research communications
μ2-hydroxido-dialuminium tetraiodide dmpu tetrasolvate [dmpu is 1,3-dimethyltetrahydropyrimidin-2(1H)-one]: a centrosymmetric dinuclear aluminium complex containing AlO5 polyhedra
of hexakis(dmpu)-di-aDepartment of Chemistry and Biotechnology, PO Box 7015, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden, and bInstitute of Nuclear Chemistry and Technology, Dorodna 16, PL-03-195 Warsaw, Poland
*Correspondence e-mail: daniel.lundberg@slu.se
The structure of the title compound, [Al2(OH)2(C6H12N2O)6]I4·4C6H12N2O (systematic name: di-μ2-hydroxido-bis{tris[1,3-dimethyltetrahydropyrimidin-2(1H)-one-κO]aluminium} tetraiodide 1,3-dimethyltetrahydropyrimidin-2(1H)-one tetrasolvate), is composed of two Al(C6H12N2O)3 moieties linked into a centrosymmetric dinuclear unit by a pair of bridging hydroxide ions. The aluminium cations show a distorted trigonal bipyramidal AlO5 coordination environment formed only by monodentate ligands. The Al—O bond lengths are in the range 1.789 (2)–1.859 (2) Å (mean bond length = 1.818 Å). The non-coordinating iodide anions compensate the charge of the complex cation. The remaining solvent molecules and the iodide counter-anions interact with the complex cation by weak non-classical C—H⋯I and C—H⋯O hydrogen bonds.
Keywords: crystal structure; group 13 metals; five-coordination; dmpu; space-demanding solvent.
CCDC reference: 1410078
1. Chemical context
The solvent ligand N,N′-dimethylpropyleneurea (dmpu; IUPAC name: 1,3-dimethyltetrahydropyrimidin-2(1H)-one, C6H12N2O) is known to be space-demanding upon coordination. This has been shown for several different metal ions which have a lower than the corresponding hydrates (Lundberg, 2006; Lundberg et al., 2010). In the boron group (group 13), the trivalent metal ions have previously been studied in dmpu solution and the solid state,
with reported crystal structures for trichloridobis(dmpu)thallium(III) (Carmalt et al., 1996) and tribromidobis(dmpu)indium(III) (Topel et al., 2010). In the case of dmpu-solvated gallium(III) bromide, the gallium cation was determined to be five-coordinate in solution but crystallization was not successful despite of repeated attempts (Topel et al., 2010). The title compound was prepared in an attempt to reveal the dmpu coordination for the last remaining naturally occurring trivalent group 13 metal ion, aluminium(III). Since both chloride and bromide ions are more prone to form aluminium complexes, the iodide salt was chosen as a starting material.2. Structural commentary
The 3 moiety, two dmpu solvent molecules and two iodide counter anions. The dinuclear cationic aluminium complex (Fig. 1) is generated by inversion symmetry and contains two five-coordinate aluminium cations, in which each cation is coordinated by the oxygen atoms of three dmpu ligand molecules and two μ2-bridging hydroxide ions, completing an AlO5 coordination sphere. The Al—O bond lengths in the Al2(μ2-OH)2 bridge are 1.804 (2) and 1.859 (2) Å, while the Al—O bonds to the dmpu ligand molecules are 1.789 (2), 1.792 (2), and 1.846 (2) Å, respectively. The two aluminium cations are separated by 2.883 (1) Å from each other. The Al—O—C angles for the coordinating dmpu ligand molecules lie in the range of 144.0 (2) to 154.7 (2)°. The dmpu ligand molecules are all essentially flat with the exception of the middle propylene carbon atom which is bent out of the plane with a dihedral angle of ca 50°.
of the title structure comprises one Al(dmpu)3. Supramolecular features
In the crystal packing, the complex cations are arranged in rods parallel to [001] with the counter-anions situated between the rods (Fig. 2). The hydroxide ion forms a medium-strength O—H⋯O hydrogen bond of 2.625 (3) Å to one of the non-coordinating dmpu ligand molecules, with an H⋯O—C angle for this interaction of 134.8 (17)°. The other non-coordinating dmpu molecule is stabilized by a much weaker O⋯H—C interaction of 3.190 (5) Å. Other O⋯H—C interaction between the moieties range from 3.404 (5)–3.561 (4) Å. The remaining positive charges on the aluminium atoms in the complex are compensated by the presence of non-coordinating iodide anions, which interact with the cationic complex by weak I⋯H—C hydrogen bonds in the range 3.932 (4)–4.070 (4) Å (Table 1).
4. Database survey
The Cambridge Structural Database (Version 2015; Groom & Allen, 2014) lists 615 structures with an AlO4 and 387 structures with an AlO6 polyhedron, but only 46 with an AlO5 polyhedron. Of these 46, three contain μ2-hydroxido bridges, including two polynuclear structures (Abrahams et al., 2002; Murugavel & Kuppuswamy, 2006) and a trinuclear structure with an AlO3N2–AlO5–AlO3N2 motif. Another trinuclear complex with an AlO4–AlO5–AlO4 motif, albeit without hydroxide bridges (Pauls & Neumüller, 2000), and two different mononuclear, five-coordinate tetrahydrofuran (thf) solvates have been reported (Karsch et al., 2012). More than 50 examples of dimeric complexes with hexacoordinate aluminium ions with similar bridging between aluminium have been reported.
Urea solvated aluminium perchlorate was structurally determined by Mooy et al. (1974) as a hexacoordinate, homoleptic complex. Homoleptic hexacoordination is also found in other common, non-aqueous O-donor solvents, including dimethylsulfoxide (dmso) solvated aluminium chloride (Boström et al., 2003), hexaisothiocyanatoaluminium (Gumbris et al., 2012), iodide (Molla-Abbassi et al., 2003), and perchlorate (Chan et al., 2004), as well as N,N-dimethylformamide (dmf) solvated aluminium hexachloridotechnate chloride (Benz et al., 2015), perchlorate (Suzuki & Ishiguro, 1998), and tribromide (Bekaert et al., 2002), and the N,N-dimethylacetamide (dma) solvated aluminium perchlorate (Suzuki & Ishiguro, 2006). One homoleptic, tetracoordinate aluminium ion has been reported by Engesser et al. (2012) with an anionic O-donor ligand.
5. Synthesis and crystallization
The title compound was prepared by dissolving anhydrous aluminium(III) iodide (Sigma–Aldrich) in distilled dmpu in a glass vial, and subsequently heated in an oil bath to approximately 323 K, and then allowed to cool while still in the oil bath. After cooling to room temperature, the sample was refrigerated (277 K) for several weeks to allow for crystal growth. The presence of hydroxide ions in the title compound was most likely caused during preparation of the mother liquor. It appears possible that with additional precautions, a hydroxide-free compound might be obtained. A part of the solid was photographed in detail at ambient room temperature (Fig. 3), whereas attempts to study smaller crystals failed, presumably due to the hygroscopicity of the material.
6. Refinement
Hydrogen atoms bonded to carbon atoms were placed in calculated positions with C—H = 0.98 (methyl) or 0.99 Å (methylene) and refined isotropically using a riding model with Uiso(H) equal to 1.5Ueq(C) or 1.2Ueq(C) for methyl and methylene hydrogen atoms, respectively. The hydrogen atom of the hydroxide group was located in a difference map and its position and Uiso value were freely refined. Crystal data, data collection and structure details are summarized in Table 2.
|
Supporting information
CCDC reference: 1410078
https://doi.org/10.1107/S2056989015012785/wm5176sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015012785/wm5176Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Crystal Impact, 2001); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).[Al2(OH)2(C6H12N2O)6]I4·4C6H12N2O | F(000) = 1912 |
Mr = 1877.33 | Dx = 1.526 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 13.9120 (2) Å | Cell parameters from 30242 reflections |
b = 22.6152 (2) Å | θ = 3.9–69.2° |
c = 14.4875 (3) Å | µ = 12.72 mm−1 |
β = 116.331 (2)° | T = 100 K |
V = 4085.16 (12) Å3 | Block, yellow |
Z = 2 | 0.20 × 0.16 × 0.14 mm |
Agilent SuperNova Dual Source diffractometer with an Eos detector | 7114 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 6779 reflections with I > 2σ(I) |
Detector resolution: 16.0131 pixels mm-1 | Rint = 0.040 |
ω scans | θmax = 66.0°, θmin = 3.7° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −16→16 |
Tmin = 0.411, Tmax = 1.000 | k = −26→26 |
75993 measured reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0364P)2 + 6.5832P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.002 |
7114 reflections | Δρmax = 1.20 e Å−3 |
456 parameters | Δρmin = −1.13 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.51772 (2) | 0.62910 (2) | 0.13190 (2) | 0.03025 (7) | |
I2 | 0.53752 (2) | 0.68312 (2) | 0.63215 (2) | 0.03565 (8) | |
Al1 | 0.00668 (7) | 0.56180 (4) | 0.52651 (7) | 0.01970 (18) | |
O1 | 0.13114 (16) | 0.58133 (9) | 0.63291 (16) | 0.0250 (5) | |
O3 | −0.07158 (16) | 0.60555 (9) | 0.57705 (16) | 0.0240 (4) | |
N9 | 0.7761 (2) | 0.63074 (12) | 0.9445 (2) | 0.0298 (6) | |
N2 | 0.2309 (2) | 0.54816 (11) | 0.7944 (2) | 0.0251 (5) | |
N1 | 0.3048 (2) | 0.55782 (11) | 0.6791 (2) | 0.0252 (5) | |
C1 | 0.2217 (2) | 0.56185 (12) | 0.7019 (2) | 0.0218 (6) | |
O2 | −0.00991 (17) | 0.61562 (9) | 0.42976 (17) | 0.0261 (5) | |
N4 | −0.0161 (2) | 0.71546 (10) | 0.41492 (19) | 0.0230 (5) | |
N8 | 0.2568 (2) | 0.49894 (13) | 0.3074 (2) | 0.0338 (7) | |
C7 | −0.0504 (2) | 0.66163 (13) | 0.3756 (2) | 0.0194 (6) | |
O4 | 0.11822 (19) | 0.54165 (10) | 0.32421 (19) | 0.0339 (5) | |
C12 | 0.0803 (3) | 0.72256 (14) | 0.5114 (2) | 0.0277 (7) | |
H12A | 0.0955 | 0.6856 | 0.5506 | 0.042* | |
H12B | 0.0694 | 0.7544 | 0.5516 | 0.042* | |
H12C | 0.1408 | 0.7324 | 0.4969 | 0.042* | |
N5 | −0.2321 (2) | 0.64829 (11) | 0.4770 (2) | 0.0259 (6) | |
N6 | −0.1056 (2) | 0.69603 (11) | 0.6212 (2) | 0.0241 (5) | |
N3 | −0.1258 (2) | 0.65501 (11) | 0.2794 (2) | 0.0245 (5) | |
C17 | −0.2762 (3) | 0.59303 (17) | 0.4251 (3) | 0.0413 (9) | |
H17A | −0.2177 | 0.5654 | 0.4364 | 0.062* | |
H17B | −0.3179 | 0.6002 | 0.3511 | 0.062* | |
H17C | −0.3230 | 0.5760 | 0.4526 | 0.062* | |
O5 | 0.8410 (2) | 0.54111 (12) | 1.0114 (2) | 0.0441 (6) | |
C13 | −0.1357 (2) | 0.64952 (13) | 0.5582 (2) | 0.0201 (6) | |
C5 | 0.2954 (3) | 0.57220 (15) | 0.5773 (3) | 0.0313 (7) | |
H5A | 0.3051 | 0.5362 | 0.5447 | 0.047* | |
H5B | 0.3505 | 0.6012 | 0.5840 | 0.047* | |
H5C | 0.2242 | 0.5889 | 0.5349 | 0.047* | |
C6 | 0.1414 (3) | 0.55467 (15) | 0.8202 (3) | 0.0311 (7) | |
H6A | 0.1458 | 0.5933 | 0.8525 | 0.047* | |
H6B | 0.1446 | 0.5233 | 0.8681 | 0.047* | |
H6C | 0.0737 | 0.5518 | 0.7573 | 0.047* | |
N7 | 0.2533 (2) | 0.60067 (13) | 0.3315 (2) | 0.0342 (7) | |
N10 | 0.9575 (2) | 0.61058 (15) | 1.0066 (2) | 0.0411 (7) | |
C20 | 0.3530 (3) | 0.61090 (17) | 0.3229 (3) | 0.0410 (9) | |
H20A | 0.3949 | 0.6425 | 0.3715 | 0.049* | |
H20B | 0.3360 | 0.6242 | 0.2523 | 0.049* | |
C18 | 0.0012 (3) | 0.69860 (14) | 0.7087 (3) | 0.0293 (7) | |
H18A | −0.0035 | 0.6866 | 0.7715 | 0.044* | |
H18B | 0.0288 | 0.7391 | 0.7167 | 0.044* | |
H18C | 0.0497 | 0.6719 | 0.6963 | 0.044* | |
C14 | −0.3091 (3) | 0.69760 (17) | 0.4505 (3) | 0.0367 (8) | |
H14A | −0.3642 | 0.6882 | 0.4741 | 0.044* | |
H14B | −0.3457 | 0.7027 | 0.3748 | 0.044* | |
C8 | −0.1683 (3) | 0.70498 (16) | 0.2085 (3) | 0.0360 (8) | |
H8A | −0.2426 | 0.6963 | 0.1569 | 0.043* | |
H8B | −0.1241 | 0.7113 | 0.1714 | 0.043* | |
C15 | −0.2530 (3) | 0.75435 (16) | 0.5002 (3) | 0.0403 (9) | |
H15A | −0.2094 | 0.7686 | 0.4661 | 0.048* | |
H15B | −0.3066 | 0.7851 | 0.4927 | 0.048* | |
C27 | 0.8817 (3) | 0.69576 (16) | 0.8932 (3) | 0.0377 (8) | |
H27A | 0.8970 | 0.7377 | 0.8856 | 0.045* | |
H27B | 0.8598 | 0.6759 | 0.8260 | 0.045* | |
C26 | 0.7926 (3) | 0.69190 (15) | 0.9246 (3) | 0.0328 (7) | |
H26A | 0.8109 | 0.7158 | 0.9874 | 0.039* | |
H26B | 0.7257 | 0.7080 | 0.8691 | 0.039* | |
C3 | 0.4264 (3) | 0.55167 (14) | 0.8624 (3) | 0.0293 (7) | |
H3A | 0.4940 | 0.5336 | 0.9132 | 0.035* | |
H3B | 0.4324 | 0.5951 | 0.8725 | 0.035* | |
C19 | 0.2059 (3) | 0.54700 (14) | 0.3204 (3) | 0.0275 (7) | |
C16 | −0.1821 (3) | 0.74310 (14) | 0.6123 (3) | 0.0327 (7) | |
H16A | −0.1429 | 0.7797 | 0.6455 | 0.039* | |
H16B | −0.2260 | 0.7309 | 0.6472 | 0.039* | |
C28 | 0.9807 (3) | 0.66668 (17) | 0.9733 (3) | 0.0413 (9) | |
H28A | 1.0326 | 0.6605 | 0.9446 | 0.050* | |
H28B | 1.0144 | 0.6933 | 1.0335 | 0.050* | |
C25 | 0.8574 (3) | 0.59161 (16) | 0.9887 (3) | 0.0329 (7) | |
C29 | 0.6688 (3) | 0.61365 (16) | 0.9271 (3) | 0.0324 (7) | |
H29A | 0.6521 | 0.6318 | 0.9797 | 0.049* | |
H29B | 0.6649 | 0.5705 | 0.9310 | 0.049* | |
H29C | 0.6168 | 0.6271 | 0.8587 | 0.049* | |
C4 | 0.3343 (2) | 0.52907 (14) | 0.8798 (3) | 0.0284 (7) | |
H4A | 0.3370 | 0.4854 | 0.8837 | 0.034* | |
H4B | 0.3400 | 0.5445 | 0.9460 | 0.034* | |
C2 | 0.4107 (2) | 0.53720 (15) | 0.7553 (3) | 0.0305 (7) | |
H2A | 0.4675 | 0.5565 | 0.7424 | 0.037* | |
H2B | 0.4163 | 0.4939 | 0.7485 | 0.037* | |
C21 | 0.4188 (3) | 0.55523 (19) | 0.3467 (4) | 0.0479 (10) | |
H21A | 0.4791 | 0.5607 | 0.3289 | 0.057* | |
H21B | 0.4489 | 0.5465 | 0.4213 | 0.057* | |
C24 | 0.1992 (3) | 0.44301 (16) | 0.2775 (3) | 0.0406 (9) | |
H24A | 0.1483 | 0.4403 | 0.3072 | 0.061* | |
H24B | 0.2504 | 0.4102 | 0.3028 | 0.061* | |
H24C | 0.1601 | 0.4409 | 0.2022 | 0.061* | |
C11 | −0.1538 (3) | 0.59608 (16) | 0.2335 (3) | 0.0401 (9) | |
H11A | −0.0989 | 0.5826 | 0.2134 | 0.060* | |
H11B | −0.2235 | 0.5977 | 0.1726 | 0.060* | |
H11C | −0.1579 | 0.5685 | 0.2839 | 0.060* | |
C30 | 1.0498 (3) | 0.5726 (2) | 1.0638 (4) | 0.0552 (11) | |
H30A | 1.0688 | 0.5512 | 1.0154 | 0.083* | |
H30B | 1.0319 | 0.5443 | 1.1049 | 0.083* | |
H30C | 1.1107 | 0.5969 | 1.1095 | 0.083* | |
C9 | −0.1671 (3) | 0.75993 (15) | 0.2679 (3) | 0.0423 (9) | |
H9A | −0.1890 | 0.7945 | 0.2211 | 0.051* | |
H9B | −0.2187 | 0.7556 | 0.2975 | 0.051* | |
C10 | −0.0559 (3) | 0.76947 (14) | 0.3529 (3) | 0.0365 (8) | |
H10A | −0.0069 | 0.7806 | 0.3228 | 0.044* | |
H10B | −0.0570 | 0.8023 | 0.3976 | 0.044* | |
C22 | 0.3500 (3) | 0.50443 (17) | 0.2862 (4) | 0.0467 (10) | |
H22A | 0.3258 | 0.5112 | 0.2117 | 0.056* | |
H22B | 0.3922 | 0.4674 | 0.3055 | 0.056* | |
C23 | 0.1972 (4) | 0.65363 (17) | 0.3377 (4) | 0.0493 (11) | |
H23A | 0.2429 | 0.6759 | 0.3998 | 0.074* | |
H23B | 0.1306 | 0.6424 | 0.3407 | 0.074* | |
H23C | 0.1804 | 0.6783 | 0.2768 | 0.074* | |
O6 | −0.05183 (18) | 0.49339 (9) | 0.54105 (19) | 0.0250 (5) | |
H6 | −0.077 (4) | 0.487 (2) | 0.575 (4) | 0.051 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.04045 (13) | 0.02150 (11) | 0.02735 (12) | 0.00304 (8) | 0.01372 (10) | 0.00282 (7) |
I2 | 0.03502 (13) | 0.04120 (13) | 0.03083 (13) | −0.00851 (9) | 0.01468 (10) | 0.00502 (9) |
Al1 | 0.0201 (4) | 0.0147 (4) | 0.0245 (5) | 0.0025 (3) | 0.0100 (4) | 0.0015 (3) |
O1 | 0.0197 (10) | 0.0256 (11) | 0.0251 (11) | 0.0052 (8) | 0.0056 (9) | 0.0025 (9) |
O3 | 0.0236 (10) | 0.0202 (10) | 0.0275 (12) | 0.0074 (8) | 0.0108 (9) | 0.0007 (9) |
N9 | 0.0238 (14) | 0.0334 (15) | 0.0315 (16) | 0.0003 (11) | 0.0117 (12) | 0.0067 (12) |
N2 | 0.0236 (13) | 0.0222 (13) | 0.0254 (14) | −0.0010 (10) | 0.0072 (11) | 0.0015 (11) |
N1 | 0.0178 (12) | 0.0244 (13) | 0.0290 (14) | 0.0001 (10) | 0.0064 (11) | 0.0013 (11) |
C1 | 0.0244 (15) | 0.0104 (13) | 0.0232 (16) | −0.0008 (11) | 0.0037 (13) | −0.0004 (11) |
O2 | 0.0300 (11) | 0.0178 (10) | 0.0282 (12) | 0.0045 (9) | 0.0109 (10) | 0.0059 (9) |
N4 | 0.0282 (13) | 0.0160 (12) | 0.0200 (13) | −0.0007 (10) | 0.0064 (11) | 0.0000 (10) |
N8 | 0.0378 (16) | 0.0288 (15) | 0.0464 (18) | −0.0013 (12) | 0.0292 (15) | −0.0037 (13) |
C7 | 0.0212 (14) | 0.0189 (14) | 0.0223 (15) | 0.0017 (11) | 0.0135 (13) | 0.0023 (12) |
O4 | 0.0349 (13) | 0.0353 (13) | 0.0415 (14) | 0.0014 (10) | 0.0261 (11) | 0.0045 (11) |
C12 | 0.0287 (16) | 0.0257 (16) | 0.0249 (17) | −0.0043 (13) | 0.0085 (14) | −0.0061 (13) |
N5 | 0.0233 (13) | 0.0242 (13) | 0.0285 (14) | 0.0029 (11) | 0.0099 (11) | 0.0028 (11) |
N6 | 0.0260 (13) | 0.0184 (12) | 0.0303 (14) | 0.0018 (10) | 0.0145 (12) | −0.0012 (11) |
N3 | 0.0251 (13) | 0.0220 (13) | 0.0209 (13) | −0.0004 (10) | 0.0053 (11) | −0.0014 (10) |
C17 | 0.0308 (18) | 0.037 (2) | 0.041 (2) | −0.0051 (15) | 0.0025 (16) | −0.0028 (17) |
O5 | 0.0497 (16) | 0.0426 (15) | 0.0432 (16) | 0.0126 (12) | 0.0236 (13) | 0.0164 (12) |
C13 | 0.0209 (14) | 0.0201 (14) | 0.0239 (15) | −0.0001 (11) | 0.0142 (13) | 0.0033 (12) |
C5 | 0.0252 (16) | 0.0335 (18) | 0.0347 (19) | −0.0034 (13) | 0.0128 (14) | 0.0026 (14) |
C6 | 0.0355 (18) | 0.0298 (17) | 0.0285 (18) | 0.0015 (14) | 0.0146 (15) | 0.0014 (14) |
N7 | 0.0409 (16) | 0.0289 (15) | 0.0452 (18) | −0.0031 (12) | 0.0304 (15) | −0.0029 (13) |
N10 | 0.0280 (15) | 0.055 (2) | 0.0359 (17) | 0.0078 (14) | 0.0106 (13) | 0.0061 (15) |
C20 | 0.044 (2) | 0.0361 (19) | 0.054 (2) | −0.0123 (16) | 0.0319 (19) | −0.0053 (17) |
C18 | 0.0308 (17) | 0.0279 (16) | 0.0266 (17) | −0.0025 (13) | 0.0105 (14) | −0.0029 (13) |
C14 | 0.0291 (17) | 0.048 (2) | 0.0304 (19) | 0.0161 (16) | 0.0104 (15) | 0.0080 (16) |
C8 | 0.0393 (19) | 0.0365 (19) | 0.0217 (17) | −0.0014 (15) | 0.0041 (15) | 0.0080 (14) |
C15 | 0.048 (2) | 0.0300 (18) | 0.047 (2) | 0.0204 (16) | 0.0247 (19) | 0.0112 (16) |
C27 | 0.044 (2) | 0.0333 (19) | 0.039 (2) | −0.0115 (16) | 0.0213 (17) | −0.0041 (16) |
C26 | 0.0345 (18) | 0.0314 (17) | 0.0288 (18) | −0.0045 (14) | 0.0106 (15) | 0.0019 (14) |
C3 | 0.0224 (15) | 0.0243 (16) | 0.0317 (18) | −0.0015 (12) | 0.0032 (14) | 0.0001 (13) |
C19 | 0.0329 (17) | 0.0280 (16) | 0.0267 (17) | 0.0003 (13) | 0.0179 (14) | 0.0006 (13) |
C16 | 0.0379 (18) | 0.0230 (16) | 0.045 (2) | 0.0067 (14) | 0.0250 (17) | −0.0010 (14) |
C28 | 0.0352 (19) | 0.042 (2) | 0.050 (2) | −0.0098 (16) | 0.0223 (18) | −0.0104 (18) |
C25 | 0.0358 (18) | 0.039 (2) | 0.0252 (17) | 0.0030 (15) | 0.0150 (15) | 0.0072 (15) |
C29 | 0.0289 (17) | 0.0383 (18) | 0.0306 (18) | −0.0023 (14) | 0.0137 (15) | 0.0035 (15) |
C4 | 0.0254 (16) | 0.0258 (16) | 0.0260 (17) | 0.0012 (13) | 0.0043 (13) | 0.0041 (13) |
C2 | 0.0196 (15) | 0.0310 (17) | 0.0352 (19) | 0.0003 (13) | 0.0070 (14) | 0.0000 (14) |
C21 | 0.035 (2) | 0.052 (2) | 0.066 (3) | −0.0025 (17) | 0.031 (2) | 0.002 (2) |
C24 | 0.053 (2) | 0.0293 (18) | 0.049 (2) | −0.0092 (16) | 0.031 (2) | −0.0088 (16) |
C11 | 0.042 (2) | 0.0320 (19) | 0.034 (2) | −0.0023 (15) | 0.0050 (17) | −0.0084 (15) |
C30 | 0.040 (2) | 0.069 (3) | 0.052 (3) | 0.013 (2) | 0.016 (2) | 0.013 (2) |
C9 | 0.049 (2) | 0.0262 (18) | 0.038 (2) | 0.0098 (16) | 0.0061 (18) | 0.0123 (15) |
C10 | 0.050 (2) | 0.0159 (15) | 0.035 (2) | 0.0000 (14) | 0.0113 (17) | 0.0055 (14) |
C22 | 0.050 (2) | 0.038 (2) | 0.073 (3) | 0.0029 (17) | 0.047 (2) | −0.001 (2) |
C23 | 0.072 (3) | 0.0280 (19) | 0.070 (3) | 0.0047 (18) | 0.052 (3) | 0.0048 (18) |
O6 | 0.0320 (12) | 0.0162 (10) | 0.0356 (13) | 0.0016 (8) | 0.0230 (11) | 0.0015 (9) |
Al1—O1 | 1.789 (2) | C18—H18B | 0.9800 |
Al1—O2 | 1.792 (2) | C18—H18C | 0.9800 |
Al1—O6 | 1.804 (2) | C14—C15 | 1.509 (5) |
Al1—O3 | 1.846 (2) | C14—H14A | 0.9900 |
Al1—O6i | 1.859 (2) | C14—H14B | 0.9900 |
Al1—Al1i | 2.8831 (16) | C8—C9 | 1.507 (5) |
O1—C1 | 1.290 (4) | C8—H8A | 0.9900 |
O3—C13 | 1.282 (4) | C8—H8B | 0.9900 |
N9—C25 | 1.353 (4) | C15—C16 | 1.501 (5) |
N9—C26 | 1.452 (4) | C15—H15A | 0.9900 |
N9—C29 | 1.452 (4) | C15—H15B | 0.9900 |
N2—C1 | 1.324 (4) | C27—C26 | 1.500 (5) |
N2—C6 | 1.457 (4) | C27—C28 | 1.502 (6) |
N2—C4 | 1.485 (4) | C27—H27A | 0.9900 |
N1—C1 | 1.340 (4) | C27—H27B | 0.9900 |
N1—C5 | 1.458 (4) | C26—H26A | 0.9900 |
N1—C2 | 1.471 (4) | C26—H26B | 0.9900 |
O2—C7 | 1.274 (4) | C3—C4 | 1.502 (5) |
N4—C7 | 1.339 (4) | C3—C2 | 1.503 (5) |
N4—C12 | 1.454 (4) | C3—H3A | 0.9900 |
N4—C10 | 1.471 (4) | C3—H3B | 0.9900 |
N8—C19 | 1.356 (4) | C16—H16A | 0.9900 |
N8—C24 | 1.457 (4) | C16—H16B | 0.9900 |
N8—C22 | 1.464 (4) | C28—H28A | 0.9900 |
C7—N3 | 1.330 (4) | C28—H28B | 0.9900 |
O4—C19 | 1.251 (4) | C29—H29A | 0.9800 |
C12—H12A | 0.9800 | C29—H29B | 0.9800 |
C12—H12B | 0.9800 | C29—H29C | 0.9800 |
C12—H12C | 0.9800 | C4—H4A | 0.9900 |
N5—C13 | 1.336 (4) | C4—H4B | 0.9900 |
N5—C17 | 1.447 (4) | C2—H2A | 0.9900 |
N5—C14 | 1.475 (4) | C2—H2B | 0.9900 |
N6—C13 | 1.332 (4) | C21—C22 | 1.503 (6) |
N6—C18 | 1.465 (4) | C21—H21A | 0.9900 |
N6—C16 | 1.470 (4) | C21—H21B | 0.9900 |
N3—C11 | 1.463 (4) | C24—H24A | 0.9800 |
N3—C8 | 1.464 (4) | C24—H24B | 0.9800 |
C17—H17A | 0.9800 | C24—H24C | 0.9800 |
C17—H17B | 0.9800 | C11—H11A | 0.9800 |
C17—H17C | 0.9800 | C11—H11B | 0.9800 |
O5—C25 | 1.237 (4) | C11—H11C | 0.9800 |
C5—H5A | 0.9800 | C30—H30A | 0.9800 |
C5—H5B | 0.9800 | C30—H30B | 0.9800 |
C5—H5C | 0.9800 | C30—H30C | 0.9800 |
C6—H6A | 0.9800 | C9—C10 | 1.506 (5) |
C6—H6B | 0.9800 | C9—H9A | 0.9900 |
C6—H6C | 0.9800 | C9—H9B | 0.9900 |
N7—C19 | 1.356 (4) | C10—H10A | 0.9900 |
N7—C23 | 1.454 (5) | C10—H10B | 0.9900 |
N7—C20 | 1.465 (4) | C22—H22A | 0.9900 |
N10—C25 | 1.368 (5) | C22—H22B | 0.9900 |
N10—C28 | 1.444 (5) | C23—H23A | 0.9800 |
N10—C30 | 1.459 (5) | C23—H23B | 0.9800 |
C20—C21 | 1.504 (6) | C23—H23C | 0.9800 |
C20—H20A | 0.9900 | O6—Al1i | 1.859 (2) |
C20—H20B | 0.9900 | O6—H6 | 0.73 (5) |
C18—H18A | 0.9800 | ||
O1—Al1—O2 | 104.24 (11) | C16—C15—H15B | 109.9 |
O1—Al1—O6 | 115.18 (11) | C14—C15—H15B | 109.9 |
O2—Al1—O6 | 139.96 (12) | H15A—C15—H15B | 108.3 |
O1—Al1—O3 | 92.39 (10) | C26—C27—C28 | 109.8 (3) |
O2—Al1—O3 | 92.99 (10) | C26—C27—H27A | 109.7 |
O6—Al1—O3 | 92.13 (10) | C28—C27—H27A | 109.7 |
O1—Al1—O6i | 101.27 (11) | C26—C27—H27B | 109.7 |
O2—Al1—O6i | 90.04 (11) | C28—C27—H27B | 109.7 |
O6—Al1—O6i | 76.16 (12) | H27A—C27—H27B | 108.2 |
O3—Al1—O6i | 164.83 (11) | N9—C26—C27 | 109.9 (3) |
O1—Al1—Al1i | 113.09 (8) | N9—C26—H26A | 109.7 |
O2—Al1—Al1i | 118.65 (9) | C27—C26—H26A | 109.7 |
O6—Al1—Al1i | 38.76 (7) | N9—C26—H26B | 109.7 |
O3—Al1—Al1i | 130.21 (8) | C27—C26—H26B | 109.7 |
O6i—Al1—Al1i | 37.40 (7) | H26A—C26—H26B | 108.2 |
C1—O1—Al1 | 145.4 (2) | C4—C3—C2 | 110.8 (3) |
C13—O3—Al1 | 144.0 (2) | C4—C3—H3A | 109.5 |
C25—N9—C26 | 123.0 (3) | C2—C3—H3A | 109.5 |
C25—N9—C29 | 119.2 (3) | C4—C3—H3B | 109.5 |
C26—N9—C29 | 117.4 (3) | C2—C3—H3B | 109.5 |
C1—N2—C6 | 121.6 (3) | H3A—C3—H3B | 108.1 |
C1—N2—C4 | 122.3 (3) | O4—C19—N8 | 120.6 (3) |
C6—N2—C4 | 116.0 (3) | O4—C19—N7 | 120.9 (3) |
C1—N1—C5 | 122.3 (3) | N8—C19—N7 | 118.5 (3) |
C1—N1—C2 | 121.6 (3) | N6—C16—C15 | 108.7 (3) |
C5—N1—C2 | 116.1 (3) | N6—C16—H16A | 109.9 |
O1—C1—N2 | 119.2 (3) | C15—C16—H16A | 109.9 |
O1—C1—N1 | 119.0 (3) | N6—C16—H16B | 109.9 |
N2—C1—N1 | 121.7 (3) | C15—C16—H16B | 109.9 |
C7—O2—Al1 | 154.7 (2) | H16A—C16—H16B | 108.3 |
C7—N4—C12 | 120.8 (2) | N10—C28—C27 | 112.2 (3) |
C7—N4—C10 | 121.9 (3) | N10—C28—H28A | 109.2 |
C12—N4—C10 | 115.6 (2) | C27—C28—H28A | 109.2 |
C19—N8—C24 | 119.0 (3) | N10—C28—H28B | 109.2 |
C19—N8—C22 | 121.8 (3) | C27—C28—H28B | 109.2 |
C24—N8—C22 | 115.7 (3) | H28A—C28—H28B | 107.9 |
O2—C7—N3 | 118.8 (3) | O5—C25—N9 | 121.0 (3) |
O2—C7—N4 | 120.3 (3) | O5—C25—N10 | 122.1 (3) |
N3—C7—N4 | 121.0 (3) | N9—C25—N10 | 116.9 (3) |
N4—C12—H12A | 109.5 | N9—C29—H29A | 109.5 |
N4—C12—H12B | 109.5 | N9—C29—H29B | 109.5 |
H12A—C12—H12B | 109.5 | H29A—C29—H29B | 109.5 |
N4—C12—H12C | 109.5 | N9—C29—H29C | 109.5 |
H12A—C12—H12C | 109.5 | H29A—C29—H29C | 109.5 |
H12B—C12—H12C | 109.5 | H29B—C29—H29C | 109.5 |
C13—N5—C17 | 120.3 (3) | N2—C4—C3 | 110.1 (3) |
C13—N5—C14 | 122.9 (3) | N2—C4—H4A | 109.6 |
C17—N5—C14 | 115.2 (3) | C3—C4—H4A | 109.6 |
C13—N6—C18 | 120.9 (3) | N2—C4—H4B | 109.6 |
C13—N6—C16 | 121.1 (3) | C3—C4—H4B | 109.6 |
C18—N6—C16 | 117.6 (3) | H4A—C4—H4B | 108.1 |
C7—N3—C11 | 120.4 (3) | N1—C2—C3 | 110.1 (3) |
C7—N3—C8 | 122.3 (3) | N1—C2—H2A | 109.6 |
C11—N3—C8 | 116.2 (3) | C3—C2—H2A | 109.6 |
N5—C17—H17A | 109.5 | N1—C2—H2B | 109.6 |
N5—C17—H17B | 109.5 | C3—C2—H2B | 109.6 |
H17A—C17—H17B | 109.5 | H2A—C2—H2B | 108.2 |
N5—C17—H17C | 109.5 | C22—C21—C20 | 109.9 (3) |
H17A—C17—H17C | 109.5 | C22—C21—H21A | 109.7 |
H17B—C17—H17C | 109.5 | C20—C21—H21A | 109.7 |
O3—C13—N6 | 119.3 (3) | C22—C21—H21B | 109.7 |
O3—C13—N5 | 120.2 (3) | C20—C21—H21B | 109.7 |
N6—C13—N5 | 120.5 (3) | H21A—C21—H21B | 108.2 |
N1—C5—H5A | 109.5 | N8—C24—H24A | 109.5 |
N1—C5—H5B | 109.5 | N8—C24—H24B | 109.5 |
H5A—C5—H5B | 109.5 | H24A—C24—H24B | 109.5 |
N1—C5—H5C | 109.5 | N8—C24—H24C | 109.5 |
H5A—C5—H5C | 109.5 | H24A—C24—H24C | 109.5 |
H5B—C5—H5C | 109.5 | H24B—C24—H24C | 109.5 |
N2—C6—H6A | 109.5 | N3—C11—H11A | 109.5 |
N2—C6—H6B | 109.5 | N3—C11—H11B | 109.5 |
H6A—C6—H6B | 109.5 | H11A—C11—H11B | 109.5 |
N2—C6—H6C | 109.5 | N3—C11—H11C | 109.5 |
H6A—C6—H6C | 109.5 | H11A—C11—H11C | 109.5 |
H6B—C6—H6C | 109.5 | H11B—C11—H11C | 109.5 |
C19—N7—C23 | 119.9 (3) | N10—C30—H30A | 109.5 |
C19—N7—C20 | 124.1 (3) | N10—C30—H30B | 109.5 |
C23—N7—C20 | 115.4 (3) | H30A—C30—H30B | 109.5 |
C25—N10—C28 | 124.9 (3) | N10—C30—H30C | 109.5 |
C25—N10—C30 | 119.2 (3) | H30A—C30—H30C | 109.5 |
C28—N10—C30 | 115.9 (3) | H30B—C30—H30C | 109.5 |
N7—C20—C21 | 110.6 (3) | C10—C9—C8 | 109.4 (3) |
N7—C20—H20A | 109.5 | C10—C9—H9A | 109.8 |
C21—C20—H20A | 109.5 | C8—C9—H9A | 109.8 |
N7—C20—H20B | 109.5 | C10—C9—H9B | 109.8 |
C21—C20—H20B | 109.5 | C8—C9—H9B | 109.8 |
H20A—C20—H20B | 108.1 | H9A—C9—H9B | 108.2 |
N6—C18—H18A | 109.5 | N4—C10—C9 | 110.6 (3) |
N6—C18—H18B | 109.5 | N4—C10—H10A | 109.5 |
H18A—C18—H18B | 109.5 | C9—C10—H10A | 109.5 |
N6—C18—H18C | 109.5 | N4—C10—H10B | 109.5 |
H18A—C18—H18C | 109.5 | C9—C10—H10B | 109.5 |
H18B—C18—H18C | 109.5 | H10A—C10—H10B | 108.1 |
N5—C14—C15 | 110.9 (3) | N8—C22—C21 | 109.6 (3) |
N5—C14—H14A | 109.5 | N8—C22—H22A | 109.7 |
C15—C14—H14A | 109.5 | C21—C22—H22A | 109.7 |
N5—C14—H14B | 109.5 | N8—C22—H22B | 109.7 |
C15—C14—H14B | 109.5 | C21—C22—H22B | 109.7 |
H14A—C14—H14B | 108.0 | H22A—C22—H22B | 108.2 |
N3—C8—C9 | 109.7 (3) | N7—C23—H23A | 109.5 |
N3—C8—H8A | 109.7 | N7—C23—H23B | 109.5 |
C9—C8—H8A | 109.7 | H23A—C23—H23B | 109.5 |
N3—C8—H8B | 109.7 | N7—C23—H23C | 109.5 |
C9—C8—H8B | 109.7 | H23A—C23—H23C | 109.5 |
H8A—C8—H8B | 108.2 | H23B—C23—H23C | 109.5 |
C16—C15—C14 | 109.0 (3) | Al1—O6—Al1i | 103.84 (12) |
C16—C15—H15A | 109.9 | Al1—O6—H6 | 128 (4) |
C14—C15—H15A | 109.9 | Al1i—O6—H6 | 127 (4) |
O2—Al1—O1—C1 | −133.5 (4) | C17—N5—C14—C15 | −174.3 (3) |
O6—Al1—O1—C1 | 39.4 (4) | C7—N3—C8—C9 | −32.0 (4) |
O3—Al1—O1—C1 | 132.8 (4) | C11—N3—C8—C9 | 160.2 (3) |
O6i—Al1—O1—C1 | −40.5 (4) | N5—C14—C15—C16 | −49.1 (4) |
Al1i—Al1—O1—C1 | −3.2 (4) | C25—N9—C26—C27 | 36.6 (4) |
O1—Al1—O3—C13 | 117.8 (3) | C29—N9—C26—C27 | −151.0 (3) |
O2—Al1—O3—C13 | 13.4 (4) | C28—C27—C26—N9 | −54.5 (4) |
O6—Al1—O3—C13 | −126.8 (3) | C24—N8—C19—O4 | 12.2 (5) |
O6i—Al1—O3—C13 | −87.8 (5) | C22—N8—C19—O4 | 170.1 (3) |
Al1i—Al1—O3—C13 | −118.8 (3) | C24—N8—C19—N7 | −169.3 (3) |
Al1—O1—C1—N2 | −94.1 (4) | C22—N8—C19—N7 | −11.4 (5) |
Al1—O1—C1—N1 | 88.0 (4) | C23—N7—C19—O4 | −6.2 (5) |
C6—N2—C1—O1 | −0.1 (4) | C20—N7—C19—O4 | −176.9 (3) |
C4—N2—C1—O1 | −176.1 (3) | C23—N7—C19—N8 | 175.3 (3) |
C6—N2—C1—N1 | 177.7 (3) | C20—N7—C19—N8 | 4.6 (5) |
C4—N2—C1—N1 | 1.7 (4) | C13—N6—C16—C15 | −39.2 (4) |
C5—N1—C1—O1 | −2.8 (4) | C18—N6—C16—C15 | 147.6 (3) |
C2—N1—C1—O1 | 178.6 (3) | C14—C15—C16—N6 | 57.8 (4) |
C5—N1—C1—N2 | 179.4 (3) | C25—N10—C28—C27 | −15.1 (5) |
C2—N1—C1—N2 | 0.8 (4) | C30—N10—C28—C27 | 165.3 (3) |
O1—Al1—O2—C7 | −104.2 (5) | C26—C27—C28—N10 | 44.8 (4) |
O6—Al1—O2—C7 | 86.0 (5) | C26—N9—C25—O5 | 174.5 (3) |
O3—Al1—O2—C7 | −10.9 (5) | C29—N9—C25—O5 | 2.3 (5) |
O6i—Al1—O2—C7 | 154.2 (5) | C26—N9—C25—N10 | −5.6 (5) |
Al1i—Al1—O2—C7 | 129.0 (5) | C29—N9—C25—N10 | −177.9 (3) |
Al1—O2—C7—N3 | −101.8 (5) | C28—N10—C25—O5 | 173.8 (4) |
Al1—O2—C7—N4 | 79.3 (6) | C30—N10—C25—O5 | −6.6 (6) |
C12—N4—C7—O2 | 11.5 (4) | C28—N10—C25—N9 | −6.1 (5) |
C10—N4—C7—O2 | 176.0 (3) | C30—N10—C25—N9 | 173.6 (3) |
C12—N4—C7—N3 | −167.3 (3) | C1—N2—C4—C3 | 23.8 (4) |
C10—N4—C7—N3 | −2.8 (4) | C6—N2—C4—C3 | −152.4 (3) |
O2—C7—N3—C11 | −6.0 (4) | C2—C3—C4—N2 | −50.2 (4) |
N4—C7—N3—C11 | 172.9 (3) | C1—N1—C2—C3 | −28.5 (4) |
O2—C7—N3—C8 | −173.3 (3) | C5—N1—C2—C3 | 152.8 (3) |
N4—C7—N3—C8 | 5.6 (4) | C4—C3—C2—N1 | 52.6 (4) |
Al1—O3—C13—N6 | −117.6 (3) | N7—C20—C21—C22 | 49.4 (5) |
Al1—O3—C13—N5 | 63.2 (4) | N3—C8—C9—C10 | 53.8 (4) |
C18—N6—C13—O3 | 2.6 (4) | C7—N4—C10—C9 | 27.0 (4) |
C16—N6—C13—O3 | −170.4 (3) | C12—N4—C10—C9 | −167.7 (3) |
C18—N6—C13—N5 | −178.1 (3) | C8—C9—C10—N4 | −51.7 (4) |
C16—N6—C13—N5 | 8.9 (4) | C19—N8—C22—C21 | 37.6 (5) |
C17—N5—C13—O3 | 15.7 (4) | C24—N8—C22—C21 | −163.8 (3) |
C14—N5—C13—O3 | −179.4 (3) | C20—C21—C22—N8 | −55.5 (5) |
C17—N5—C13—N6 | −163.6 (3) | O1—Al1—O6—Al1i | −96.12 (13) |
C14—N5—C13—N6 | 1.3 (4) | O2—Al1—O6—Al1i | 73.02 (19) |
C19—N7—C20—C21 | −24.8 (5) | O3—Al1—O6—Al1i | 170.23 (12) |
C23—N7—C20—C21 | 164.2 (4) | O6i—Al1—O6—Al1i | 0.000 (1) |
C13—N5—C14—C15 | 20.1 (4) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···O4i | 0.73 (5) | 1.91 (5) | 2.625 (3) | 167 (5) |
C5—H5B···I2 | 0.98 | 3.01 | 3.987 (3) | 172 |
C6—H6B···O5ii | 0.98 | 2.21 | 3.190 (4) | 174 |
C12—H12A···O1 | 0.98 | 2.59 | 3.561 (4) | 173 |
C12—H12B···I1iii | 0.98 | 3.09 | 4.051 (3) | 167 |
C14—H14A···I2iv | 0.99 | 3.15 | 4.070 (4) | 156 |
C17—H17B···I1iv | 0.98 | 3.05 | 4.015 (4) | 169 |
C16—H16A···I1iii | 0.99 | 3.11 | 3.932 (4) | 141 |
C24—H24A···O3i | 0.98 | 2.57 | 3.482 (5) | 154 |
C28—H28B···I2v | 0.99 | 3.09 | 3.981 (4) | 150 |
C30—H30A···O5vi | 0.98 | 2.57 | 3.404 (5) | 143 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x−1/2, −y+3/2, z+1/2; (iv) x−1, y, z; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+2, −y+1, −z+2. |
Acknowledgements
We thank Ingmar Persson and Lars Eriksson for their interest in this work, and Harald Cederlund for obtaining the high-resolution crystallophotography (HRCP) image.
References
Abrahams, I., Bradley, D. C., Chudzynska, H., Motevalli, M. & Sinclair, R. A. (2002). J. Chem. Soc. Dalton Trans. pp. 259–266. Web of Science CSD CrossRef Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bekaert, A., Barberan, O., Kaloun, E. B., Rabhi, C., Danan, A., Brion, J. D., Lemoine, P. & Viossat, B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 128–130. CAS Google Scholar
Benz, M., Braband, H., Schmutz, P., Halter, J. & Alberto, R. (2015). Chem. Sci. 6, 165–169. Web of Science CSD CrossRef CAS Google Scholar
Boström, D., Clausén, M. & Sandström, M. (2003). Acta Cryst. E59, m934–m935. Web of Science CSD CrossRef IUCr Journals Google Scholar
Carmalt, C. J., Farrugia, L. J. & Norman, N. C. (1996). Main Group Chem. 1, 339–344. CrossRef Web of Science Google Scholar
Chan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. F., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365–2373. Web of Science CSD CrossRef CAS Google Scholar
Crystal Impact (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Engesser, T. A., Hrobarik, P., Trapp, N., Eiden, P., Scherer, H., Kaupp, M. & Krossing, I. (2012). ChemPlusChem, 77, 643–651. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Gumbris, E. G., Peresypkina, E. V., Virovets, A. V. & Cherkasova, T. G. (2012). Russ. J. Inorg. Chem. 57, 337–342. Web of Science CrossRef CAS Google Scholar
Karsch, M., Lund, H., Schulz, A., Villinger, A. & Voss, K. (2012). Eur. J. Inorg. Chem. pp. 5542–5553. Web of Science CSD CrossRef Google Scholar
Lundberg, D. (2006). PhD thesis, Swedish University of Agricultural Sciences, Sweden. Available for free at http://pub.epsilon.slu.se/1072/. Google Scholar
Lundberg, D., Persson, I., Eriksson, L., D'Angelo, P. & De Panfilis, S. (2010). Inorg. Chem. 49, 4420–4432. Web of Science CSD CrossRef CAS PubMed Google Scholar
Molla-Abbassi, A., Skripkin, M., Kritikos, M., Persson, I., Mink, J. & Sandström, M. (2003). Dalton Trans. pp. 1746–1753. Google Scholar
Mooy, J. H. M., Krieger, W., Heijdenrijk, D. & Stam, C. H. (1974). Chem. Phys. Lett. 29, 179–182. CSD CrossRef CAS Web of Science Google Scholar
Murugavel, R. & Kuppuswamy, S. (2006). Angew. Chem. Int. Ed. 45, 7022–7026. Web of Science CSD CrossRef CAS Google Scholar
Pauls, J. & Neumüller, B. (2000). Z. Anorg. Allg. Chem. 626, 270–279. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suzuki, H. & Ishiguro, S.-I. (1998). Acta Cryst. C54, 586–588. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Suzuki, H. & Ishiguro, S. (2006). Acta Cryst. E62, m576–m578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Topel, Ö., Persson, I., Lundberg, D. & Ullström, A.-S. (2010). Inorg. Chim. Acta, 363, 988–994. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.