research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-hydroxido-κ4O:O-bis­[bis­(acetyl­acetonato-κ2O,O′)cobalt(III)]

aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Correspondence e-mail: jbertke@illinois.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 July 2015; accepted 17 July 2015; online 29 July 2015)

The dinuclear title complex, [Co2(C5H7O2)4(μ-OH)2] or [Co(acac)2(μ-OH)]2, where acac is acetyl­acetonate, is centrosymmetric with half of the mol­ecule per asymmetric unit. The mol­ecular structure is a dimer of octa­hedrally coordinated CoIII atoms with four O atoms from two chelating acac ligands and two O atoms from bridging hydroxide ligands. The crystal packing features weak C—H⋯O inter­actions between neighboring mol­ecules, leading to the formation of chains normal to the ac plane. The hydroxide H atoms are not involved in hydrogen bonding because of the bulky acac ligands. This is the first crystal structure reported of a dimeric transition metal bis-acac complex with OH as the bridging group.

1. Chemical context

Well-defined cobalt(III) hydroxide complexes are relatively rare, especially in the absence of amine ligands (Bryndza & Tam, 1988[Bryndza, H. E. & Tam, W. (1988). Chem. Rev. 88, 1163-1188.]). One of the earliest examples is [Co(acac)2(μ-OH)]2 (acac is acetyl­acetonate, C5H7O2), (I)[link], which was prepared by oxidation of Co(II)(acac)2 with hydrogen peroxide. The complex reacts with 2,4-penta­nedione to form CoIII(acac)3 and may serve as a useful model for hydration and oxidation catalysts (Masłowska & Baranovski, 1978[Masłowska, J. & Baranovski, J. B. (1978). J. Mol. Struct. 47, 405-416.]; Bergquist et al., 2003[Bergquist, C., Fillebeen, T., Morlok, M. M. & Parkin, G. (2003). J. Am. Chem. Soc. 125, 6189-6199.]; Zinn et al., 2007[Zinn, P. J., Sorrell, T. N., Powell, D. R., Day, V. W. & Borovik, A. S. (2007). Inorg. Chem. 46, 10120-10132.]; Wang et al., 2009[Wang, J., Morra, N. A., Zhao, H., Gorman, J. S. T., Lynch, V., McDonald, R., Reichwein, J. F. & Pagenkopf, B. L. (2009). Can. J. Chem. 87, 328-334.]) Boucher and Herrington characterized the complex according to IR and 1H NMR spectra (Boucher & Herrington, 1971[Boucher, L. J. & Herrington, D. R. (1971). J. Inorg. Nucl. Chem. 33, 4349-4351.]). These data indicated a single diastereoisomer, the identity of which was not clear from the spectra. We now report its crystal structure, confirming that it is centrosymmetric.

[Scheme 1]

2. Structural commentary

The structure of (I)[link] contains one crystallographically independent CoIII atom with an approximately octa­hedral coord­in­ation environment. The coordination sphere of Co1 is filled by the oxygen atoms of two κ2-O,O′ acac ligands [Co1—O2 = 1.8830 (16) Å, Co1—O3 = 1.8770 (16) Å, Co1—O4 = 1.8814 (16) Å, Co1—O5 = 1.8820 (17) Å) and two μ2-hydroxyl groups [Co1—O1 = 1.9131 (16) Å, Co1—O1i = 1.9087 (17) Å; symmetry code: (i) −x, −y+2, −z+1]. The angles around Co1 are distorted slightly from the ideal 90° and 180° of a perfect octa­hedron. The cis angles range from 82.07 (7) to 95.92 (7)° while the trans angles range from 173.53 (7) to 178.37 (6)°.

The mol­ecular structure of (I)[link] contains a [Co2(μ2-OH)2] motif with each metal coordinated by two acac ligands in a κ2-O,O′ mode (Fig. 1[link]). The two halves of the dimer are related via inversion symmetry. The Co1⋯Co1i distance is 2.8829 (7) Å. This distance falls within the range (2.696–3.355 Å) of all Co⋯Co distances reported in the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for OH-bridged Co complexes in which the metals are coordinated by six oxygen atoms. It is well below the average Co⋯Co distance of 3.108 Å.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 35% probability for non-H atoms and spheres of arbitrary size for H atoms. The unlabeled atoms are related by the symmetry operator (−x, −y + 2, −z + 1).

3. Supra­molecular features

There are no significant supra­molecular features to discuss with the extended structure of (I)[link]. There are weak C—H⋯O inter­molecular inter­actions (Table 1[link]) between one methyl group of an acac ligand and the hydroxide oxygen atom. These inter­actions result in the formation of chains normal to the ac plane (Fig. 2[link]). It should be noted that the hydroxyl H atom does not participate in hydrogen bonding. Examination of the packing diagram shows that the bulky acac ligands prevent any hydrogen-bonding inter­actions with neighboring mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.98 2.42 3.395 (3) 174
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal structure of (I)[link], showing extended chains normal to the ac plane. The weak C—H⋯O inter­actions are shown as red dashed lines. All H atoms except the hydroxide H atom (H1) and the inter­acting H atoms (H1B) have been omitted for clarity. Color code: blue = Co, red = O, gray = C, green = H.

4. Database survey

One closely related crystal structure, [Co(L)2(μ-OH)]2; L = 1-(di­benzyl­amino)-5,5-dimethyl-1,4-dioxohex-2-en-2-olate, has been reported previously (Wang et al., 2009[Wang, J., Morra, N. A., Zhao, H., Gorman, J. S. T., Lynch, V., McDonald, R., Reichwein, J. F. & Pagenkopf, B. L. (2009). Can. J. Chem. 87, 328-334.]). The ligand in this complex is a modified acac with a tert-butyl group in place of one methyl and a {CON(CH2Ph)2} group in place of the other methyl group. The coordination environment of the CoIII atoms is the same as in (I)[link]. The average Co—OL distance of 1.890 Å is similar to the average Co—Oacac distance in (I)[link] of 1.881 Å. The average Co—OH distance of 1.907 Å is also comparable to that of (I)[link] (1.911 Å).

A search of the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned 13 dimeric complexes with the general formula [TM(acac)2(μ-X)]2; TM = transition metal, and X = O, OR, NO, or S (Bottomley et al., 1982[Bottomley, F., White, P. S. & Mukaida, M. (1982). Acta Cryst. B38, 2674-2676.]; Nakahanada et al., 1992[Nakahanada, M., Fujihara, T., Fuyuhiro, A. & Kaizaki, S. (1992). Inorg. Chem. 31, 1315-1316.]; Smith et al., 1972[Smith, D., Caughlan, C. N. & Campbell, J. A. (1972). Inorg. Chem. 11, 2989-2993.]; Sokolov et al., 1999[Sokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85-90.]). Complex (I)[link] is the first crystal structure reported that fits this general formula in which the bridging group is OH.

5. Synthesis and crystallization

The title complex was synthesized according to the procedures reported by Boucher & Herrington (1971[Boucher, L. J. & Herrington, D. R. (1971). J. Inorg. Nucl. Chem. 33, 4349-4351.]). To a mixture of Co(acac)2·2H2O (2 g, 7.27×10 −3 mol, 1 equiv) and KOAc (3.2 g, 3.26×10 −2 mol, 4.5 equiv) in methanol (125 ml) was added a solution of H2O2 in water (30%wt, 2 ml). The resulting solution changed color from pink to green. The reaction was stirred at room temperature for 1 h under an ambient atmos­phere. The reaction was then concentrated to dryness on a rotary evaporator. The residual green solid was washed with water (3 × 20 ml) and then acetone (3 × 20 ml), and then dried in air, leaving the product (0.85 g, 1.55×10 −3 mol, 43% yield). Crystals, suitable for X-ray diffraction, were grown by slow diffusion of pentane into chloro­form solutions of the green product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl H atom was located in a difference map and its position was allowed to refine freely. Methyl H atom positions, R-CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H⋯H distances. Remaining H atoms were included as riding idealized contributors. Methyl and hydroxide H atom Uiso's were assigned as 1.5Ueq of the carrier atom; remaining H atom Uiso's were assigned as 1.2Ueq of the carrier atom.

Table 2
Experimental details

Crystal data
Chemical formula [Co2(C5H7O2)4(OH)2]
Mr 548.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.8610 (11), 8.2481 (11), 9.8372 (13)
α, β, γ (°) 100.786 (8), 106.708 (8), 99.492 (9)
V3) 583.67 (14)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.23 × 0.19 × 0.04
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Integration (SADABS; Bruker, 2012)
Tmin, Tmax 0.776, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 16164, 2617, 2228
Rint 0.083
(sin θ/λ)max−1) 0.646
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.05
No. of reflections 2617
No. of parameters 152
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013/4 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (CrystalMaker, 1994[CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).]), XCIF (Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013/4 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2013) and publCIF (Westrip, 2010).

Di-µ-hydroxido-κ4O:O-bis[bis(acetylacetonato-κ2O,O')cobalt(III)] top
Crystal data top
[Co2(C5H7O2)4(OH)2]Z = 1
Mr = 548.30F(000) = 284
Triclinic, P1Dx = 1.560 Mg m3
a = 7.8610 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2481 (11) ÅCell parameters from 3791 reflections
c = 9.8372 (13) Åθ = 2.6–25.5°
α = 100.786 (8)°µ = 1.47 mm1
β = 106.708 (8)°T = 173 K
γ = 99.492 (9)°Plate, blue
V = 583.67 (14) Å30.23 × 0.19 × 0.04 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2617 independent reflections
Radiation source: fine-focus sealed tube2228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
profile data from φ and ω scansθmax = 27.3°, θmin = 2.2°
Absorption correction: integration
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.776, Tmax = 0.945k = 1010
16164 measured reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.1984P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2617 reflectionsΔρmax = 0.39 e Å3
152 parametersΔρmin = 0.53 e Å3
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2013). Fourteen frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SAINT/SADABS, v2012/1 (Bruker, 2012) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.08356 (4)0.96491 (4)0.63894 (3)0.01839 (12)
O10.0955 (2)1.1492 (2)0.54669 (18)0.0197 (4)
H10.182 (4)1.158 (4)0.530 (3)0.030*
O20.0442 (2)0.7772 (2)0.71880 (18)0.0244 (4)
O30.2682 (2)0.9024 (2)0.56955 (18)0.0220 (4)
C10.0467 (4)0.5042 (3)0.7559 (3)0.0294 (6)
H1A0.12380.52630.85840.044*
H1B0.05760.39690.70020.044*
H1C0.08080.49670.75080.044*
C20.1074 (3)0.6460 (3)0.6920 (2)0.0216 (5)
C30.2293 (3)0.6301 (3)0.6154 (3)0.0239 (5)
H30.26050.52360.59620.029*
C40.3092 (3)0.7594 (3)0.5647 (2)0.0204 (5)
C50.4588 (3)0.7360 (3)0.5010 (3)0.0291 (6)
H5A0.47030.81710.44110.044*
H5B0.42900.62010.43980.044*
H5C0.57450.75560.58050.044*
O40.1041 (2)1.0298 (2)0.70365 (18)0.0211 (3)
O50.2764 (2)1.0871 (2)0.81009 (18)0.0258 (4)
C60.2501 (3)1.1417 (4)0.8641 (3)0.0302 (6)
H6A0.26821.25260.84900.045*
H6B0.23711.13970.96580.045*
H6C0.35561.05270.79800.045*
C70.0812 (3)1.1114 (3)0.8328 (3)0.0216 (5)
C80.0873 (3)1.1769 (3)0.9434 (3)0.0265 (5)
H80.08771.23231.03730.032*
C90.2534 (3)1.1666 (3)0.9258 (3)0.0245 (5)
C100.4268 (4)1.2530 (4)1.0500 (3)0.0383 (7)
H10A0.49921.16981.07330.057*
H10B0.39721.30331.13630.057*
H10C0.49731.34241.02150.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01960 (18)0.01881 (19)0.02005 (19)0.00636 (13)0.01007 (13)0.00540 (13)
O10.0196 (8)0.0184 (8)0.0237 (9)0.0052 (7)0.0118 (7)0.0033 (7)
O20.0309 (9)0.0253 (9)0.0253 (9)0.0113 (7)0.0164 (7)0.0102 (7)
O30.0223 (8)0.0223 (9)0.0267 (9)0.0086 (7)0.0130 (7)0.0083 (7)
C10.0407 (15)0.0259 (13)0.0245 (13)0.0060 (11)0.0144 (11)0.0090 (10)
C20.0227 (12)0.0217 (12)0.0162 (11)0.0041 (9)0.0015 (9)0.0035 (9)
C30.0276 (12)0.0198 (12)0.0253 (13)0.0091 (10)0.0091 (10)0.0041 (10)
C40.0199 (11)0.0214 (12)0.0166 (11)0.0057 (9)0.0023 (9)0.0018 (9)
C50.0292 (13)0.0297 (14)0.0366 (15)0.0149 (11)0.0175 (11)0.0099 (11)
O40.0210 (8)0.0233 (9)0.0218 (8)0.0066 (7)0.0114 (7)0.0042 (7)
O50.0216 (9)0.0323 (10)0.0231 (9)0.0069 (7)0.0088 (7)0.0033 (7)
C60.0301 (13)0.0399 (15)0.0278 (14)0.0147 (12)0.0167 (11)0.0085 (12)
C70.0292 (12)0.0188 (12)0.0231 (12)0.0075 (10)0.0155 (10)0.0080 (9)
C80.0317 (13)0.0303 (14)0.0196 (12)0.0094 (11)0.0120 (10)0.0034 (10)
C90.0282 (13)0.0260 (13)0.0214 (12)0.0074 (10)0.0098 (10)0.0074 (10)
C100.0313 (14)0.0479 (18)0.0277 (15)0.0049 (13)0.0074 (12)0.0021 (13)
Geometric parameters (Å, º) top
Co1—O31.8770 (16)C4—C51.506 (3)
Co1—O41.8814 (16)C5—H5A0.9800
Co1—O51.8820 (17)C5—H5B0.9800
Co1—O21.8830 (16)C5—H5C0.9800
Co1—O1i1.9087 (17)O4—C71.268 (3)
Co1—O11.9131 (16)O5—C91.279 (3)
Co1—Co1i2.8829 (7)C6—C71.495 (3)
O1—Co1i1.9087 (17)C6—H6A0.9800
O1—H10.74 (3)C6—H6B0.9800
O2—C21.278 (3)C6—H6C0.9800
O3—C41.269 (3)C7—C81.395 (3)
C1—C21.502 (3)C8—C91.380 (3)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.502 (3)
C1—H1C0.9800C10—H10A0.9800
C2—C31.387 (3)C10—H10B0.9800
C3—C41.393 (3)C10—H10C0.9800
C3—H30.9500
O3—Co1—O4178.37 (6)C2—C3—C4124.5 (2)
O3—Co1—O585.06 (7)C2—C3—H3117.8
O4—Co1—O595.92 (7)C4—C3—H3117.8
O3—Co1—O295.73 (7)O3—C4—C3125.0 (2)
O4—Co1—O285.55 (7)O3—C4—C5115.1 (2)
O5—Co1—O291.96 (7)C3—C4—C5120.0 (2)
O3—Co1—O1i90.26 (7)C4—C5—H5A109.5
O4—Co1—O1i88.67 (7)C4—C5—H5B109.5
O5—Co1—O1i173.53 (7)H5A—C5—H5B109.5
O2—Co1—O1i92.95 (7)C4—C5—H5C109.5
O3—Co1—O188.10 (7)H5A—C5—H5C109.5
O4—Co1—O190.54 (7)H5B—C5—H5C109.5
O5—Co1—O193.29 (7)C7—O4—Co1124.45 (16)
O2—Co1—O1173.75 (7)C9—O5—Co1123.82 (16)
O1i—Co1—O182.07 (7)C7—C6—H6A109.5
O3—Co1—Co1i88.91 (5)C7—C6—H6B109.5
O4—Co1—Co1i89.47 (5)H6A—C6—H6B109.5
O5—Co1—Co1i134.10 (5)C7—C6—H6C109.5
O2—Co1—Co1i133.93 (6)H6A—C6—H6C109.5
O1i—Co1—Co1i41.09 (5)H6B—C6—H6C109.5
O1—Co1—Co1i40.98 (5)O4—C7—C8125.1 (2)
Co1i—O1—Co197.93 (7)O4—C7—C6116.0 (2)
Co1i—O1—H1103 (2)C8—C7—C6118.9 (2)
Co1—O1—H1106 (2)C9—C8—C7124.4 (2)
C2—O2—Co1123.65 (15)C9—C8—H8117.8
C4—O3—Co1124.41 (15)C7—C8—H8117.8
C2—C1—H1A109.5O5—C9—C8125.7 (2)
C2—C1—H1B109.5O5—C9—C10114.7 (2)
H1A—C1—H1B109.5C8—C9—C10119.6 (2)
C2—C1—H1C109.5C9—C10—H10A109.5
H1A—C1—H1C109.5C9—C10—H10B109.5
H1B—C1—H1C109.5H10A—C10—H10B109.5
O2—C2—C3125.1 (2)C9—C10—H10C109.5
O2—C2—C1115.2 (2)H10A—C10—H10C109.5
C3—C2—C1119.6 (2)H10B—C10—H10C109.5
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1ii0.982.423.395 (3)174
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

This research was conducted under contract DEFG02- 90ER14146 with the US Department of Energy by its Division of Chemical Sciences, Office of Basic Energy Sciences.

References

First citationBergquist, C., Fillebeen, T., Morlok, M. M. & Parkin, G. (2003). J. Am. Chem. Soc. 125, 6189–6199.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBottomley, F., White, P. S. & Mukaida, M. (1982). Acta Cryst. B38, 2674–2676.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoucher, L. J. & Herrington, D. R. (1971). J. Inorg. Nucl. Chem. 33, 4349–4351.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT, SADABS and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryndza, H. E. & Tam, W. (1988). Chem. Rev. 88, 1163–1188.  CrossRef CAS Google Scholar
First citationCrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMasłowska, J. & Baranovski, J. B. (1978). J. Mol. Struct. 47, 405–416.  Google Scholar
First citationNakahanada, M., Fujihara, T., Fuyuhiro, A. & Kaizaki, S. (1992). Inorg. Chem. 31, 1315–1316.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, D., Caughlan, C. N. & Campbell, J. A. (1972). Inorg. Chem. 11, 2989–2993.  CSD CrossRef CAS Google Scholar
First citationSokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85–90.  CSD CrossRef Google Scholar
First citationWang, J., Morra, N. A., Zhao, H., Gorman, J. S. T., Lynch, V., McDonald, R., Reichwein, J. F. & Pagenkopf, B. L. (2009). Can. J. Chem. 87, 328–334.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZinn, P. J., Sorrell, T. N., Powell, D. R., Day, V. W. & Borovik, A. S. (2007). Inorg. Chem. 46, 10120–10132.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds