research communications
of (ferrocenylmethyl)dimethylammonium hydrogen oxalate
aLaboratoire des Produits Naturels, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com,
The 5H5)(C8H13N)](HC2O4), consists of discrete (ferrocenylmethyl)dimethylammonium cations and hydrogen oxalate anions. The anions are connected through a strong O—H⋯O hydrogen bond, forming linear chains running parallel to [100]. The cations are linked to the anions through bifurcated N—H⋯(O,O′) hydrogen bonds. Weak C—H⋯π interactions between neighbouring ferrocenyl moieties are also observed.
of the title salt, [Fe(CKeywords: crystal structure; hydrogen oxalate; (ferrocenylmethyl)dimethylammonium; bifurcated hydrogen bond; C—H⋯π interactions.
CCDC reference: 1412152
1. Chemical context
Our group has been working on the interactions between alkylammonium ions with oxalic acid, and we have recently reported the 3C)2NH+·HC2O4−·0.5H2C2O4 (Diallo et al., 2015). Numerous other reports have described crystal structures containing acidic or neutral oxalate molecules interacting with a protonated amine, see for example: Vaidhyanathan et al. (2002); Braga et al. (2013); Said et al. (2006); Hathwar et al. (2010); Matulková et al. (2008); Olenik et al. (2003); Anda et al. (2004). Braga et al. have reported several structures of columnar metallocenium interacting with hydrogen oxalate (Braga et al., 2002). However, none of these structures features the hydrogen oxalate anion alone. It is crystallized either with neutral oxalic acid and/or a water molecule. The of the title salt, [Fe(C5H5)(C8H13N)]+·[HC2O4]−, (I), features only the hydrogen oxalate anion. This compound was obtained when studying the interaction of (ferrocenylmethyl)dimethylamine and oxalic acid in aqueous solution.
of (H2. Structural commentary
The contains one hydrogen oxalate anion and one (ferrocenylmethyl)dimethylammonium cation (Fig. 1). As previously observed in structures featuring this cation (Wang, 2010; Guo, 2006; Guo et al., 2006a,b), the two Cp rings exhibit a nearly eclipsed conformation. They are planar and almost parallel, as demonstrated by the dihedral angle of 0.96 (5)° between their least-square planes. The Fe—C distances range from 2.0394 (10) to 2.0578 (12) Å. The Fe binding with the Cp rings is somewhat asymmetric as suggested by both the Fe⋯Cp plane distances [1.6601 (6) and 1.6514 (6) Å for the unsubstituted and the substituted ligand, respectively], and the Cp1–Fe–Cp2 dihedral angle of 170.96 (3)°. This behaviour was previously described as a consequence of an electron-withdrawal effect of the methyldimethylamine group that results in the less electron-rich substituted ring being slightly closer to the metal (Winter & Wolmershäuser, 1998). The oxalate anion is essentially planar and the dihedral angle between carboxylate and the carboxyl groups is only 4.6 (3)°. The C—OH bond is at 1.3052 (13) significantly longer than the other three C—O bonds with an mean of 1.24 (2) Å.
of (I)3. Supramolecular features
The hydrogen oxalate anions are held together via a strong intermolecular O4—H4A⋯O2 hydrogen bond, resulting in the formation of linear chains running parallel to [100] (Fig. 2). Within a chain, successive hydrogen oxalate anions are rotated by 30.89 (11)°. The cation is linked to the anionic chain through a bifurcated N1—H1⋯(O1,O4) hydrogen bond (Table 1). In addition to Coulomb forces and hydrogen bonds, a weak C—H⋯π interaction involving the centroid Cg2 of the Cp ligand (C6–C10; Table 1) is present and consolidates the three-dimensional supramolecular network.
4. Database survey
A search in the Cambridge Structural database (Version 5.36 with three updates, Groom & Allen, 2014) returned only eight entries for seven independent crystal structures containing the (ferrocenylmethyl)dimethylammonium cation. These include simple salts with Cl− (Winter & Wolmershäuser, 1998) and its hydrated form (Guo et al., 2006a), Br− (Wang, 2010), NO3− (Guo et al., 2006b), sulfate pentahydrate (Guo, 2006), tetrachloridozincate monohydrate (Gibbons & Trotter, 1971) and a benzene solvate with dodecaborane (Yongmao et al., 1983). The investigation of hydrogen-bonded hydrogen oxalate chains returned 119 unique structures of which 32 are characterized by a bifurcated hydrogen bond with an ammonium counter-cation.
5. Synthesis and crystallization
Crystals of the title compound were obtained by slow evaporation of an aqueous solution in which (ferrocenylmethyl)dimethylamine was mixed with oxalic acid in a 1:2 ratio.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference Fourier maps and were freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1412152
https://doi.org/10.1107/S205698901501333X/wm5182sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901501333X/wm5182Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).[Fe(C5H5)(C8H13N)](C2HO4) | Dx = 1.532 Mg m−3 |
Mr = 333.16 | Ga Kα radiation, λ = 1.34139 Å |
Orthorhombic, Pbca | Cell parameters from 9948 reflections |
a = 11.2225 (3) Å | θ = 4.8–60.7° |
b = 14.8991 (4) Å | µ = 5.72 mm−1 |
c = 17.2727 (5) Å | T = 100 K |
V = 2888.08 (14) Å3 | Block, clear light orange |
Z = 8 | 0.15 × 0.13 × 0.09 mm |
F(000) = 1392 |
Bruker Venture Metaljet diffractometer | 3323 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 3150 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.034 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.7°, θmin = 4.5° |
ω and φ scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→19 |
Tmin = 0.585, Tmax = 0.752 | l = −22→22 |
56674 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | All H-atom parameters refined |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0388P)2 + 0.8916P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
3323 reflections | Δρmax = 0.45 e Å−3 |
266 parameters | Δρmin = −0.19 e Å−3 |
0 restraints |
Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.34931 (2) | 0.64806 (2) | 0.49469 (2) | 0.01187 (7) | |
N1 | 0.11135 (8) | 0.53481 (6) | 0.31389 (5) | 0.01286 (17) | |
C1 | 0.22887 (9) | 0.57630 (6) | 0.43156 (6) | 0.01299 (19) | |
C2 | 0.17883 (11) | 0.60032 (8) | 0.50499 (6) | 0.0150 (2) | |
C3 | 0.25259 (10) | 0.56311 (7) | 0.56398 (6) | 0.0164 (2) | |
C4 | 0.34734 (9) | 0.51541 (7) | 0.52776 (7) | 0.0161 (2) | |
C5 | 0.33275 (9) | 0.52304 (7) | 0.44578 (6) | 0.0143 (2) | |
C6 | 0.35605 (10) | 0.77834 (8) | 0.45550 (7) | 0.0199 (2) | |
C7 | 0.35680 (10) | 0.77649 (8) | 0.53827 (7) | 0.0199 (2) | |
C8 | 0.45806 (10) | 0.72650 (7) | 0.56226 (6) | 0.0193 (2) | |
C9 | 0.52010 (11) | 0.69741 (8) | 0.49491 (6) | 0.0193 (2) | |
C10 | 0.45688 (11) | 0.72947 (7) | 0.42883 (6) | 0.0200 (2) | |
C11 | 0.18587 (9) | 0.60523 (7) | 0.35384 (6) | 0.0148 (2) | |
C12 | 0.07459 (11) | 0.56695 (8) | 0.23563 (7) | 0.0209 (2) | |
C13 | 0.00554 (10) | 0.50895 (8) | 0.36082 (7) | 0.0218 (2) | |
O1 | 0.30103 (6) | 0.41777 (5) | 0.27870 (5) | 0.01774 (16) | |
O2 | 0.38177 (7) | 0.28665 (5) | 0.24336 (5) | 0.01896 (17) | |
O3 | 0.15744 (6) | 0.21661 (5) | 0.23000 (5) | 0.01636 (16) | |
O4 | 0.08414 (7) | 0.35313 (5) | 0.25702 (5) | 0.01652 (16) | |
C14 | 0.29562 (9) | 0.33826 (7) | 0.25759 (6) | 0.01189 (19) | |
C15 | 0.16996 (9) | 0.29528 (7) | 0.24647 (6) | 0.01225 (19) | |
H11A | 0.1366 (12) | 0.6592 (9) | 0.3575 (8) | 0.015 (3)* | |
H5 | 0.3823 (13) | 0.4963 (9) | 0.4076 (8) | 0.019 (3)* | |
H9 | 0.5900 (18) | 0.6637 (12) | 0.4949 (8) | 0.029 (4)* | |
H4 | 0.4109 (12) | 0.4842 (9) | 0.5532 (8) | 0.017 (3)* | |
H6 | 0.2957 (14) | 0.8082 (10) | 0.4249 (9) | 0.025 (4)* | |
H1 | 0.1581 (12) | 0.4881 (10) | 0.3079 (9) | 0.024 (4)* | |
H2 | 0.1122 (18) | 0.6365 (12) | 0.5139 (9) | 0.030 (4)* | |
H11B | 0.2507 (12) | 0.6154 (9) | 0.3202 (8) | 0.017 (3)* | |
H8 | 0.4786 (14) | 0.7118 (10) | 0.6155 (9) | 0.029 (4)* | |
H12A | 0.0229 (15) | 0.6170 (11) | 0.2419 (9) | 0.032 (4)* | |
H3 | 0.2436 (14) | 0.5700 (9) | 0.6199 (9) | 0.027 (4)* | |
H13A | −0.0415 (15) | 0.4691 (11) | 0.3319 (9) | 0.034 (4)* | |
H10 | 0.4764 (15) | 0.7189 (10) | 0.3752 (9) | 0.032 (4)* | |
H13B | 0.0345 (15) | 0.4801 (11) | 0.4091 (10) | 0.033 (4)* | |
H7 | 0.2965 (14) | 0.8042 (10) | 0.5702 (9) | 0.028 (4)* | |
H13C | −0.0372 (14) | 0.5622 (10) | 0.3732 (9) | 0.029 (4)* | |
H12B | 0.1486 (14) | 0.5830 (11) | 0.2080 (10) | 0.031 (4)* | |
H12C | 0.0350 (13) | 0.5191 (10) | 0.2088 (8) | 0.021 (3)* | |
H4A | 0.007 (2) | 0.3250 (12) | 0.2542 (11) | 0.049 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01085 (10) | 0.01291 (10) | 0.01184 (10) | −0.00209 (5) | 0.00031 (5) | −0.00109 (5) |
N1 | 0.0108 (4) | 0.0125 (4) | 0.0152 (4) | −0.0001 (3) | −0.0009 (3) | −0.0013 (3) |
C1 | 0.0113 (4) | 0.0122 (4) | 0.0155 (5) | −0.0030 (4) | 0.0000 (4) | −0.0007 (4) |
C2 | 0.0121 (5) | 0.0148 (5) | 0.0182 (5) | −0.0015 (4) | 0.0028 (4) | −0.0012 (4) |
C3 | 0.0174 (5) | 0.0168 (5) | 0.0150 (5) | −0.0041 (4) | 0.0022 (4) | 0.0004 (4) |
C4 | 0.0156 (5) | 0.0150 (5) | 0.0175 (5) | −0.0010 (4) | −0.0016 (4) | 0.0016 (4) |
C5 | 0.0122 (4) | 0.0145 (5) | 0.0160 (5) | −0.0008 (4) | 0.0006 (4) | −0.0025 (4) |
C6 | 0.0229 (6) | 0.0147 (5) | 0.0220 (6) | −0.0039 (4) | −0.0035 (4) | 0.0015 (4) |
C7 | 0.0211 (5) | 0.0164 (5) | 0.0222 (6) | −0.0040 (4) | 0.0007 (4) | −0.0064 (4) |
C8 | 0.0200 (5) | 0.0206 (5) | 0.0173 (5) | −0.0078 (4) | −0.0029 (4) | −0.0012 (4) |
C9 | 0.0131 (5) | 0.0184 (5) | 0.0264 (6) | −0.0052 (4) | 0.0008 (4) | −0.0013 (4) |
C10 | 0.0238 (6) | 0.0191 (5) | 0.0170 (5) | −0.0093 (4) | 0.0039 (4) | −0.0012 (4) |
C11 | 0.0151 (5) | 0.0127 (5) | 0.0167 (5) | −0.0034 (4) | −0.0027 (4) | 0.0002 (4) |
C12 | 0.0258 (6) | 0.0178 (5) | 0.0189 (5) | 0.0016 (4) | −0.0083 (5) | 0.0000 (4) |
C13 | 0.0142 (5) | 0.0258 (6) | 0.0254 (6) | −0.0067 (5) | 0.0060 (4) | −0.0091 (5) |
O1 | 0.0121 (3) | 0.0154 (3) | 0.0257 (4) | −0.0010 (3) | 0.0006 (3) | −0.0054 (3) |
O2 | 0.0099 (3) | 0.0153 (4) | 0.0317 (4) | 0.0007 (3) | 0.0018 (3) | −0.0011 (3) |
O3 | 0.0143 (4) | 0.0129 (3) | 0.0219 (4) | −0.0006 (3) | −0.0025 (3) | −0.0002 (3) |
O4 | 0.0088 (3) | 0.0149 (4) | 0.0258 (4) | 0.0005 (3) | −0.0001 (3) | −0.0020 (3) |
C14 | 0.0099 (4) | 0.0146 (4) | 0.0112 (4) | −0.0006 (4) | −0.0001 (3) | 0.0024 (4) |
C15 | 0.0106 (4) | 0.0142 (4) | 0.0120 (4) | −0.0001 (4) | −0.0008 (3) | 0.0022 (4) |
Fe1—C1 | 2.0394 (10) | C6—C7 | 1.4298 (19) |
Fe1—C2 | 2.0490 (12) | C6—C10 | 1.4223 (17) |
Fe1—C3 | 2.0524 (10) | C6—H6 | 0.967 (16) |
Fe1—C4 | 2.0574 (11) | C7—C8 | 1.4206 (17) |
Fe1—C5 | 2.0538 (11) | C7—H7 | 0.965 (16) |
Fe1—C6 | 2.0570 (12) | C8—C9 | 1.4233 (16) |
Fe1—C7 | 2.0578 (12) | C8—H8 | 0.974 (16) |
Fe1—C8 | 2.0536 (11) | C9—C10 | 1.4263 (16) |
Fe1—C9 | 2.0528 (12) | C9—H9 | 0.93 (2) |
Fe1—C10 | 2.0549 (11) | C10—H10 | 0.965 (16) |
N1—C11 | 1.5087 (12) | C11—H11A | 0.978 (13) |
N1—C12 | 1.4923 (13) | C11—H11B | 0.943 (14) |
N1—C13 | 1.4885 (13) | C12—H12A | 0.951 (17) |
N1—H1 | 0.878 (15) | C12—H12B | 0.987 (17) |
C1—C2 | 1.4324 (14) | C12—H12C | 0.959 (15) |
C1—C5 | 1.4316 (14) | C13—H13A | 0.939 (17) |
C1—C11 | 1.4902 (14) | C13—H13B | 0.992 (17) |
C2—C3 | 1.4251 (15) | C13—H13C | 0.951 (15) |
C2—H2 | 0.935 (19) | O1—C14 | 1.2410 (12) |
C3—C4 | 1.4237 (15) | O2—C14 | 1.2595 (13) |
C3—H3 | 0.976 (15) | O3—C15 | 1.2144 (14) |
C4—C5 | 1.4299 (15) | O4—C15 | 1.3052 (13) |
C4—H4 | 0.958 (14) | O4—H4A | 0.96 (2) |
C5—H5 | 0.950 (15) | C14—C15 | 1.5607 (14) |
C1—Fe1—C2 | 41.02 (4) | C4—C3—H3 | 124.4 (9) |
C1—Fe1—C3 | 68.77 (4) | Fe1—C4—H4 | 125.8 (8) |
C1—Fe1—C4 | 68.76 (4) | C3—C4—Fe1 | 69.54 (6) |
C1—Fe1—C5 | 40.94 (4) | C3—C4—C5 | 108.05 (9) |
C1—Fe1—C6 | 110.06 (4) | C3—C4—H4 | 126.7 (8) |
C1—Fe1—C7 | 135.24 (4) | C5—C4—Fe1 | 69.51 (6) |
C1—Fe1—C8 | 174.93 (4) | C5—C4—H4 | 125.3 (8) |
C1—Fe1—C9 | 143.86 (4) | Fe1—C5—H5 | 127.8 (8) |
C1—Fe1—C10 | 113.75 (4) | C1—C5—Fe1 | 68.99 (6) |
C2—Fe1—C3 | 40.66 (4) | C1—C5—H5 | 126.2 (9) |
C2—Fe1—C4 | 68.43 (4) | C4—C5—Fe1 | 69.78 (6) |
C2—Fe1—C5 | 68.67 (4) | C4—C5—C1 | 107.89 (9) |
C2—Fe1—C6 | 112.98 (5) | C4—C5—H5 | 125.9 (9) |
C2—Fe1—C7 | 109.22 (4) | Fe1—C6—H6 | 126.0 (9) |
C2—Fe1—C8 | 134.68 (4) | C7—C6—Fe1 | 69.70 (6) |
C2—Fe1—C9 | 174.88 (4) | C7—C6—H6 | 124.0 (9) |
C2—Fe1—C10 | 143.28 (5) | C10—C6—Fe1 | 69.68 (6) |
C3—Fe1—C4 | 40.54 (4) | C10—C6—C7 | 108.02 (10) |
C3—Fe1—C5 | 68.45 (4) | C10—C6—H6 | 128.0 (9) |
C3—Fe1—C6 | 142.49 (5) | Fe1—C7—H7 | 125.3 (9) |
C3—Fe1—C7 | 112.44 (5) | C6—C7—Fe1 | 69.64 (6) |
C3—Fe1—C8 | 109.50 (4) | C6—C7—H7 | 124.0 (9) |
C3—Fe1—C9 | 135.53 (5) | C8—C7—Fe1 | 69.63 (6) |
C3—Fe1—C10 | 175.95 (5) | C8—C7—C6 | 107.85 (10) |
C4—Fe1—C7 | 142.38 (5) | C8—C7—H7 | 128.2 (9) |
C5—Fe1—C4 | 40.71 (4) | Fe1—C8—H8 | 123.4 (9) |
C5—Fe1—C6 | 136.37 (5) | C7—C8—Fe1 | 69.95 (6) |
C5—Fe1—C7 | 175.92 (5) | C7—C8—C9 | 108.21 (10) |
C5—Fe1—C10 | 111.15 (4) | C7—C8—H8 | 125.7 (9) |
C6—Fe1—C4 | 176.56 (5) | C9—C8—Fe1 | 69.69 (6) |
C6—Fe1—C7 | 40.67 (5) | C9—C8—H8 | 126.0 (9) |
C8—Fe1—C4 | 113.28 (5) | Fe1—C9—H9 | 126.3 (11) |
C8—Fe1—C5 | 143.48 (5) | C8—C9—Fe1 | 69.75 (6) |
C8—Fe1—C6 | 68.18 (5) | C8—C9—C10 | 107.99 (11) |
C8—Fe1—C7 | 40.43 (5) | C8—C9—H9 | 125.2 (9) |
C8—Fe1—C10 | 68.26 (5) | C10—C9—Fe1 | 69.76 (6) |
C9—Fe1—C4 | 110.71 (5) | C10—C9—H9 | 126.8 (9) |
C9—Fe1—C5 | 114.21 (4) | Fe1—C10—H10 | 124.6 (9) |
C9—Fe1—C6 | 68.18 (5) | C6—C10—Fe1 | 69.84 (6) |
C9—Fe1—C7 | 68.17 (5) | C6—C10—C9 | 107.94 (10) |
C9—Fe1—C8 | 40.56 (4) | C6—C10—H10 | 125.1 (10) |
C9—Fe1—C10 | 40.64 (5) | C9—C10—Fe1 | 69.60 (6) |
C10—Fe1—C4 | 136.64 (5) | C9—C10—H10 | 126.9 (10) |
C10—Fe1—C6 | 40.47 (5) | N1—C11—H11A | 106.7 (8) |
C10—Fe1—C7 | 68.26 (5) | N1—C11—H11B | 104.9 (8) |
C11—N1—H1 | 105.9 (9) | C1—C11—N1 | 112.98 (8) |
C12—N1—C11 | 110.15 (8) | C1—C11—H11A | 111.3 (9) |
C12—N1—H1 | 108.2 (10) | C1—C11—H11B | 110.6 (8) |
C13—N1—C11 | 111.91 (8) | H11A—C11—H11B | 110.1 (11) |
C13—N1—C12 | 110.84 (9) | N1—C12—H12A | 108.5 (9) |
C13—N1—H1 | 109.6 (10) | N1—C12—H12B | 106.5 (10) |
C2—C1—Fe1 | 69.85 (6) | N1—C12—H12C | 109.1 (8) |
C2—C1—C11 | 126.76 (9) | H12A—C12—H12B | 112.3 (14) |
C5—C1—Fe1 | 70.07 (6) | H12A—C12—H12C | 110.8 (13) |
C5—C1—C2 | 107.80 (9) | H12B—C12—H12C | 109.7 (13) |
C5—C1—C11 | 125.35 (9) | N1—C13—H13A | 108.8 (10) |
C11—C1—Fe1 | 123.00 (7) | N1—C13—H13B | 107.9 (10) |
Fe1—C2—H2 | 124.2 (11) | N1—C13—H13C | 108.0 (9) |
C1—C2—Fe1 | 69.13 (6) | H13A—C13—H13B | 111.0 (13) |
C1—C2—H2 | 127.2 (10) | H13A—C13—H13C | 111.3 (13) |
C3—C2—Fe1 | 69.80 (6) | H13B—C13—H13C | 109.7 (12) |
C3—C2—C1 | 107.95 (10) | C15—O4—H4A | 111.6 (11) |
C3—C2—H2 | 124.8 (10) | O1—C14—O2 | 127.06 (10) |
Fe1—C3—H3 | 124.5 (9) | O1—C14—C15 | 118.16 (9) |
C2—C3—Fe1 | 69.54 (6) | O2—C14—C15 | 114.78 (8) |
C2—C3—H3 | 127.3 (9) | O3—C15—O4 | 125.78 (9) |
C4—C3—Fe1 | 69.92 (6) | O3—C15—C14 | 121.97 (9) |
C4—C3—C2 | 108.29 (10) | O4—C15—C14 | 112.25 (8) |
Fe1—C1—C2—C3 | −59.20 (8) | C5—C1—C11—N1 | 83.77 (12) |
Fe1—C1—C5—C4 | 59.14 (7) | C6—C7—C8—Fe1 | −59.36 (7) |
Fe1—C1—C11—N1 | 171.61 (7) | C6—C7—C8—C9 | 0.04 (12) |
Fe1—C2—C3—C4 | −59.38 (7) | C7—C6—C10—Fe1 | 59.37 (7) |
Fe1—C3—C4—C5 | −59.03 (7) | C7—C6—C10—C9 | −0.03 (12) |
Fe1—C4—C5—C1 | −58.64 (7) | C7—C8—C9—Fe1 | −59.56 (8) |
Fe1—C6—C7—C8 | 59.36 (7) | C7—C8—C9—C10 | −0.06 (13) |
Fe1—C6—C10—C9 | −59.40 (8) | C8—C9—C10—Fe1 | −59.50 (8) |
Fe1—C7—C8—C9 | 59.40 (8) | C8—C9—C10—C6 | 0.05 (13) |
Fe1—C8—C9—C10 | 59.50 (8) | C10—C6—C7—Fe1 | −59.36 (7) |
Fe1—C9—C10—C6 | 59.55 (8) | C10—C6—C7—C8 | 0.00 (11) |
C1—C2—C3—Fe1 | 58.79 (8) | C11—C1—C2—Fe1 | −116.75 (10) |
C1—C2—C3—C4 | −0.59 (13) | C11—C1—C2—C3 | −175.95 (9) |
C2—C1—C5—Fe1 | −59.91 (7) | C11—C1—C5—Fe1 | 116.95 (10) |
C2—C1—C5—C4 | −0.78 (11) | C11—C1—C5—C4 | 176.08 (9) |
C2—C1—C11—N1 | −99.97 (12) | C12—N1—C11—C1 | −178.23 (9) |
C2—C3—C4—Fe1 | 59.15 (8) | C13—N1—C11—C1 | 57.99 (12) |
C2—C3—C4—C5 | 0.11 (12) | O1—C14—C15—O3 | −175.95 (10) |
C3—C4—C5—Fe1 | 59.05 (7) | O1—C14—C15—O4 | 3.94 (13) |
C3—C4—C5—C1 | 0.41 (11) | O2—C14—C15—O3 | 4.30 (14) |
C5—C1—C2—Fe1 | 60.05 (7) | O2—C14—C15—O4 | −175.81 (9) |
C5—C1—C2—C3 | 0.85 (12) |
Cg2 is the centroid of the Cp ligand C6–C10. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.878 (15) | 1.981 (15) | 2.8180 (11) | 158.9 (14) |
N1—H1···O4 | 0.878 (15) | 2.346 (15) | 2.8958 (11) | 120.8 (11) |
C11—H11B···O3i | 0.943 (14) | 2.401 (14) | 3.2282 (13) | 146.3 (11) |
C12—H12A···O3ii | 0.951 (17) | 2.556 (17) | 3.4792 (14) | 163.8 (13) |
C13—H13A···O4 | 0.939 (17) | 2.578 (16) | 3.0631 (14) | 112.5 (12) |
O4—H4A···O2iii | 0.96 (2) | 1.52 (2) | 2.4776 (11) | 174.1 (18) |
C2—H2···Cg2iv | 0.935 (19) | 2.743 (19) | 3.6564 (13) | 165.8 (13) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x, y+1/2, −z+1/2; (iii) x−1/2, y, −z+1/2; (iv) x−1/2, −y+3/2, −z+1. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and Université de Montréal for financial support.
References
Anda, C., Llobet, A., Martell, A. E., Reibenspies, J., Berni, E. & Solans, X. (2004). Inorg. Chem. 43, 2793–2802. Web of Science CSD CrossRef PubMed CAS Google Scholar
Braga, D., Chelazzi, L., Ciabatti, L. & Grepioni, F. (2013). New J. Chem. 37, 97–104. Web of Science CSD CrossRef CAS Google Scholar
Braga, D., Eckert, M., Fraccastoro, M., Maini, L., Grepioni, F., Caneschi, A. & Sessoli, R. (2002). New J. Chem. 26, 1280–1286. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Diallo, W., Gueye, N., Crochet, A., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 473–475. CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gibbons, C. S. & Trotter, J. (1971). J. Chem. Soc. A, pp. 2659–2662. CSD CrossRef Web of Science Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Guo, H.-X. (2006). Acta Cryst. C62, m504–m506. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Guo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006a). Acta Cryst. E62, m1338–m1339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006b). Acta Cryst. E62, m1770–m1772. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Pal, R. & Guru Row, T. N. (2010). Cryst. Growth Des. 10, 3306–3310. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46–60. Google Scholar
Olenik, B., Smolka, T., Boese, R. & Sustmann, R. (2003). Cryst. Growth Des. 3, 183–188. Web of Science CSD CrossRef CAS Google Scholar
Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133. Web of Science CSD CrossRef CAS Google Scholar
Wang, B. (2010). Acta Cryst. E66, m686. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201–218. Web of Science CSD CrossRef CAS Google Scholar
Yongmao, Z., Zhaoping, C., Zhiwei, C., Kezhen, P., Guomin, Z., Zhaogui, Z. & Huaxue, Z. (1983). Chin. J. Struct. Chem. 2, 201–204. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.