organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino-7-hy­dr­oxy-4-(4-hy­dr­oxy­phen­yl)-4H-chromene-3-carbo­nitrile

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 30 June 2015; accepted 2 July 2015; online 8 July 2015)

In the title compound, C16H12N2O3, the chromene ring system is nearly planar [maximum deviation from the mean plane = 0.057 (1) Å], and is almost perpendicular to the benzene ring, with a dihedral angle of 85.29 (5)°. In the crystal, mol­ecules are linked by classical N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network. Furthermore, a weak ππ stacking inter­action is observed; the centroid-to-centroid distance is 3.7260 (7) Å.

1. Related literature

For the synthesis and biological activity of mol­ecules having the 2-amino-7-hy­droxy-4-(4-hy­droxy­phen­yl)-4H-chromene unit, see: Mohr et al. (1975[Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750-3754.]); Bianchi & Tava (1987[Bianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001-2002.]); Khafagy et al. (2002[Khafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715-722.]); Hiramoto et al. (1997[Hiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 395, 47-56.]); Skommer et al. (2006[Skommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). Leuk. Res. 30, 322-331.]); Gourdeau et al. (2004[Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375-1384.]); Anderson et al. (2005[Anderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). Bioorg. Med. Chem. Lett. 15, 1587-1590.]); Wang et al. (2000[Wang, J. L., Liu, D., Zhang, Z., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S. & Huang, Z. (2000). Proc. Natl Acad. Sci. USA, 97, 7124-7129.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12N2O3

  • Mr = 280.28

  • Monoclinic, C 2/c

  • a = 18.3084 (13) Å

  • b = 6.0743 (4) Å

  • c = 24.5339 (17) Å

  • β = 106.471 (2)°

  • V = 2616.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.03 mm

2.2. Data collection

  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.830, Tmax = 1.000

  • 13649 measured reflections

  • 2986 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.06

  • 2986 reflections

  • 206 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 (1) 2.16 (1) 3.0316 (14) 169 (2)
N1—H2N⋯O2ii 0.90 (2) 2.51 (2) 3.2052 (15) 135 (1)
O2—H2O⋯O3iii 0.89 (2) 1.81 (2) 2.6875 (13) 168 (2)
O3—H3O⋯N2iv 0.87 (1) 1.89 (1) 2.7550 (14) 174 (2)
C8—H8⋯O1i 0.95 2.47 3.4011 (14) 165
Symmetry codes: (i) -x, -y, -z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x, y-1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM; data reduction: CrystalClear-SM; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Heterocycles containing the chromene moiety show interesting biological activities such as antitumor (Mohr et al., 1975), sex pheromone (Bianchi & Tava, 1987), antimicrobial (Khafagy et al., 2002), and mutagenicity (Hiramoto et al., 1997). Interestingly, 2-amino-4H-chromene derivatives arises from their potential application in the treatment of human inflammatory TNFa-mediated diseases, such as psoriatic arthritis and rheumatoid and in cancer therapy (Skommer et al., 2006; Gourdeau et al., 2004; Anderson et al., 2005; Wang et al., 2000). Such facts inspired us to synthesize and determine the crystal structure of the title compound in this study.

As shown in Fig. 1, the 4H-chromene ring system (O1/C1–C9) of the title compound is almost planar with the puckering parameters of Q(2) = 0.0759 (12) Å and φ(2) = 155.5 (9) °. It makes a dihedral angle of 85.29 (5)° with the C11–C16 phenyl ring.

In the crystal structure, N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds link the adjacent molecules, forming the three dimensional network (Table 1, Fig. 2). In addition, a weak π-π stacking interaction [Cg1···Cg1 = 3.7260 (7) Å]; where Cg1 is the centroid of the O1/C1–C4/C9 ring of the 4H-chromene ring system (O1/C1–C9)] are observed.

Related literature top

For the synthesis and biological activity of molecules having the 2-amino-7-hydroxy-4-(4-hydroxyphenyl)-4H-chromene unit, see: Mohr et al. (1975); Bianchi & Tava (1987); Khafagy et al. (2002); Hiramoto et al. (1997); Skommer et al. (2006); Gourdeau et al. (2004); Anderson et al. (2005); Wang et al. (2000).

Experimental top

A mixture of 1 mmol (180 mg) of 4-hydroxybenzylidene-malononitrile and 1 mmol (110 mg) of resorcinol was refluxed in 10 ml e thanol for 3 h in the presence of few catalytic drops of pipredine. The mixture was cooled at ambient temperature and the resulting solid was filtered off, dried under vacuum and recrytallized from ethanol to furnish white crystals in a good quality suitable for X-ray diffraction. Mp 523 K.

Refinement top

The H atoms of the OH and NH2 groups were located in a difference Fourier map and were refined freely [O2—H2O = 0.893 (17) Å, O3—H3O = 0.866 (14) Å, N1—H1N = 0.881 (13) Å and N1—H2N = 0.895 (17) Å]. The H atoms attached to the C atoms were positioned geometrically, with C—H = 0.95 Å and C—H = 1.00 Å for aromatic and methine H, respectively and H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Heterocycles containing the chromene moiety show interesting biological activities such as antitumor (Mohr et al., 1975), sex pheromone (Bianchi & Tava, 1987), antimicrobial (Khafagy et al., 2002), and mutagenicity (Hiramoto et al., 1997). Interestingly, 2-amino-4H-chromene derivatives arises from their potential application in the treatment of human inflammatory TNFa-mediated diseases, such as psoriatic arthritis and rheumatoid and in cancer therapy (Skommer et al., 2006; Gourdeau et al., 2004; Anderson et al., 2005; Wang et al., 2000). Such facts inspired us to synthesize and determine the crystal structure of the title compound in this study.

As shown in Fig. 1, the 4H-chromene ring system (O1/C1–C9) of the title compound is almost planar with the puckering parameters of Q(2) = 0.0759 (12) Å and φ(2) = 155.5 (9) °. It makes a dihedral angle of 85.29 (5)° with the C11–C16 phenyl ring.

In the crystal structure, N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds link the adjacent molecules, forming the three dimensional network (Table 1, Fig. 2). In addition, a weak π-π stacking interaction [Cg1···Cg1 = 3.7260 (7) Å]; where Cg1 is the centroid of the O1/C1–C4/C9 ring of the 4H-chromene ring system (O1/C1–C9)] are observed.

For the synthesis and biological activity of molecules having the 2-amino-7-hydroxy-4-(4-hydroxyphenyl)-4H-chromene unit, see: Mohr et al. (1975); Bianchi & Tava (1987); Khafagy et al. (2002); Hiramoto et al. (1997); Skommer et al. (2006); Gourdeau et al. (2004); Anderson et al. (2005); Wang et al. (2000).

Computing details top

Data collection: CrystalClear-SM (Rigaku, 2012); cell refinement: CrystalClear-SM (Rigaku, 2012); data reduction: CrystalClear-SM (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the b axis.
2-Amino-7-hydroxy-4-(4-hydroxyphenyl)-4H-chromene-3-carbonitrile top
Crystal data top
C16H12N2O3F(000) = 1168
Mr = 280.28Dx = 1.423 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 14157 reflections
a = 18.3084 (13) Åθ = 2.3–27.5°
b = 6.0743 (4) ŵ = 0.10 mm1
c = 24.5339 (17) ÅT = 100 K
β = 106.471 (2)°Blade, brown
V = 2616.5 (3) Å30.25 × 0.10 × 0.03 mm
Z = 8
Data collection top
Rigaku AFC12 (Right)
diffractometer
2986 independent reflections
Radiation source: Rotating Anode2540 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.032
profile data from ω–scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear-SM; Rigaku, 2012)
h = 2318
Tmin = 0.830, Tmax = 1.000k = 77
13649 measured reflectionsl = 3131
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.7337P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2986 reflectionsΔρmax = 0.28 e Å3
206 parametersΔρmin = 0.20 e Å3
Crystal data top
C16H12N2O3V = 2616.5 (3) Å3
Mr = 280.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.3084 (13) ŵ = 0.10 mm1
b = 6.0743 (4) ÅT = 100 K
c = 24.5339 (17) Å0.25 × 0.10 × 0.03 mm
β = 106.471 (2)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
2986 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM; Rigaku, 2012)
2540 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.032
13649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
2986 reflectionsΔρmin = 0.20 e Å3
206 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05989 (4)0.30160 (13)0.03455 (3)0.0187 (2)
O20.15605 (5)0.03145 (14)0.06613 (4)0.0226 (3)
O30.20866 (5)0.79736 (15)0.35127 (3)0.0213 (3)
N10.16338 (6)0.41872 (18)0.01319 (4)0.0207 (3)
N20.21498 (6)0.93998 (18)0.09021 (5)0.0268 (3)
C10.11540 (6)0.45728 (19)0.04464 (5)0.0173 (3)
C20.11794 (6)0.62821 (19)0.08107 (5)0.0178 (3)
C30.06229 (6)0.66058 (19)0.11588 (5)0.0174 (3)
C40.00672 (6)0.46994 (19)0.10543 (5)0.0170 (3)
C50.04921 (6)0.4552 (2)0.13396 (5)0.0192 (3)
C60.10354 (6)0.2906 (2)0.12215 (5)0.0196 (3)
C70.10248 (6)0.13336 (19)0.08098 (5)0.0180 (3)
C80.04727 (6)0.14161 (19)0.05235 (5)0.0172 (3)
C90.00636 (6)0.30919 (19)0.06543 (5)0.0164 (3)
C100.17293 (7)0.7951 (2)0.08532 (5)0.0200 (3)
C110.10251 (6)0.69419 (19)0.17886 (5)0.0178 (3)
C120.08736 (7)0.8801 (2)0.20677 (5)0.0235 (3)
C130.12262 (7)0.9120 (2)0.26446 (5)0.0250 (3)
C140.17396 (6)0.7573 (2)0.29446 (5)0.0182 (3)
C150.19056 (7)0.5711 (2)0.26720 (5)0.0206 (3)
C160.15444 (7)0.5408 (2)0.20975 (5)0.0210 (3)
H1N0.1546 (9)0.304 (2)0.0097 (6)0.034 (4)*
H2N0.2042 (8)0.505 (3)0.0173 (7)0.034 (4)*
H2O0.1713 (10)0.071 (3)0.0962 (7)0.049 (5)*
H30.032400.797100.101700.0210*
H3O0.2327 (9)0.681 (2)0.3673 (7)0.040 (5)*
H50.049900.561300.162300.0230*
H60.141300.284700.141900.0240*
H80.046200.034700.024300.0210*
H120.052400.987100.186200.0280*
H130.111501.039300.283100.0300*
H150.226200.465700.287700.0250*
H160.165400.412900.191200.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0184 (4)0.0189 (4)0.0203 (4)0.0043 (3)0.0080 (3)0.0035 (3)
O20.0241 (4)0.0258 (5)0.0199 (4)0.0092 (3)0.0096 (3)0.0028 (3)
O30.0241 (4)0.0233 (5)0.0150 (4)0.0059 (3)0.0030 (3)0.0014 (3)
N10.0188 (5)0.0219 (5)0.0228 (5)0.0046 (4)0.0081 (4)0.0032 (4)
N20.0253 (5)0.0250 (6)0.0279 (6)0.0066 (4)0.0039 (4)0.0015 (4)
C10.0157 (5)0.0183 (6)0.0164 (5)0.0015 (4)0.0019 (4)0.0028 (4)
C20.0177 (5)0.0186 (6)0.0157 (5)0.0021 (4)0.0026 (4)0.0009 (4)
C30.0188 (5)0.0162 (5)0.0161 (5)0.0007 (4)0.0031 (4)0.0001 (4)
C40.0168 (5)0.0172 (6)0.0153 (5)0.0011 (4)0.0016 (4)0.0015 (4)
C50.0206 (5)0.0203 (6)0.0164 (5)0.0021 (4)0.0047 (4)0.0009 (4)
C60.0186 (5)0.0234 (6)0.0176 (5)0.0013 (4)0.0064 (4)0.0021 (4)
C70.0174 (5)0.0182 (6)0.0173 (5)0.0020 (4)0.0032 (4)0.0024 (4)
C80.0192 (5)0.0168 (5)0.0151 (5)0.0001 (4)0.0040 (4)0.0002 (4)
C90.0153 (5)0.0188 (6)0.0149 (5)0.0010 (4)0.0040 (4)0.0021 (4)
C100.0208 (6)0.0212 (6)0.0165 (5)0.0004 (5)0.0030 (4)0.0000 (4)
C110.0176 (5)0.0187 (6)0.0166 (5)0.0017 (4)0.0042 (4)0.0009 (4)
C120.0258 (6)0.0205 (6)0.0213 (6)0.0055 (5)0.0022 (5)0.0009 (5)
C130.0299 (6)0.0215 (6)0.0217 (6)0.0065 (5)0.0044 (5)0.0048 (5)
C140.0177 (5)0.0213 (6)0.0158 (5)0.0009 (4)0.0052 (4)0.0013 (4)
C150.0203 (5)0.0209 (6)0.0194 (6)0.0049 (4)0.0039 (4)0.0012 (5)
C160.0235 (6)0.0191 (6)0.0198 (6)0.0034 (4)0.0053 (5)0.0028 (4)
Geometric parameters (Å, º) top
O1—C11.3586 (14)C6—C71.3943 (17)
O1—C91.3992 (14)C7—C81.3857 (16)
O2—C71.3763 (15)C8—C91.3873 (16)
O3—C141.3796 (14)C11—C121.3888 (17)
N1—C11.3440 (16)C11—C161.3921 (17)
N2—C101.1529 (17)C12—C131.3926 (17)
O2—H2O0.893 (17)C13—C141.3842 (17)
O3—H3O0.866 (14)C14—C151.3907 (17)
N1—H1N0.881 (13)C15—C161.3890 (17)
C1—C21.3622 (16)C3—H31.0000
N1—H2N0.895 (17)C5—H50.9500
C2—C31.5164 (16)C6—H60.9500
C2—C101.4116 (17)C8—H80.9500
C3—C111.5252 (17)C12—H120.9500
C3—C41.5146 (16)C13—H130.9500
C4—C91.3831 (16)C15—H150.9500
C4—C51.3975 (16)C16—H160.9500
C5—C61.3819 (17)
C1—O1—C9118.75 (9)C3—C11—C16121.40 (10)
C7—O2—H2O110.1 (12)C12—C11—C16118.48 (11)
C14—O3—H3O110.1 (10)C3—C11—C12120.12 (10)
O1—C1—N1110.55 (10)C11—C12—C13120.96 (11)
C1—N1—H1N118.2 (11)C12—C13—C14119.68 (11)
C1—N1—H2N119.6 (11)O3—C14—C13117.79 (11)
H1N—N1—H2N122.1 (15)C13—C14—C15120.29 (11)
O1—C1—C2122.33 (10)O3—C14—C15121.90 (11)
N1—C1—C2127.11 (11)C14—C15—C16119.32 (11)
C3—C2—C10116.38 (10)C11—C16—C15121.26 (11)
C1—C2—C3124.40 (10)C2—C3—H3107.00
C1—C2—C10119.13 (11)C4—C3—H3107.00
C4—C3—C11112.46 (10)C11—C3—H3108.00
C2—C3—C11112.30 (10)C4—C5—H5119.00
C2—C3—C4109.38 (9)C6—C5—H5119.00
C3—C4—C5121.11 (10)C5—C6—H6120.00
C5—C4—C9116.96 (11)C7—C6—H6120.00
C3—C4—C9121.85 (10)C7—C8—H8121.00
C4—C5—C6121.83 (11)C9—C8—H8121.00
C5—C6—C7119.37 (11)C11—C12—H12120.00
O2—C7—C8117.36 (10)C13—C12—H12120.00
C6—C7—C8120.29 (11)C12—C13—H13120.00
O2—C7—C6122.33 (10)C14—C13—H13120.00
C7—C8—C9118.65 (11)C14—C15—H15120.00
O1—C9—C4122.98 (10)C16—C15—H15120.00
O1—C9—C8114.15 (10)C11—C16—H16119.00
C4—C9—C8122.88 (11)C15—C16—H16119.00
N2—C10—C2175.64 (14)
C9—O1—C1—N1177.24 (9)C5—C4—C9—O1178.77 (10)
C9—O1—C1—C24.25 (16)C5—C4—C9—C81.38 (18)
C1—O1—C9—C8179.32 (10)C3—C4—C9—C8175.44 (11)
C1—O1—C9—C40.81 (16)C3—C4—C5—C6175.56 (11)
N1—C1—C2—C3179.28 (11)C4—C5—C6—C70.50 (18)
N1—C1—C2—C104.29 (19)C5—C6—C7—C80.26 (18)
O1—C1—C2—C10173.96 (10)C5—C6—C7—O2178.29 (11)
O1—C1—C2—C32.47 (18)O2—C7—C8—C9178.43 (10)
C10—C2—C3—C4178.86 (10)C6—C7—C8—C90.19 (18)
C1—C2—C3—C42.34 (16)C7—C8—C9—C40.67 (18)
C1—C2—C3—C11127.93 (12)C7—C8—C9—O1179.46 (10)
C10—C2—C3—C1155.55 (14)C3—C11—C12—C13178.99 (11)
C2—C3—C4—C95.55 (15)C16—C11—C12—C130.61 (19)
C11—C3—C4—C552.26 (15)C3—C11—C16—C15179.53 (11)
C2—C3—C11—C12124.45 (12)C12—C11—C16—C150.07 (19)
C2—C3—C11—C1655.96 (15)C11—C12—C13—C140.48 (19)
C11—C3—C4—C9131.05 (12)C12—C13—C14—O3178.81 (11)
C2—C3—C4—C5177.75 (11)C12—C13—C14—C150.21 (19)
C4—C3—C11—C1667.94 (14)O3—C14—C15—C16179.28 (11)
C4—C3—C11—C12111.66 (12)C13—C14—C15—C160.74 (19)
C9—C4—C5—C61.29 (17)C14—C15—C16—C110.60 (19)
C3—C4—C9—O14.41 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (1)2.16 (1)3.0316 (14)169 (2)
N1—H2N···O2ii0.90 (2)2.51 (2)3.2052 (15)135 (1)
O2—H2O···O3iii0.89 (2)1.81 (2)2.6875 (13)168 (2)
O3—H3O···N2iv0.87 (1)1.89 (1)2.7550 (14)174 (2)
C8—H8···O1i0.952.473.4011 (14)165
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z; (iii) x, y1, z+1/2; (iv) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.881 (13)2.163 (13)3.0316 (14)168.7 (15)
N1—H2N···O2ii0.895 (17)2.509 (16)3.2052 (15)135.1 (14)
O2—H2O···O3iii0.893 (17)1.808 (18)2.6875 (13)168.1 (17)
O3—H3O···N2iv0.866 (14)1.893 (14)2.7550 (14)173.9 (16)
C8—H8···O1i0.952.473.4011 (14)165
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z; (iii) x, y1, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors would like to express their thanks to National Crystallography Service (NCS), Southampton, UK, for providing the X-ray data.

References

First citationAnderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). Bioorg. Med. Chem. Lett. 15, 1587–1590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001–2002.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384.  Web of Science PubMed CAS Google Scholar
First citationHiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 395, 47–56.  Web of Science CrossRef CAS Google Scholar
First citationKhafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750–3754.  PubMed CAS Web of Science Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). Leuk. Res. 30, 322–331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, J. L., Liu, D., Zhang, Z., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S. & Huang, Z. (2000). Proc. Natl Acad. Sci. USA, 97, 7124–7129.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds