i0.00 (6)N1—C2—C3—Cl3179.26 (15)
O2W—Na1—O1Wi—Na1i103.53 (6)N1—C2—C3—C40.0 (3)
O3W—Na1—O1Wi—Na1i114.57 (6)C21—C2—C3—Cl30.7 (3)
O1W—Na1—O3Wii—Na1ii114.11 (6)C3—C2—C21—O2289.4 (2)
O2W—Na1—O3Wii—Na1ii141.98 (6)N1—C2—C21—O2289.3 (2)
O3W—Na1—O3Wii—Na1ii0.02 (8)C3—C2—C21—O2192.2 (2)
O2W—Na1—O3W—Na1ii87.03 (10)C2—C3—C4—C50.1 (3)
O1Wi—Na1—O3W—Na1ii174.25 (5)Cl3—C3—C4—N40.6 (3)
O2W—Na1—O1W—Na1i84.89 (6)Cl3—C3—C4—C5179.13 (15)
O3W—Na1—O1W—Na1i91.68 (6)C2—C3—C4—N4179.9 (2)
O1Wi—Na1—O1W—Na1i0.00 (5)C3—C4—C5—Cl5179.71 (15)
O3Wii—Na1—O1W—Na1i179.91 (5)N4—C4—C5—Cl50.1 (3)
O1W—Na1—O3W—Na1ii98.40 (6)N4—C4—C5—C6180.0 (2)
C6—N1—C2—C21178.63 (17)C3—C4—C5—C60.2 (3)
C2—N1—C6—Cl6179.62 (14)C4—C5—C6—N10.2 (3)
C6—N1—C2—C30.0 (3)Cl5—C5—C6—Cl60.2 (3)
C2—N1—C6—C50.1 (3)Cl5—C5—C6—N1179.72 (15)
C21—C2—C3—C4178.59 (18)C4—C5—C6—Cl6179.74 (16)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O4W0.821.972.786 (2)178
O1W—H12W···O6W0.891.992.877 (2)174
O2W—H21W···O22iii0.941.792.721 (2)171
O2W—H22W···O5W0.841.982.816 (2)172
O3W—H31W···O5Wiv0.881.932.781 (2)163
O3W—H32W···N1ii0.902.022.910 (2)170
O4W—H41W···O22v0.991.932.916 (2)173
O4W—H42W···O210.931.992.918 (2)174
O5W—H51W···O210.901.872.748 (2)166
O5W—H52W···O2Wvi0.902.012.8481 (19)155
O6W—H61W···O22vii0.932.102.972 (2)156
O6W—H62W···Cl60.932.833.4400 (15)124
O6W—H62W···O21iv0.932.192.996 (2)144
N4—H41···Cl30.962.542.9956 (17)109
N4—H41···O6Wviii0.962.183.080 (2)156
N4—H42···Cl50.972.522.9690 (17)108
N4—H42···O4Wviii0.972.223.146 (2)160
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y+1, z; (v) x1, y, z; (vi) x, y, z+2; (vii) x1, y+1, z; (viii) x+1, y+1, z+1.
 

Acknowledgements

The author acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology, Brisbane.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeckmann, J., Duthie, A., Gesing, T. M., Koehne, T. & Lork, E. (2012). Organometallics, 31, 3451–3454.  Web of Science CSD CrossRef CAS Google Scholar
First citationBiałońska, A., Ciunik, Z., Popek, T. & Lis, T. (2005). Acta Cryst. C61, o88–o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeng, N., Chen, J. M., Li, Z.-J., Jiang, L. & Lu, T.-B. (2013). Cryst. Growth Des. 13, 3546–3553.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuzei, I. A., Kim, M.-H. & West, R. (2013). J. Coord. Chem. 66, 3722–3739.  Web of Science CSD CrossRef CAS Google Scholar
First citationKinnibrugh, T., Garcia, N. & Clearfield, A. (2012). J. Solid State Chem. 187, 149–158.  Web of Science CSD CrossRef CAS Google Scholar
First citationLennartson, A. & Håkansson, M. (2008). Acta Cryst. C64, m13–m16.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarino, N., Vortherms, A. R., Hoffman, R. L. & Doyle, R. P. (2010). Inorg. Chem. 49, 6790–6792.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMullinson, W. R. (1985). Proc. Western Soc. Weed Sci. 38, 21–92.  Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., pp. 1325–1326. Whitehouse Station, NJ, USA: Merck & Co. Inc.  Google Scholar
First citationO'Reilly, E. J., Smith, G., Kennard, C. H. L. & White, A. H. (1983). Aust. J. Chem. 36, 183–190.  CAS Google Scholar
First citationParthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Cryst. Struct. Commun. 11, 1519–1524.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2013). Acta Cryst. E69, m22–m23.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981a). Aust. J. Chem. 34, 891–896.  CSD CrossRef CAS Google Scholar
First citationSmith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981b). Cryst. Struct. Commun. 10, 1277–1282.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, G., Rao, L. & Teat, S. J. (2009). Inorg. Chem. 48, 10158–10164.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYi, X.-Y., Liu, B., Jiménez-Aparicio, R., Urbanos, F. A., Gao, S., Xu, W., Chen, J.-S., Song, Y. & Zheng, L.-M. (2005). Inorg. Chem. 44, 4309–4314.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds