research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (ferrocenylmeth­yl)di­methyl­ammonium hydrogen oxalate

aLaboratoire des Produits Naturels, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com,

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 July 2015; accepted 11 July 2015; online 17 July 2015)

The crystal structure of the title salt, [Fe(C5H5)(C8H13N)](HC2O4), consists of discrete (ferrocenylmeth­yl)di­methyl­ammonium cations and hydrogen oxalate anions. The anions are connected through a strong O—H⋯O hydrogen bond, forming linear chains running parallel to [100]. The cations are linked to the anions through bifurcated N—H⋯(O,O′) hydrogen bonds. Weak C—H⋯π inter­actions between neighbouring ferrocenyl moieties are also observed.

1. Chemical context

Our group has been working on the inter­actions between alkyl­ammonium ions with oxalic acid, and we have recently reported the crystal structure of (H3C)2NH+·HC2O4·0.5H2C2O4 (Diallo et al., 2015[Diallo, W., Gueye, N., Crochet, A., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 473-475.]). Numerous other reports have described crystal structures containing acidic or neutral oxalate mol­ecules inter­acting with a protonated amine, see for example: Vaidhyanathan et al. (2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123-133.]); Braga et al. (2013[Braga, D., Chelazzi, L., Ciabatti, L. & Grepioni, F. (2013). New J. Chem. 37, 97-104.]); Said et al. (2006[Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848-1857.]); Hathwar et al. (2010[Hathwar, V. R., Pal, R. & Guru Row, T. N. (2010). Cryst. Growth Des. 10, 3306-3310.]); Matulková et al. (2008[Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46-60.]); Olenik et al. (2003[Olenik, B., Smolka, T., Boese, R. & Sustmann, R. (2003). Cryst. Growth Des. 3, 183-188.]); Anda et al. (2004[Anda, C., Llobet, A., Martell, A. E., Reibenspies, J., Berni, E. & Solans, X. (2004). Inorg. Chem. 43, 2793-2802.]). Braga et al. have reported several structures of columnar metallocenium sandwich compounds inter­acting with hydrogen oxalate (Braga et al., 2002[Braga, D., Eckert, M., Fraccastoro, M., Maini, L., Grepioni, F., Caneschi, A. & Sessoli, R. (2002). New J. Chem. 26, 1280-1286.]). However, none of these structures features the hydrogen oxalate anion alone. It is crystallized either with neutral oxalic acid and/or a water mol­ecule. The crystal structure of the title salt, [Fe(C5H5)(C8H13N)]+·[HC2O4], (I)[link], features only the hydrogen oxalate anion. This compound was obtained when studying the inter­action of (ferrocenylmeth­yl)di­methyl­amine and oxalic acid in aqueous solution.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] contains one hydrogen oxalate anion and one (ferrocenylmeth­yl)di­methyl­ammonium cation (Fig. 1[link]). As previously observed in structures featuring this cation (Wang, 2010[Wang, B. (2010). Acta Cryst. E66, m686.]; Guo, 2006[Guo, H.-X. (2006). Acta Cryst. C62, m504-m506.]; Guo et al., 2006a[Guo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006a). Acta Cryst. E62, m1338-m1339.],b[Guo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006b). Acta Cryst. E62, m1770-m1772.]), the two Cp rings exhibit a nearly eclipsed conformation. They are planar and almost parallel, as demonstrated by the dihedral angle of 0.96 (5)° between their least-square planes. The Fe—C distances range from 2.0394 (10) to 2.0578 (12) Å. The Fe binding with the Cp rings is somewhat asymmetric as suggested by both the Fe⋯Cp plane distances [1.6601 (6) and 1.6514 (6) Å for the unsubstituted and the substituted ligand, respectively], and the Cp1–Fe–Cp2 dihedral angle of 170.96 (3)°. This behaviour was previously described as a consequence of an electron-withdrawal effect of the methyl­dimethyl­amine group that results in the less electron-rich substituted ring being slightly closer to the metal (Winter & Wolmershäuser, 1998[Winter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201-218.]). The oxalate anion is essentially planar and the dihedral angle between carboxyl­ate and the carboxyl groups is only 4.6 (3)°. The C—OH bond is at 1.3052 (13) significantly longer than the other three C—O bonds with an mean of 1.24 (2) Å.

[Figure 1]
Figure 1
The mol­ecular components in the structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. Fe–Cp inter­actions and hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

The hydrogen oxalate anions are held together via a strong inter­molecular O4—H4A⋯O2 hydrogen bond, resulting in the formation of linear chains running parallel to [100] (Fig. 2[link]). Within a chain, successive hydrogen oxalate anions are rotated by 30.89 (11)°. The cation is linked to the anionic chain through a bifurcated N1—H1⋯(O1,O4) hydrogen bond (Table 1[link]). In addition to Coulomb forces and hydrogen bonds, a weak C—H⋯π inter­action involving the centroid Cg2 of the Cp ligand (C6–C10; Table 1[link]) is present and consolidates the three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the Cp ligand C6–C10.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.878 (15) 1.981 (15) 2.8180 (11) 158.9 (14)
N1—H1⋯O4 0.878 (15) 2.346 (15) 2.8958 (11) 120.8 (11)
O4—H4A⋯O2i 0.96 (2) 1.52 (2) 2.4776 (11) 174.1 (18)
C2—H2⋯Cg2ii 0.935 (19) 2.743 (19) 3.6564 (13) 165.8 (13)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
Partial packing diagram in the structure of the title compound viewed along [001]. The chains running along [100] as defined by the hydrogen-bonded hydrogen oxalate anions and the (ferrocenylmeth­yl)di­methyl­ammonium cations linked by a bifurcated hydrogen bond are shown. Hydrogen bonds are shown as black lines.

4. Database survey

A search in the Cambridge Structural database (Version 5.36 with three updates, Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned only eight entries for seven independent crystal structures containing the (ferrocenylmeth­yl)di­methyl­ammonium cation. These include simple salts with Cl (Winter & Wolmershäuser, 1998[Winter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201-218.]) and its hydrated form (Guo et al., 2006a[Guo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006a). Acta Cryst. E62, m1338-m1339.]), Br (Wang, 2010[Wang, B. (2010). Acta Cryst. E66, m686.]), NO3 (Guo et al., 2006b[Guo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006b). Acta Cryst. E62, m1770-m1772.]), sulfate penta­hydrate (Guo, 2006[Guo, H.-X. (2006). Acta Cryst. C62, m504-m506.]), tetra­chlorido­zincate monohydrate (Gibbons & Trotter, 1971[Gibbons, C. S. & Trotter, J. (1971). J. Chem. Soc. A, pp. 2659-2662.]) and a benzene solvate with dodeca­borane (Yongmao et al., 1983[Yongmao, Z., Zhaoping, C., Zhiwei, C., Kezhen, P., Guomin, Z., Zhaogui, Z. & Huaxue, Z. (1983). Chin. J. Struct. Chem. 2, 201-204.]). The investigation of hydrogen-bonded hydrogen oxalate chains returned 119 unique structures of which 32 are characterized by a bifurcated hydrogen bond with an ammonium counter-cation.

5. Synthesis and crystallization

Crystals of the title compound were obtained by slow evaporation of an aqueous solution in which (ferrocenylmeth­yl)di­methyl­amine was mixed with oxalic acid in a 1:2 ratio.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference Fourier maps and were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C8H13N)](C2HO4)
Mr 333.16
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 11.2225 (3), 14.8991 (4), 17.2727 (5)
V3) 2888.08 (14)
Z 8
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 5.72
Crystal size (mm) 0.15 × 0.13 × 0.09
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.585, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 56674, 3323, 3150
Rint 0.034
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.062, 1.03
No. of reflections 3323
No. of parameters 266
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.45, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

(Ferrocenylmethyl)dimethylammonium hydrogen oxalate top
Crystal data top
[Fe(C5H5)(C8H13N)](C2HO4)Dx = 1.532 Mg m3
Mr = 333.16Ga Kα radiation, λ = 1.34139 Å
Orthorhombic, PbcaCell parameters from 9948 reflections
a = 11.2225 (3) Åθ = 4.8–60.7°
b = 14.8991 (4) ŵ = 5.72 mm1
c = 17.2727 (5) ÅT = 100 K
V = 2888.08 (14) Å3Block, clear light orange
Z = 80.15 × 0.13 × 0.09 mm
F(000) = 1392
Data collection top
Bruker Venture Metaljet
diffractometer
3323 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source3150 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.034
Detector resolution: 10.24 pixels mm-1θmax = 60.7°, θmin = 4.5°
ω and φ scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1719
Tmin = 0.585, Tmax = 0.752l = 2222
56674 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.8916P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
3323 reflectionsΔρmax = 0.45 e Å3
266 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.34931 (2)0.64806 (2)0.49469 (2)0.01187 (7)
N10.11135 (8)0.53481 (6)0.31389 (5)0.01286 (17)
C10.22887 (9)0.57630 (6)0.43156 (6)0.01299 (19)
C20.17883 (11)0.60032 (8)0.50499 (6)0.0150 (2)
C30.25259 (10)0.56311 (7)0.56398 (6)0.0164 (2)
C40.34734 (9)0.51541 (7)0.52776 (7)0.0161 (2)
C50.33275 (9)0.52304 (7)0.44578 (6)0.0143 (2)
C60.35605 (10)0.77834 (8)0.45550 (7)0.0199 (2)
C70.35680 (10)0.77649 (8)0.53827 (7)0.0199 (2)
C80.45806 (10)0.72650 (7)0.56226 (6)0.0193 (2)
C90.52010 (11)0.69741 (8)0.49491 (6)0.0193 (2)
C100.45688 (11)0.72947 (7)0.42883 (6)0.0200 (2)
C110.18587 (9)0.60523 (7)0.35384 (6)0.0148 (2)
C120.07459 (11)0.56695 (8)0.23563 (7)0.0209 (2)
C130.00554 (10)0.50895 (8)0.36082 (7)0.0218 (2)
O10.30103 (6)0.41777 (5)0.27870 (5)0.01774 (16)
O20.38177 (7)0.28665 (5)0.24336 (5)0.01896 (17)
O30.15744 (6)0.21661 (5)0.23000 (5)0.01636 (16)
O40.08414 (7)0.35313 (5)0.25702 (5)0.01652 (16)
C140.29562 (9)0.33826 (7)0.25759 (6)0.01189 (19)
C150.16996 (9)0.29528 (7)0.24647 (6)0.01225 (19)
H11A0.1366 (12)0.6592 (9)0.3575 (8)0.015 (3)*
H50.3823 (13)0.4963 (9)0.4076 (8)0.019 (3)*
H90.5900 (18)0.6637 (12)0.4949 (8)0.029 (4)*
H40.4109 (12)0.4842 (9)0.5532 (8)0.017 (3)*
H60.2957 (14)0.8082 (10)0.4249 (9)0.025 (4)*
H10.1581 (12)0.4881 (10)0.3079 (9)0.024 (4)*
H20.1122 (18)0.6365 (12)0.5139 (9)0.030 (4)*
H11B0.2507 (12)0.6154 (9)0.3202 (8)0.017 (3)*
H80.4786 (14)0.7118 (10)0.6155 (9)0.029 (4)*
H12A0.0229 (15)0.6170 (11)0.2419 (9)0.032 (4)*
H30.2436 (14)0.5700 (9)0.6199 (9)0.027 (4)*
H13A0.0415 (15)0.4691 (11)0.3319 (9)0.034 (4)*
H100.4764 (15)0.7189 (10)0.3752 (9)0.032 (4)*
H13B0.0345 (15)0.4801 (11)0.4091 (10)0.033 (4)*
H70.2965 (14)0.8042 (10)0.5702 (9)0.028 (4)*
H13C0.0372 (14)0.5622 (10)0.3732 (9)0.029 (4)*
H12B0.1486 (14)0.5830 (11)0.2080 (10)0.031 (4)*
H12C0.0350 (13)0.5191 (10)0.2088 (8)0.021 (3)*
H4A0.007 (2)0.3250 (12)0.2542 (11)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01085 (10)0.01291 (10)0.01184 (10)0.00209 (5)0.00031 (5)0.00109 (5)
N10.0108 (4)0.0125 (4)0.0152 (4)0.0001 (3)0.0009 (3)0.0013 (3)
C10.0113 (4)0.0122 (4)0.0155 (5)0.0030 (4)0.0000 (4)0.0007 (4)
C20.0121 (5)0.0148 (5)0.0182 (5)0.0015 (4)0.0028 (4)0.0012 (4)
C30.0174 (5)0.0168 (5)0.0150 (5)0.0041 (4)0.0022 (4)0.0004 (4)
C40.0156 (5)0.0150 (5)0.0175 (5)0.0010 (4)0.0016 (4)0.0016 (4)
C50.0122 (4)0.0145 (5)0.0160 (5)0.0008 (4)0.0006 (4)0.0025 (4)
C60.0229 (6)0.0147 (5)0.0220 (6)0.0039 (4)0.0035 (4)0.0015 (4)
C70.0211 (5)0.0164 (5)0.0222 (6)0.0040 (4)0.0007 (4)0.0064 (4)
C80.0200 (5)0.0206 (5)0.0173 (5)0.0078 (4)0.0029 (4)0.0012 (4)
C90.0131 (5)0.0184 (5)0.0264 (6)0.0052 (4)0.0008 (4)0.0013 (4)
C100.0238 (6)0.0191 (5)0.0170 (5)0.0093 (4)0.0039 (4)0.0012 (4)
C110.0151 (5)0.0127 (5)0.0167 (5)0.0034 (4)0.0027 (4)0.0002 (4)
C120.0258 (6)0.0178 (5)0.0189 (5)0.0016 (4)0.0083 (5)0.0000 (4)
C130.0142 (5)0.0258 (6)0.0254 (6)0.0067 (5)0.0060 (4)0.0091 (5)
O10.0121 (3)0.0154 (3)0.0257 (4)0.0010 (3)0.0006 (3)0.0054 (3)
O20.0099 (3)0.0153 (4)0.0317 (4)0.0007 (3)0.0018 (3)0.0011 (3)
O30.0143 (4)0.0129 (3)0.0219 (4)0.0006 (3)0.0025 (3)0.0002 (3)
O40.0088 (3)0.0149 (4)0.0258 (4)0.0005 (3)0.0001 (3)0.0020 (3)
C140.0099 (4)0.0146 (4)0.0112 (4)0.0006 (4)0.0001 (3)0.0024 (4)
C150.0106 (4)0.0142 (4)0.0120 (4)0.0001 (4)0.0008 (3)0.0022 (4)
Geometric parameters (Å, º) top
Fe1—C12.0394 (10)C6—C71.4298 (19)
Fe1—C22.0490 (12)C6—C101.4223 (17)
Fe1—C32.0524 (10)C6—H60.967 (16)
Fe1—C42.0574 (11)C7—C81.4206 (17)
Fe1—C52.0538 (11)C7—H70.965 (16)
Fe1—C62.0570 (12)C8—C91.4233 (16)
Fe1—C72.0578 (12)C8—H80.974 (16)
Fe1—C82.0536 (11)C9—C101.4263 (16)
Fe1—C92.0528 (12)C9—H90.93 (2)
Fe1—C102.0549 (11)C10—H100.965 (16)
N1—C111.5087 (12)C11—H11A0.978 (13)
N1—C121.4923 (13)C11—H11B0.943 (14)
N1—C131.4885 (13)C12—H12A0.951 (17)
N1—H10.878 (15)C12—H12B0.987 (17)
C1—C21.4324 (14)C12—H12C0.959 (15)
C1—C51.4316 (14)C13—H13A0.939 (17)
C1—C111.4902 (14)C13—H13B0.992 (17)
C2—C31.4251 (15)C13—H13C0.951 (15)
C2—H20.935 (19)O1—C141.2410 (12)
C3—C41.4237 (15)O2—C141.2595 (13)
C3—H30.976 (15)O3—C151.2144 (14)
C4—C51.4299 (15)O4—C151.3052 (13)
C4—H40.958 (14)O4—H4A0.96 (2)
C5—H50.950 (15)C14—C151.5607 (14)
C1—Fe1—C241.02 (4)C4—C3—H3124.4 (9)
C1—Fe1—C368.77 (4)Fe1—C4—H4125.8 (8)
C1—Fe1—C468.76 (4)C3—C4—Fe169.54 (6)
C1—Fe1—C540.94 (4)C3—C4—C5108.05 (9)
C1—Fe1—C6110.06 (4)C3—C4—H4126.7 (8)
C1—Fe1—C7135.24 (4)C5—C4—Fe169.51 (6)
C1—Fe1—C8174.93 (4)C5—C4—H4125.3 (8)
C1—Fe1—C9143.86 (4)Fe1—C5—H5127.8 (8)
C1—Fe1—C10113.75 (4)C1—C5—Fe168.99 (6)
C2—Fe1—C340.66 (4)C1—C5—H5126.2 (9)
C2—Fe1—C468.43 (4)C4—C5—Fe169.78 (6)
C2—Fe1—C568.67 (4)C4—C5—C1107.89 (9)
C2—Fe1—C6112.98 (5)C4—C5—H5125.9 (9)
C2—Fe1—C7109.22 (4)Fe1—C6—H6126.0 (9)
C2—Fe1—C8134.68 (4)C7—C6—Fe169.70 (6)
C2—Fe1—C9174.88 (4)C7—C6—H6124.0 (9)
C2—Fe1—C10143.28 (5)C10—C6—Fe169.68 (6)
C3—Fe1—C440.54 (4)C10—C6—C7108.02 (10)
C3—Fe1—C568.45 (4)C10—C6—H6128.0 (9)
C3—Fe1—C6142.49 (5)Fe1—C7—H7125.3 (9)
C3—Fe1—C7112.44 (5)C6—C7—Fe169.64 (6)
C3—Fe1—C8109.50 (4)C6—C7—H7124.0 (9)
C3—Fe1—C9135.53 (5)C8—C7—Fe169.63 (6)
C3—Fe1—C10175.95 (5)C8—C7—C6107.85 (10)
C4—Fe1—C7142.38 (5)C8—C7—H7128.2 (9)
C5—Fe1—C440.71 (4)Fe1—C8—H8123.4 (9)
C5—Fe1—C6136.37 (5)C7—C8—Fe169.95 (6)
C5—Fe1—C7175.92 (5)C7—C8—C9108.21 (10)
C5—Fe1—C10111.15 (4)C7—C8—H8125.7 (9)
C6—Fe1—C4176.56 (5)C9—C8—Fe169.69 (6)
C6—Fe1—C740.67 (5)C9—C8—H8126.0 (9)
C8—Fe1—C4113.28 (5)Fe1—C9—H9126.3 (11)
C8—Fe1—C5143.48 (5)C8—C9—Fe169.75 (6)
C8—Fe1—C668.18 (5)C8—C9—C10107.99 (11)
C8—Fe1—C740.43 (5)C8—C9—H9125.2 (9)
C8—Fe1—C1068.26 (5)C10—C9—Fe169.76 (6)
C9—Fe1—C4110.71 (5)C10—C9—H9126.8 (9)
C9—Fe1—C5114.21 (4)Fe1—C10—H10124.6 (9)
C9—Fe1—C668.18 (5)C6—C10—Fe169.84 (6)
C9—Fe1—C768.17 (5)C6—C10—C9107.94 (10)
C9—Fe1—C840.56 (4)C6—C10—H10125.1 (10)
C9—Fe1—C1040.64 (5)C9—C10—Fe169.60 (6)
C10—Fe1—C4136.64 (5)C9—C10—H10126.9 (10)
C10—Fe1—C640.47 (5)N1—C11—H11A106.7 (8)
C10—Fe1—C768.26 (5)N1—C11—H11B104.9 (8)
C11—N1—H1105.9 (9)C1—C11—N1112.98 (8)
C12—N1—C11110.15 (8)C1—C11—H11A111.3 (9)
C12—N1—H1108.2 (10)C1—C11—H11B110.6 (8)
C13—N1—C11111.91 (8)H11A—C11—H11B110.1 (11)
C13—N1—C12110.84 (9)N1—C12—H12A108.5 (9)
C13—N1—H1109.6 (10)N1—C12—H12B106.5 (10)
C2—C1—Fe169.85 (6)N1—C12—H12C109.1 (8)
C2—C1—C11126.76 (9)H12A—C12—H12B112.3 (14)
C5—C1—Fe170.07 (6)H12A—C12—H12C110.8 (13)
C5—C1—C2107.80 (9)H12B—C12—H12C109.7 (13)
C5—C1—C11125.35 (9)N1—C13—H13A108.8 (10)
C11—C1—Fe1123.00 (7)N1—C13—H13B107.9 (10)
Fe1—C2—H2124.2 (11)N1—C13—H13C108.0 (9)
C1—C2—Fe169.13 (6)H13A—C13—H13B111.0 (13)
C1—C2—H2127.2 (10)H13A—C13—H13C111.3 (13)
C3—C2—Fe169.80 (6)H13B—C13—H13C109.7 (12)
C3—C2—C1107.95 (10)C15—O4—H4A111.6 (11)
C3—C2—H2124.8 (10)O1—C14—O2127.06 (10)
Fe1—C3—H3124.5 (9)O1—C14—C15118.16 (9)
C2—C3—Fe169.54 (6)O2—C14—C15114.78 (8)
C2—C3—H3127.3 (9)O3—C15—O4125.78 (9)
C4—C3—Fe169.92 (6)O3—C15—C14121.97 (9)
C4—C3—C2108.29 (10)O4—C15—C14112.25 (8)
Fe1—C1—C2—C359.20 (8)C5—C1—C11—N183.77 (12)
Fe1—C1—C5—C459.14 (7)C6—C7—C8—Fe159.36 (7)
Fe1—C1—C11—N1171.61 (7)C6—C7—C8—C90.04 (12)
Fe1—C2—C3—C459.38 (7)C7—C6—C10—Fe159.37 (7)
Fe1—C3—C4—C559.03 (7)C7—C6—C10—C90.03 (12)
Fe1—C4—C5—C158.64 (7)C7—C8—C9—Fe159.56 (8)
Fe1—C6—C7—C859.36 (7)C7—C8—C9—C100.06 (13)
Fe1—C6—C10—C959.40 (8)C8—C9—C10—Fe159.50 (8)
Fe1—C7—C8—C959.40 (8)C8—C9—C10—C60.05 (13)
Fe1—C8—C9—C1059.50 (8)C10—C6—C7—Fe159.36 (7)
Fe1—C9—C10—C659.55 (8)C10—C6—C7—C80.00 (11)
C1—C2—C3—Fe158.79 (8)C11—C1—C2—Fe1116.75 (10)
C1—C2—C3—C40.59 (13)C11—C1—C2—C3175.95 (9)
C2—C1—C5—Fe159.91 (7)C11—C1—C5—Fe1116.95 (10)
C2—C1—C5—C40.78 (11)C11—C1—C5—C4176.08 (9)
C2—C1—C11—N199.97 (12)C12—N1—C11—C1178.23 (9)
C2—C3—C4—Fe159.15 (8)C13—N1—C11—C157.99 (12)
C2—C3—C4—C50.11 (12)O1—C14—C15—O3175.95 (10)
C3—C4—C5—Fe159.05 (7)O1—C14—C15—O43.94 (13)
C3—C4—C5—C10.41 (11)O2—C14—C15—O34.30 (14)
C5—C1—C2—Fe160.05 (7)O2—C14—C15—O4175.81 (9)
C5—C1—C2—C30.85 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the Cp ligand C6–C10.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.878 (15)1.981 (15)2.8180 (11)158.9 (14)
N1—H1···O40.878 (15)2.346 (15)2.8958 (11)120.8 (11)
C11—H11B···O3i0.943 (14)2.401 (14)3.2282 (13)146.3 (11)
C12—H12A···O3ii0.951 (17)2.556 (17)3.4792 (14)163.8 (13)
C13—H13A···O40.939 (17)2.578 (16)3.0631 (14)112.5 (12)
O4—H4A···O2iii0.96 (2)1.52 (2)2.4776 (11)174.1 (18)
C2—H2···Cg2iv0.935 (19)2.743 (19)3.6564 (13)165.8 (13)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z+1/2; (iii) x1/2, y, z+1/2; (iv) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and Université de Montréal for financial support.

References

First citationAnda, C., Llobet, A., Martell, A. E., Reibenspies, J., Berni, E. & Solans, X. (2004). Inorg. Chem. 43, 2793–2802.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBraga, D., Chelazzi, L., Ciabatti, L. & Grepioni, F. (2013). New J. Chem. 37, 97–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Eckert, M., Fraccastoro, M., Maini, L., Grepioni, F., Caneschi, A. & Sessoli, R. (2002). New J. Chem. 26, 1280–1286.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiallo, W., Gueye, N., Crochet, A., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 473–475.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGibbons, C. S. & Trotter, J. (1971). J. Chem. Soc. A, pp. 2659–2662.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, H.-X. (2006). Acta Cryst. C62, m504–m506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006a). Acta Cryst. E62, m1338–m1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006b). Acta Cryst. E62, m1770–m1772.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Pal, R. & Guru Row, T. N. (2010). Cryst. Growth Des. 10, 3306–3310.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46–60.  Google Scholar
First citationOlenik, B., Smolka, T., Boese, R. & Sustmann, R. (2003). Cryst. Growth Des. 3, 183–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaid, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, B. (2010). Acta Cryst. E66, m686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationYongmao, Z., Zhaoping, C., Zhiwei, C., Kezhen, P., Guomin, Z., Zhaogui, Z. & Huaxue, Z. (1983). Chin. J. Struct. Chem. 2, 201–204.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds