organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1R,2S,4R,7R,8S,9R)-3,3-di­chloro-8,9-ep­oxy-4,8,12,12-tetra­methyltri­cyclo[5.5.0.02,4]do­decane

aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ma

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 June 2015; accepted 29 June 2015; online 4 July 2015)

The title compound, C16H24Cl2O, is built up from two fused six- and seven-membered rings which bear a di­chloro­cyclo­propane group and an ep­oxy group, respectively. In the mol­ecule, the six-membered ring adopts an envelope configuration with the C atom linking the ep­oxy ring at the flap, while the seven-membered ring adopts a boat–sofa conformation.

1. Related literature

For applications of epoxides, see: Qu et al. (2009[Qu, J.-P., Deng, C., Zhou, J., Sun, X.-L. & Tang, Y. (2009). J. Org. Chem. 74, 7684-7689.]); Taylor et al. (1991[Taylor, S. K., Hopkins, J. A., Spangenberg, K. A., McMillen, D. W. & Grutzner, J. B. (1991). J. Org. Chem. 56, 5951-5955.]); Mori (1989[Mori, K. (1989). Tetrahedron, 45, 3233-3298.]); Paddon-Jones et al. (1997[Paddon-Jones, G. C., Moore, C. J., Brecknell, D. J., König, W. A. & Kitching, W. (1997). Tetrahedron Lett. 38, 3479-3482.]); Yang (2004[Yang, D. (2004). Acc. Chem. Res. 37, 497-505.]); Vollhardt & Schore (1996[Vollhardt, K. P. C. & Schore, N. E. (1996). Quimica Organica, p. 467. Barcelona: Omega.]); Trost et al. (1983[Trost, B. M., Balkovec, J. M. & Mao, M. K.-T. (1983). J. Am. Chem. Soc. 105, 6755-6757.]). For related structures, see: Chiaroni et al. (1992[Chiaroni, A., Riche, C., Benharref, A., Chekroun, A. & Lavergne, J.-P. (1992). Acta Cryst. C48, 1720-1722.], 1995[Chiaroni, A., Riche, C., Benharref, A., El Jamili, H. & Lassaba, E. (1995). Acta Cryst. C51, 1171-1173.], 1996a[Chiaroni, A., Riche, C., Benharref, A., El Jamili, H. & Lassaba, E. (1996a). Acta Cryst. C52, 2502-2504.],b[Chiaroni, A., Riche, C., Benharref, A., Lassaba, E. & Baouid, A. (1996b). Acta Cryst. C52, 2504-2507.],c[Chiaroni, A., Riche, C., Lassaba, E. & Benharref, A. (1996c). Acta Cryst. C52, 3240-3243.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Benharref et al. (2010[Benharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.]); Oukhrib et al. (2013[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521-o522.]); Bimoussa et al. (2014[Bimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2014). Acta Cryst. E70, o480.]). For puckering parameters and ring conformation, see: Boessenkool & Boeyens (1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H24Cl2O

  • Mr = 303.25

  • Monoclinic, P 21

  • a = 8.7706 (5) Å

  • b = 10.5467 (4) Å

  • c = 9.1639 (5) Å

  • β = 115.710 (7)°

  • V = 763.75 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 180 K

  • 0.40 × 0.34 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur, Eos, Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]) Tmin = 0.901, Tmax = 1.000

  • 7805 measured reflections

  • 2945 independent reflections

  • 2868 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.05

  • 2945 reflections

  • 176 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack x determined using 1242 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.02 (2)

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Chemical context top

Epoxides are valuable inter­mediates frequently used as versatile building blocks in organic synthesis (Qu et al., 2009). Thus, epoxides are important precursors in the synthesis of Anti­fungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this functional group as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt & Schore, 1996; Trost et al., 1983). Because of their widespread occurrence, biological and synthetic utilities, the synthesis of new epoxides has grown significantly.

In the aim of preparing new epoxides from natural products, we recently synthetise γ-Ep­oxy­himachalene 1 (scheme 1) from naturally occurred sesquiterpene γ-himachalene without crystallographic evidence of its absolute configuration as the product was oily. We therefore decided to transform it into a solid derivative by [2+1] cyclo­addition reaction of a dihalocarbene on the remaining cyclo­hexenic double bond.

The structure of the newly prepared 2 (scheme 2) has been established from its 1H and 13C NMR spectral data. An X-ray structure analysis has allowed us to determine unambiguously its stereochemistry and deduce the absolute configuration of its oily precursor γ-Ep­oxy­himachalene 1.

Structural commentary top

Compound 2 is built up from two fused 6 and 7 membered rings (Fig. 1). The seven membered ring is bearing an ep­oxy group whereas the 6 membered ring bears a di­chloro­cyclo­propane. In the seven membered ring, the puckering parameters Q2= 0.9692 (15), Q2= 0.2716 (52) and φ2= 97.11, φ3= 74.34 agree with a boat sofa conformation (Boessenkool & Boeyens, 1980). The six membered ring displays an envelope conformation with the puckering parameters θ = 125.90° and φ2 = 118.89° (Cremer & Pople, 1975).

Database survey top

A search in the Cambridge Structural Database, version 5.36 reveals 9 hits with related structure having two fused 6 and 7 membered rings (Chiaroni et al., 1992, 1995; Chiaroni et al., 1996a,b,c; Sbai et al., 2002; Benharref et al., 2010; Oukhrib et al., 2013; Bimoussa et al., 2014 )

Synthesis and crystallization top

Thus, the di­chloro­carbene, generated at 0°C from an excess of CHCl3 (0,93 mL, 11,59 mmol) and solid t-BuOK (1,3 g, 11,58 mmol), reacts in the presence of tri­ethyl­benzyl­ammonium chloride (100 mg, 0.439 mmol) as catalyst, with γ-Ep­oxy­himachalene 1 (0,650 g, 2,95 mmol) to give 22% yield (200 mg) of the cyclo­adduct C16H24OCl2 2.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methyl­ene), 0.98 Å (methyl), 0.95Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).

Related literature top

For applications of epoxides, see: Qu et al. (2009); Taylor et al. (1991); Mori (1989); Paddon-Jones et al. (1997); Yang (2004); Vollhardt & Schore (1996); Trost et al. (1983). For related structures, see: Chiaroni et al. (1992, 1995, 1996a,b,c); Sbai et al. (2002); Benharref et al. (2010); Oukhrib et al. (2013); Bimoussa et al. (2014). For puckering parameters and ring conformation, see: Boessenkool & Boeyens (1980).

Structure description top

Epoxides are valuable inter­mediates frequently used as versatile building blocks in organic synthesis (Qu et al., 2009). Thus, epoxides are important precursors in the synthesis of Anti­fungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this functional group as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt & Schore, 1996; Trost et al., 1983). Because of their widespread occurrence, biological and synthetic utilities, the synthesis of new epoxides has grown significantly.

In the aim of preparing new epoxides from natural products, we recently synthetise γ-Ep­oxy­himachalene 1 (scheme 1) from naturally occurred sesquiterpene γ-himachalene without crystallographic evidence of its absolute configuration as the product was oily. We therefore decided to transform it into a solid derivative by [2+1] cyclo­addition reaction of a dihalocarbene on the remaining cyclo­hexenic double bond.

The structure of the newly prepared 2 (scheme 2) has been established from its 1H and 13C NMR spectral data. An X-ray structure analysis has allowed us to determine unambiguously its stereochemistry and deduce the absolute configuration of its oily precursor γ-Ep­oxy­himachalene 1.

Compound 2 is built up from two fused 6 and 7 membered rings (Fig. 1). The seven membered ring is bearing an ep­oxy group whereas the 6 membered ring bears a di­chloro­cyclo­propane. In the seven membered ring, the puckering parameters Q2= 0.9692 (15), Q2= 0.2716 (52) and φ2= 97.11, φ3= 74.34 agree with a boat sofa conformation (Boessenkool & Boeyens, 1980). The six membered ring displays an envelope conformation with the puckering parameters θ = 125.90° and φ2 = 118.89° (Cremer & Pople, 1975).

A search in the Cambridge Structural Database, version 5.36 reveals 9 hits with related structure having two fused 6 and 7 membered rings (Chiaroni et al., 1992, 1995; Chiaroni et al., 1996a,b,c; Sbai et al., 2002; Benharref et al., 2010; Oukhrib et al., 2013; Bimoussa et al., 2014 )

For applications of epoxides, see: Qu et al. (2009); Taylor et al. (1991); Mori (1989); Paddon-Jones et al. (1997); Yang (2004); Vollhardt & Schore (1996); Trost et al. (1983). For related structures, see: Chiaroni et al. (1992, 1995, 1996a,b,c); Sbai et al. (2002); Benharref et al. (2010); Oukhrib et al. (2013); Bimoussa et al. (2014). For puckering parameters and ring conformation, see: Boessenkool & Boeyens (1980).

Synthesis and crystallization top

Thus, the di­chloro­carbene, generated at 0°C from an excess of CHCl3 (0,93 mL, 11,59 mmol) and solid t-BuOK (1,3 g, 11,58 mmol), reacts in the presence of tri­ethyl­benzyl­ammonium chloride (100 mg, 0.439 mmol) as catalyst, with γ-Ep­oxy­himachalene 1 (0,650 g, 2,95 mmol) to give 22% yield (200 mg) of the cyclo­adduct C16H24OCl2 2.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methyl­ene), 0.98 Å (methyl), 0.95Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound.
(1R,2S,4R,7R,8S,9R)-3,3-Dichloro-8,9-epoxy-4,8,12,12-tetramethyltricyclo[5.5.0.02,4]dodecane top
Crystal data top
C16H24Cl2OF(000) = 324
Mr = 303.25Dx = 1.319 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.7706 (5) ÅCell parameters from 4267 reflections
b = 10.5467 (4) Åθ = 4.3–29.3°
c = 9.1639 (5) ŵ = 0.42 mm1
β = 115.710 (7)°T = 180 K
V = 763.75 (8) Å3Box, colourless
Z = 20.40 × 0.34 × 0.08 mm
Data collection top
Agilent Xcalibur, Eos, Gemini ultra
diffractometer
2945 independent reflections
Radiation source: Enhance (Mo) X-ray Source2868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1312
Tmin = 0.901, Tmax = 1.000l = 1111
7805 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1659P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.44 e Å3
2945 reflectionsΔρmin = 0.18 e Å3
176 parametersAbsolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (2)
Crystal data top
C16H24Cl2OV = 763.75 (8) Å3
Mr = 303.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.7706 (5) ŵ = 0.42 mm1
b = 10.5467 (4) ÅT = 180 K
c = 9.1639 (5) Å0.40 × 0.34 × 0.08 mm
β = 115.710 (7)°
Data collection top
Agilent Xcalibur, Eos, Gemini ultra
diffractometer
2945 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
2868 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 1.000Rint = 0.021
7805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.44 e Å3
S = 1.05Δρmin = 0.18 e Å3
2945 reflectionsAbsolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
176 parametersAbsolute structure parameter: 0.02 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6765 (3)1.0011 (2)0.7612 (3)0.0150 (5)
H10.58110.94850.68320.018*
C20.7132 (3)1.0959 (2)0.6554 (3)0.0161 (5)
H20.71621.18660.68850.019*
C30.6463 (3)1.0746 (2)0.4760 (3)0.0184 (5)
C40.8324 (3)1.0632 (2)0.5788 (3)0.0183 (5)
C50.9157 (3)0.9334 (3)0.6122 (3)0.0238 (5)
H5A1.03990.94570.66410.029*
H5B0.88600.89090.50700.029*
C60.8699 (3)0.8432 (3)0.7196 (3)0.0222 (5)
H6A0.77390.78960.64800.027*
H6B0.96750.78630.77750.027*
C70.8220 (3)0.9058 (2)0.8456 (3)0.0175 (5)
H70.77060.83600.88320.021*
C80.9699 (3)0.9526 (3)0.9984 (3)0.0200 (5)
C90.9417 (3)0.9677 (3)1.1444 (3)0.0234 (6)
H91.01971.03021.22360.028*
C100.7742 (3)0.9537 (3)1.1534 (3)0.0266 (6)
H10A0.77221.01731.23190.032*
H10B0.77390.86921.20030.032*
C110.6069 (3)0.9666 (3)0.9990 (3)0.0230 (6)
H11A0.51670.98961.03170.028*
H11B0.57780.88250.94610.028*
C120.6043 (3)1.0642 (2)0.8722 (3)0.0189 (5)
C130.9439 (4)1.1678 (3)0.5645 (3)0.0287 (6)
H13A0.97461.14790.47620.043*
H13B1.04681.17480.66640.043*
H13C0.88231.24850.54160.043*
C141.1115 (3)1.0267 (3)0.9879 (3)0.0278 (6)
H14A1.19561.04871.09720.042*
H14B1.06611.10450.92550.042*
H14C1.16510.97520.93420.042*
C150.6951 (3)1.1861 (2)0.9559 (3)0.0222 (5)
H15A0.66001.25590.87740.033*
H15B0.81781.17400.99880.033*
H15C0.66581.20651.04490.033*
C160.4186 (3)1.0978 (3)0.7640 (3)0.0294 (6)
H16A0.35451.02000.71840.044*
H16B0.41251.15330.67600.044*
H16C0.37041.14150.82870.044*
O11.0269 (3)0.85597 (19)1.1245 (2)0.0275 (4)
Cl10.52452 (8)0.93841 (6)0.38605 (7)0.02818 (17)
Cl20.56482 (9)1.20376 (6)0.34222 (7)0.03117 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (11)0.0142 (11)0.0135 (10)0.0016 (9)0.0052 (9)0.0003 (9)
C20.0194 (12)0.0136 (12)0.0158 (11)0.0011 (10)0.0082 (9)0.0008 (9)
C30.0220 (12)0.0154 (11)0.0155 (11)0.0027 (10)0.0060 (9)0.0039 (9)
C40.0182 (12)0.0205 (12)0.0169 (11)0.0013 (10)0.0083 (9)0.0011 (9)
C50.0258 (12)0.0274 (14)0.0212 (11)0.0085 (12)0.0130 (9)0.0008 (12)
C60.0277 (14)0.0172 (12)0.0200 (11)0.0075 (11)0.0090 (10)0.0018 (9)
C70.0223 (12)0.0133 (12)0.0173 (11)0.0008 (9)0.0089 (10)0.0007 (9)
C80.0215 (12)0.0190 (12)0.0158 (10)0.0055 (11)0.0047 (9)0.0038 (10)
C90.0276 (13)0.0234 (14)0.0155 (11)0.0049 (11)0.0060 (10)0.0011 (10)
C100.0348 (14)0.0279 (14)0.0203 (11)0.0043 (13)0.0150 (11)0.0035 (11)
C110.0285 (13)0.0240 (14)0.0216 (11)0.0017 (11)0.0158 (10)0.0012 (10)
C120.0198 (12)0.0208 (13)0.0183 (11)0.0004 (10)0.0102 (9)0.0002 (10)
C130.0301 (14)0.0327 (16)0.0284 (13)0.0062 (13)0.0175 (11)0.0007 (12)
C140.0215 (13)0.0320 (15)0.0251 (13)0.0017 (12)0.0057 (11)0.0026 (12)
C150.0309 (13)0.0175 (13)0.0213 (11)0.0026 (11)0.0142 (10)0.0009 (11)
C160.0222 (14)0.0384 (16)0.0296 (13)0.0054 (13)0.0132 (11)0.0021 (13)
O10.0334 (11)0.0271 (11)0.0197 (9)0.0117 (9)0.0094 (8)0.0075 (8)
Cl10.0305 (3)0.0301 (3)0.0191 (3)0.0081 (3)0.0062 (2)0.0044 (3)
Cl20.0418 (4)0.0283 (3)0.0250 (3)0.0152 (3)0.0159 (3)0.0122 (3)
Geometric parameters (Å, º) top
C1—C21.521 (3)C9—O11.449 (3)
C1—C71.542 (3)C9—C101.513 (4)
C1—C121.561 (3)C9—H91.0000
C1—H11.0000C10—C111.540 (4)
C2—C31.503 (3)C10—H10A0.9900
C2—C41.530 (3)C10—H10B0.9900
C2—H21.0000C11—C121.545 (3)
C3—C41.494 (4)C11—H11A0.9900
C3—Cl21.764 (2)C11—H11B0.9900
C3—Cl11.766 (3)C12—C151.532 (4)
C4—C131.517 (4)C12—C161.536 (4)
C4—C51.519 (4)C13—H13A0.9800
C5—C61.542 (4)C13—H13B0.9800
C5—H5A0.9900C13—H13C0.9800
C5—H5B0.9900C14—H14A0.9800
C6—C71.538 (3)C14—H14B0.9800
C6—H6A0.9900C14—H14C0.9800
C6—H6B0.9900C15—H15A0.9800
C7—C81.520 (3)C15—H15B0.9800
C7—H71.0000C15—H15C0.9800
C8—O11.457 (3)C16—H16A0.9800
C8—C91.471 (3)C16—H16B0.9800
C8—C141.505 (4)C16—H16C0.9800
C2—C1—C7112.96 (19)O1—C9—C10119.6 (2)
C2—C1—C12113.1 (2)C8—C9—C10126.1 (2)
C7—C1—C12115.62 (19)O1—C9—H9113.6
C2—C1—H1104.6C8—C9—H9113.6
C7—C1—H1104.6C10—C9—H9113.6
C12—C1—H1104.6C9—C10—C11120.1 (2)
C3—C2—C1120.6 (2)C9—C10—H10A107.3
C3—C2—C459.00 (16)C11—C10—H10A107.3
C1—C2—C4121.3 (2)C9—C10—H10B107.3
C3—C2—H2114.9C11—C10—H10B107.3
C1—C2—H2114.9H10A—C10—H10B106.9
C4—C2—H2114.9C10—C11—C12116.6 (2)
C4—C3—C261.39 (16)C10—C11—H11A108.2
C4—C3—Cl2120.18 (19)C12—C11—H11A108.2
C2—C3—Cl2119.53 (18)C10—C11—H11B108.2
C4—C3—Cl1120.21 (18)C12—C11—H11B108.2
C2—C3—Cl1120.14 (18)H11A—C11—H11B107.3
Cl2—C3—Cl1108.85 (13)C15—C12—C16107.7 (2)
C3—C4—C13117.1 (2)C15—C12—C11110.4 (2)
C3—C4—C5119.9 (2)C16—C12—C11107.7 (2)
C13—C4—C5113.6 (2)C15—C12—C1114.5 (2)
C3—C4—C259.62 (16)C16—C12—C1107.1 (2)
C13—C4—C2118.0 (2)C11—C12—C1109.2 (2)
C5—C4—C2118.4 (2)C4—C13—H13A109.5
C4—C5—C6116.7 (2)C4—C13—H13B109.5
C4—C5—H5A108.1H13A—C13—H13B109.5
C6—C5—H5A108.1C4—C13—H13C109.5
C4—C5—H5B108.1H13A—C13—H13C109.5
C6—C5—H5B108.1H13B—C13—H13C109.5
H5A—C5—H5B107.3C8—C14—H14A109.5
C7—C6—C5116.5 (2)C8—C14—H14B109.5
C7—C6—H6A108.2H14A—C14—H14B109.5
C5—C6—H6A108.2C8—C14—H14C109.5
C7—C6—H6B108.2H14A—C14—H14C109.5
C5—C6—H6B108.2H14B—C14—H14C109.5
H6A—C6—H6B107.3C12—C15—H15A109.5
C8—C7—C6115.4 (2)C12—C15—H15B109.5
C8—C7—C1116.08 (19)H15A—C15—H15B109.5
C6—C7—C1109.83 (19)C12—C15—H15C109.5
C8—C7—H7104.7H15A—C15—H15C109.5
C6—C7—H7104.7H15B—C15—H15C109.5
C1—C7—H7104.7C12—C16—H16A109.5
O1—C8—C959.31 (15)C12—C16—H16B109.5
O1—C8—C14113.9 (2)H16A—C16—H16B109.5
C9—C8—C14118.1 (2)C12—C16—H16C109.5
O1—C8—C7111.4 (2)H16A—C16—H16C109.5
C9—C8—C7117.4 (2)H16B—C16—H16C109.5
C14—C8—C7120.5 (2)C9—O1—C860.82 (15)
O1—C9—C859.88 (15)

Experimental details

Crystal data
Chemical formulaC16H24Cl2O
Mr303.25
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)8.7706 (5), 10.5467 (4), 9.1639 (5)
β (°) 115.710 (7)
V3)763.75 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.34 × 0.08
Data collection
DiffractometerAgilent Xcalibur, Eos, Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.901, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7805, 2945, 2868
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.05
No. of reflections2945
No. of parameters176
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.18
Absolute structureFlack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.02 (2)

Computer programs: CrysAlis PRO (Agilent, 2014), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2014). Acta Cryst. E70, o480.  CSD CrossRef IUCr Journals Google Scholar
First citationBoessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChiaroni, A., Riche, C., Benharref, A., Chekroun, A. & Lavergne, J.-P. (1992). Acta Cryst. C48, 1720–1722.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChiaroni, A., Riche, C., Benharref, A., El Jamili, H. & Lassaba, E. (1995). Acta Cryst. C51, 1171–1173.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChiaroni, A., Riche, C., Benharref, A., El Jamili, H. & Lassaba, E. (1996a). Acta Cryst. C52, 2502–2504.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChiaroni, A., Riche, C., Benharref, A., Lassaba, E. & Baouid, A. (1996b). Acta Cryst. C52, 2504–2507.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChiaroni, A., Riche, C., Lassaba, E. & Benharref, A. (1996c). Acta Cryst. C52, 3240–3243.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMori, K. (1989). Tetrahedron, 45, 3233–3298.  CrossRef CAS Web of Science Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaddon-Jones, G. C., Moore, C. J., Brecknell, D. J., König, W. A. & Kitching, W. (1997). Tetrahedron Lett. 38, 3479–3482.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQu, J.-P., Deng, C., Zhou, J., Sun, X.-L. & Tang, Y. (2009). J. Org. Chem. 74, 7684–7689.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaylor, S. K., Hopkins, J. A., Spangenberg, K. A., McMillen, D. W. & Grutzner, J. B. (1991). J. Org. Chem. 56, 5951–5955.  CrossRef CAS Web of Science Google Scholar
First citationTrost, B. M., Balkovec, J. M. & Mao, M. K.-T. (1983). J. Am. Chem. Soc. 105, 6755–6757.  CrossRef CAS Web of Science Google Scholar
First citationVollhardt, K. P. C. & Schore, N. E. (1996). Quimica Organica, p. 467. Barcelona: Omega.  Google Scholar
First citationYang, D. (2004). Acc. Chem. Res. 37, 497–505.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds