organic compounds
R,2S,4R,7R,8S,9R)-3,3-dichloro-8,9-epoxy-4,8,12,12-tetramethyltricyclo[5.5.0.02,4]dodecane
of (1aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ma
The title compound, C16H24Cl2O, is built up from two fused six- and seven-membered rings which bear a dichlorocyclopropane group and an epoxy group, respectively. In the molecule, the six-membered ring adopts an envelope configuration with the C atom linking the epoxy ring at the flap, while the seven-membered ring adopts a boat–sofa conformation.
Keywords: crystal structure; absolute configuration; natural products; epoxide.
CCDC reference: 1409393
1. Related literature
For applications of et al. (2009); Taylor et al. (1991); Mori (1989); Paddon-Jones et al. (1997); Yang (2004); Vollhardt & Schore (1996); Trost et al. (1983). For related structures, see: Chiaroni et al. (1992, 1995, 1996a,b,c); Sbai et al. (2002); Benharref et al. (2010); Oukhrib et al. (2013); Bimoussa et al. (2014). For puckering parameters and ring conformation, see: Boessenkool & Boeyens (1980).
see: Qu2. Experimental
2.1. Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 1409393
https://doi.org/10.1107/S205698901501244X/xu5855sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901501244X/xu5855Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901501244X/xu5855Isup3.cml
Epoxides are valuable intermediates frequently used as versatile building blocks in organic synthesis (Qu et al., 2009). Thus,
are important precursors in the synthesis of Antifungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt & Schore, 1996; Trost et al., 1983). Because of their widespread occurrence, biological and synthetic utilities, the synthesis of new has grown significantly.In the aim of preparing new γ-Epoxyhimachalene 1 (scheme 1) from naturally occurred sesquiterpene γ-himachalene without crystallographic evidence of its as the product was oily. We therefore decided to transform it into a solid derivative by [2+1] cycloaddition reaction of a dihalocarbene on the remaining cyclohexenic double bond.
from natural products, we recently synthetiseThe structure of the newly prepared 2 (scheme 2) has been established from its 1H and 13C NMR spectral data. An X-ray structure analysis has allowed us to determine unambiguously its stereochemistry and deduce the γ-Epoxyhimachalene 1.
of its oily precursorCompound 2 is built up from two fused 6 and 7 membered rings (Fig. 1). The seven membered ring is bearing an epoxy group whereas the 6 membered ring bears a dichlorocyclopropane. In the seven membered ring, the puckering parameters Q2= 0.9692 (15), Q2= 0.2716 (52) and φ2= 97.11, φ3= 74.34 agree with a boat sofa conformation (Boessenkool & Boeyens, 1980). The six membered ring displays an with the puckering parameters θ = 125.90° and φ2 = 118.89° (Cremer & Pople, 1975).
A search in the Cambridge Structural Database, version 5.36 reveals 9 hits with related structure having two fused 6 and 7 membered rings (Chiaroni et al., 1992, 1995; Chiaroni et al., 1996a,b,c; Sbai et al., 2002; Benharref et al., 2010; Oukhrib et al., 2013; Bimoussa et al., 2014 )
Thus, the dichlorocarbene, generated at 0°C from an excess of CHCl3 (0,93 mL, 11,59 mmol) and solid t-BuOK (1,3 g, 11,58 mmol), reacts in the presence of triethylbenzylammonium chloride (100 mg, 0.439 mmol) as catalyst, with γ-Epoxyhimachalene 1 (0,650 g, 2,95 mmol) to give 22% yield (200 mg) of the cycloadduct C16H24OCl2 2.
Epoxides are valuable intermediates frequently used as versatile building blocks in organic synthesis (Qu et al., 2009). Thus,
are important precursors in the synthesis of Antifungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt & Schore, 1996; Trost et al., 1983). Because of their widespread occurrence, biological and synthetic utilities, the synthesis of new has grown significantly.In the aim of preparing new γ-Epoxyhimachalene 1 (scheme 1) from naturally occurred sesquiterpene γ-himachalene without crystallographic evidence of its as the product was oily. We therefore decided to transform it into a solid derivative by [2+1] cycloaddition reaction of a dihalocarbene on the remaining cyclohexenic double bond.
from natural products, we recently synthetiseThe structure of the newly prepared 2 (scheme 2) has been established from its 1H and 13C NMR spectral data. An X-ray structure analysis has allowed us to determine unambiguously its stereochemistry and deduce the γ-Epoxyhimachalene 1.
of its oily precursorCompound 2 is built up from two fused 6 and 7 membered rings (Fig. 1). The seven membered ring is bearing an epoxy group whereas the 6 membered ring bears a dichlorocyclopropane. In the seven membered ring, the puckering parameters Q2= 0.9692 (15), Q2= 0.2716 (52) and φ2= 97.11, φ3= 74.34 agree with a boat sofa conformation (Boessenkool & Boeyens, 1980). The six membered ring displays an with the puckering parameters θ = 125.90° and φ2 = 118.89° (Cremer & Pople, 1975).
A search in the Cambridge Structural Database, version 5.36 reveals 9 hits with related structure having two fused 6 and 7 membered rings (Chiaroni et al., 1992, 1995; Chiaroni et al., 1996a,b,c; Sbai et al., 2002; Benharref et al., 2010; Oukhrib et al., 2013; Bimoussa et al., 2014 )
For applications of
see: Qu et al. (2009); Taylor et al. (1991); Mori (1989); Paddon-Jones et al. (1997); Yang (2004); Vollhardt & Schore (1996); Trost et al. (1983). For related structures, see: Chiaroni et al. (1992, 1995, 1996a,b,c); Sbai et al. (2002); Benharref et al. (2010); Oukhrib et al. (2013); Bimoussa et al. (2014). For puckering parameters and ring conformation, see: Boessenkool & Boeyens (1980).Thus, the dichlorocarbene, generated at 0°C from an excess of CHCl3 (0,93 mL, 11,59 mmol) and solid t-BuOK (1,3 g, 11,58 mmol), reacts in the presence of triethylbenzylammonium chloride (100 mg, 0.439 mmol) as catalyst, with γ-Epoxyhimachalene 1 (0,650 g, 2,95 mmol) to give 22% yield (200 mg) of the cycloadduct C16H24OCl2 2.
detailsCrystal data, data collection and structure
details are summarized in Table 1. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 0.95Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).C16H24Cl2O | F(000) = 324 |
Mr = 303.25 | Dx = 1.319 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7706 (5) Å | Cell parameters from 4267 reflections |
b = 10.5467 (4) Å | θ = 4.3–29.3° |
c = 9.1639 (5) Å | µ = 0.42 mm−1 |
β = 115.710 (7)° | T = 180 K |
V = 763.75 (8) Å3 | Box, colourless |
Z = 2 | 0.40 × 0.34 × 0.08 mm |
Agilent Xcalibur, Eos, Gemini ultra diffractometer | 2945 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2868 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 26.4°, θmin = 3.2° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −13→12 |
Tmin = 0.901, Tmax = 1.000 | l = −11→11 |
7805 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1659P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.44 e Å−3 |
2945 reflections | Δρmin = −0.18 e Å−3 |
176 parameters | Absolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.02 (2) |
C16H24Cl2O | V = 763.75 (8) Å3 |
Mr = 303.25 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.7706 (5) Å | µ = 0.42 mm−1 |
b = 10.5467 (4) Å | T = 180 K |
c = 9.1639 (5) Å | 0.40 × 0.34 × 0.08 mm |
β = 115.710 (7)° |
Agilent Xcalibur, Eos, Gemini ultra diffractometer | 2945 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 2868 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 1.000 | Rint = 0.021 |
7805 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.076 | Δρmax = 0.44 e Å−3 |
S = 1.05 | Δρmin = −0.18 e Å−3 |
2945 reflections | Absolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
176 parameters | Absolute structure parameter: −0.02 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6765 (3) | 1.0011 (2) | 0.7612 (3) | 0.0150 (5) | |
H1 | 0.5811 | 0.9485 | 0.6832 | 0.018* | |
C2 | 0.7132 (3) | 1.0959 (2) | 0.6554 (3) | 0.0161 (5) | |
H2 | 0.7162 | 1.1866 | 0.6885 | 0.019* | |
C3 | 0.6463 (3) | 1.0746 (2) | 0.4760 (3) | 0.0184 (5) | |
C4 | 0.8324 (3) | 1.0632 (2) | 0.5788 (3) | 0.0183 (5) | |
C5 | 0.9157 (3) | 0.9334 (3) | 0.6122 (3) | 0.0238 (5) | |
H5A | 1.0399 | 0.9457 | 0.6641 | 0.029* | |
H5B | 0.8860 | 0.8909 | 0.5070 | 0.029* | |
C6 | 0.8699 (3) | 0.8432 (3) | 0.7196 (3) | 0.0222 (5) | |
H6A | 0.7739 | 0.7896 | 0.6480 | 0.027* | |
H6B | 0.9675 | 0.7863 | 0.7775 | 0.027* | |
C7 | 0.8220 (3) | 0.9058 (2) | 0.8456 (3) | 0.0175 (5) | |
H7 | 0.7706 | 0.8360 | 0.8832 | 0.021* | |
C8 | 0.9699 (3) | 0.9526 (3) | 0.9984 (3) | 0.0200 (5) | |
C9 | 0.9417 (3) | 0.9677 (3) | 1.1444 (3) | 0.0234 (6) | |
H9 | 1.0197 | 1.0302 | 1.2236 | 0.028* | |
C10 | 0.7742 (3) | 0.9537 (3) | 1.1534 (3) | 0.0266 (6) | |
H10A | 0.7722 | 1.0173 | 1.2319 | 0.032* | |
H10B | 0.7739 | 0.8692 | 1.2003 | 0.032* | |
C11 | 0.6069 (3) | 0.9666 (3) | 0.9990 (3) | 0.0230 (6) | |
H11A | 0.5167 | 0.9896 | 1.0317 | 0.028* | |
H11B | 0.5778 | 0.8825 | 0.9461 | 0.028* | |
C12 | 0.6043 (3) | 1.0642 (2) | 0.8722 (3) | 0.0189 (5) | |
C13 | 0.9439 (4) | 1.1678 (3) | 0.5645 (3) | 0.0287 (6) | |
H13A | 0.9746 | 1.1479 | 0.4762 | 0.043* | |
H13B | 1.0468 | 1.1748 | 0.6664 | 0.043* | |
H13C | 0.8823 | 1.2485 | 0.5416 | 0.043* | |
C14 | 1.1115 (3) | 1.0267 (3) | 0.9879 (3) | 0.0278 (6) | |
H14A | 1.1956 | 1.0487 | 1.0972 | 0.042* | |
H14B | 1.0661 | 1.1045 | 0.9255 | 0.042* | |
H14C | 1.1651 | 0.9752 | 0.9342 | 0.042* | |
C15 | 0.6951 (3) | 1.1861 (2) | 0.9559 (3) | 0.0222 (5) | |
H15A | 0.6600 | 1.2559 | 0.8774 | 0.033* | |
H15B | 0.8178 | 1.1740 | 0.9988 | 0.033* | |
H15C | 0.6658 | 1.2065 | 1.0449 | 0.033* | |
C16 | 0.4186 (3) | 1.0978 (3) | 0.7640 (3) | 0.0294 (6) | |
H16A | 0.3545 | 1.0200 | 0.7184 | 0.044* | |
H16B | 0.4125 | 1.1533 | 0.6760 | 0.044* | |
H16C | 0.3704 | 1.1415 | 0.8287 | 0.044* | |
O1 | 1.0269 (3) | 0.85597 (19) | 1.1245 (2) | 0.0275 (4) | |
Cl1 | 0.52452 (8) | 0.93841 (6) | 0.38605 (7) | 0.02818 (17) | |
Cl2 | 0.56482 (9) | 1.20376 (6) | 0.34222 (7) | 0.03117 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0159 (11) | 0.0142 (11) | 0.0135 (10) | −0.0016 (9) | 0.0052 (9) | −0.0003 (9) |
C2 | 0.0194 (12) | 0.0136 (12) | 0.0158 (11) | 0.0011 (10) | 0.0082 (9) | 0.0008 (9) |
C3 | 0.0220 (12) | 0.0154 (11) | 0.0155 (11) | 0.0027 (10) | 0.0060 (9) | 0.0039 (9) |
C4 | 0.0182 (12) | 0.0205 (12) | 0.0169 (11) | 0.0013 (10) | 0.0083 (9) | 0.0011 (9) |
C5 | 0.0258 (12) | 0.0274 (14) | 0.0212 (11) | 0.0085 (12) | 0.0130 (9) | 0.0008 (12) |
C6 | 0.0277 (14) | 0.0172 (12) | 0.0200 (11) | 0.0075 (11) | 0.0090 (10) | 0.0018 (9) |
C7 | 0.0223 (12) | 0.0133 (12) | 0.0173 (11) | 0.0008 (9) | 0.0089 (10) | 0.0007 (9) |
C8 | 0.0215 (12) | 0.0190 (12) | 0.0158 (10) | 0.0055 (11) | 0.0047 (9) | 0.0038 (10) |
C9 | 0.0276 (13) | 0.0234 (14) | 0.0155 (11) | 0.0049 (11) | 0.0060 (10) | 0.0011 (10) |
C10 | 0.0348 (14) | 0.0279 (14) | 0.0203 (11) | 0.0043 (13) | 0.0150 (11) | 0.0035 (11) |
C11 | 0.0285 (13) | 0.0240 (14) | 0.0216 (11) | −0.0017 (11) | 0.0158 (10) | 0.0012 (10) |
C12 | 0.0198 (12) | 0.0208 (13) | 0.0183 (11) | −0.0004 (10) | 0.0102 (9) | −0.0002 (10) |
C13 | 0.0301 (14) | 0.0327 (16) | 0.0284 (13) | −0.0062 (13) | 0.0175 (11) | −0.0007 (12) |
C14 | 0.0215 (13) | 0.0320 (15) | 0.0251 (13) | −0.0017 (12) | 0.0057 (11) | 0.0026 (12) |
C15 | 0.0309 (13) | 0.0175 (13) | 0.0213 (11) | 0.0026 (11) | 0.0142 (10) | −0.0009 (11) |
C16 | 0.0222 (14) | 0.0384 (16) | 0.0296 (13) | 0.0054 (13) | 0.0132 (11) | 0.0021 (13) |
O1 | 0.0334 (11) | 0.0271 (11) | 0.0197 (9) | 0.0117 (9) | 0.0094 (8) | 0.0075 (8) |
Cl1 | 0.0305 (3) | 0.0301 (3) | 0.0191 (3) | −0.0081 (3) | 0.0062 (2) | −0.0044 (3) |
Cl2 | 0.0418 (4) | 0.0283 (3) | 0.0250 (3) | 0.0152 (3) | 0.0159 (3) | 0.0122 (3) |
C1—C2 | 1.521 (3) | C9—O1 | 1.449 (3) |
C1—C7 | 1.542 (3) | C9—C10 | 1.513 (4) |
C1—C12 | 1.561 (3) | C9—H9 | 1.0000 |
C1—H1 | 1.0000 | C10—C11 | 1.540 (4) |
C2—C3 | 1.503 (3) | C10—H10A | 0.9900 |
C2—C4 | 1.530 (3) | C10—H10B | 0.9900 |
C2—H2 | 1.0000 | C11—C12 | 1.545 (3) |
C3—C4 | 1.494 (4) | C11—H11A | 0.9900 |
C3—Cl2 | 1.764 (2) | C11—H11B | 0.9900 |
C3—Cl1 | 1.766 (3) | C12—C15 | 1.532 (4) |
C4—C13 | 1.517 (4) | C12—C16 | 1.536 (4) |
C4—C5 | 1.519 (4) | C13—H13A | 0.9800 |
C5—C6 | 1.542 (4) | C13—H13B | 0.9800 |
C5—H5A | 0.9900 | C13—H13C | 0.9800 |
C5—H5B | 0.9900 | C14—H14A | 0.9800 |
C6—C7 | 1.538 (3) | C14—H14B | 0.9800 |
C6—H6A | 0.9900 | C14—H14C | 0.9800 |
C6—H6B | 0.9900 | C15—H15A | 0.9800 |
C7—C8 | 1.520 (3) | C15—H15B | 0.9800 |
C7—H7 | 1.0000 | C15—H15C | 0.9800 |
C8—O1 | 1.457 (3) | C16—H16A | 0.9800 |
C8—C9 | 1.471 (3) | C16—H16B | 0.9800 |
C8—C14 | 1.505 (4) | C16—H16C | 0.9800 |
C2—C1—C7 | 112.96 (19) | O1—C9—C10 | 119.6 (2) |
C2—C1—C12 | 113.1 (2) | C8—C9—C10 | 126.1 (2) |
C7—C1—C12 | 115.62 (19) | O1—C9—H9 | 113.6 |
C2—C1—H1 | 104.6 | C8—C9—H9 | 113.6 |
C7—C1—H1 | 104.6 | C10—C9—H9 | 113.6 |
C12—C1—H1 | 104.6 | C9—C10—C11 | 120.1 (2) |
C3—C2—C1 | 120.6 (2) | C9—C10—H10A | 107.3 |
C3—C2—C4 | 59.00 (16) | C11—C10—H10A | 107.3 |
C1—C2—C4 | 121.3 (2) | C9—C10—H10B | 107.3 |
C3—C2—H2 | 114.9 | C11—C10—H10B | 107.3 |
C1—C2—H2 | 114.9 | H10A—C10—H10B | 106.9 |
C4—C2—H2 | 114.9 | C10—C11—C12 | 116.6 (2) |
C4—C3—C2 | 61.39 (16) | C10—C11—H11A | 108.2 |
C4—C3—Cl2 | 120.18 (19) | C12—C11—H11A | 108.2 |
C2—C3—Cl2 | 119.53 (18) | C10—C11—H11B | 108.2 |
C4—C3—Cl1 | 120.21 (18) | C12—C11—H11B | 108.2 |
C2—C3—Cl1 | 120.14 (18) | H11A—C11—H11B | 107.3 |
Cl2—C3—Cl1 | 108.85 (13) | C15—C12—C16 | 107.7 (2) |
C3—C4—C13 | 117.1 (2) | C15—C12—C11 | 110.4 (2) |
C3—C4—C5 | 119.9 (2) | C16—C12—C11 | 107.7 (2) |
C13—C4—C5 | 113.6 (2) | C15—C12—C1 | 114.5 (2) |
C3—C4—C2 | 59.62 (16) | C16—C12—C1 | 107.1 (2) |
C13—C4—C2 | 118.0 (2) | C11—C12—C1 | 109.2 (2) |
C5—C4—C2 | 118.4 (2) | C4—C13—H13A | 109.5 |
C4—C5—C6 | 116.7 (2) | C4—C13—H13B | 109.5 |
C4—C5—H5A | 108.1 | H13A—C13—H13B | 109.5 |
C6—C5—H5A | 108.1 | C4—C13—H13C | 109.5 |
C4—C5—H5B | 108.1 | H13A—C13—H13C | 109.5 |
C6—C5—H5B | 108.1 | H13B—C13—H13C | 109.5 |
H5A—C5—H5B | 107.3 | C8—C14—H14A | 109.5 |
C7—C6—C5 | 116.5 (2) | C8—C14—H14B | 109.5 |
C7—C6—H6A | 108.2 | H14A—C14—H14B | 109.5 |
C5—C6—H6A | 108.2 | C8—C14—H14C | 109.5 |
C7—C6—H6B | 108.2 | H14A—C14—H14C | 109.5 |
C5—C6—H6B | 108.2 | H14B—C14—H14C | 109.5 |
H6A—C6—H6B | 107.3 | C12—C15—H15A | 109.5 |
C8—C7—C6 | 115.4 (2) | C12—C15—H15B | 109.5 |
C8—C7—C1 | 116.08 (19) | H15A—C15—H15B | 109.5 |
C6—C7—C1 | 109.83 (19) | C12—C15—H15C | 109.5 |
C8—C7—H7 | 104.7 | H15A—C15—H15C | 109.5 |
C6—C7—H7 | 104.7 | H15B—C15—H15C | 109.5 |
C1—C7—H7 | 104.7 | C12—C16—H16A | 109.5 |
O1—C8—C9 | 59.31 (15) | C12—C16—H16B | 109.5 |
O1—C8—C14 | 113.9 (2) | H16A—C16—H16B | 109.5 |
C9—C8—C14 | 118.1 (2) | C12—C16—H16C | 109.5 |
O1—C8—C7 | 111.4 (2) | H16A—C16—H16C | 109.5 |
C9—C8—C7 | 117.4 (2) | H16B—C16—H16C | 109.5 |
C14—C8—C7 | 120.5 (2) | C9—O1—C8 | 60.82 (15) |
O1—C9—C8 | 59.88 (15) |
Experimental details
Crystal data | |
Chemical formula | C16H24Cl2O |
Mr | 303.25 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 180 |
a, b, c (Å) | 8.7706 (5), 10.5467 (4), 9.1639 (5) |
β (°) | 115.710 (7) |
V (Å3) | 763.75 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.42 |
Crystal size (mm) | 0.40 × 0.34 × 0.08 |
Data collection | |
Diffractometer | Agilent Xcalibur, Eos, Gemini ultra |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.901, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7805, 2945, 2868 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.05 |
No. of reflections | 2945 |
No. of parameters | 176 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.18 |
Absolute structure | Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | −0.02 (2) |
Computer programs: CrysAlis PRO (Agilent, 2014), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Benharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2014). Acta Cryst. E70, o480. CSD CrossRef IUCr Journals Google Scholar
Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18. CrossRef CAS Web of Science Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chiaroni, A., Riche, C., Benharref, A., Chekroun, A. & Lavergne, J.-P. (1992). Acta Cryst. C48, 1720–1722. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chiaroni, A., Riche, C., Benharref, A., El Jamili, H. & Lassaba, E. (1995). Acta Cryst. C51, 1171–1173. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chiaroni, A., Riche, C., Benharref, A., El Jamili, H. & Lassaba, E. (1996a). Acta Cryst. C52, 2502–2504. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chiaroni, A., Riche, C., Benharref, A., Lassaba, E. & Baouid, A. (1996b). Acta Cryst. C52, 2504–2507. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chiaroni, A., Riche, C., Lassaba, E. & Benharref, A. (1996c). Acta Cryst. C52, 3240–3243. CSD CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mori, K. (1989). Tetrahedron, 45, 3233–3298. CrossRef CAS Web of Science Google Scholar
Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522. CSD CrossRef CAS IUCr Journals Google Scholar
Paddon-Jones, G. C., Moore, C. J., Brecknell, D. J., König, W. A. & Kitching, W. (1997). Tetrahedron Lett. 38, 3479–3482. CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Qu, J.-P., Deng, C., Zhou, J., Sun, X.-L. & Tang, Y. (2009). J. Org. Chem. 74, 7684–7689. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Taylor, S. K., Hopkins, J. A., Spangenberg, K. A., McMillen, D. W. & Grutzner, J. B. (1991). J. Org. Chem. 56, 5951–5955. CrossRef CAS Web of Science Google Scholar
Trost, B. M., Balkovec, J. M. & Mao, M. K.-T. (1983). J. Am. Chem. Soc. 105, 6755–6757. CrossRef CAS Web of Science Google Scholar
Vollhardt, K. P. C. & Schore, N. E. (1996). Quimica Organica, p. 467. Barcelona: Omega. Google Scholar
Yang, D. (2004). Acc. Chem. Res. 37, 497–505. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.