research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(μ-2,4,6-tri­methyl­benzoato-κ2O:O′)bis­­[(nicotinamide-κN1)copper(II)]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dAksaray University, Department of Physics, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 July 2015; accepted 22 July 2015; online 31 July 2015)

In the title binuclear CuII complex, [Cu2(C10H11O2)4(C6H6N2O)2], the two CuII cations [Cu⋯Cu = 2.5990 (5) Å] are bridged by four 2,4,6-tri­methyl­benzoate (TMB) anions. The four nearest O atoms around each CuII cation form distorted square-planar arrangements and the distorted square-pyramidal coordinations are completed by the pyridine N atoms of nicotinamide mol­ecules at distances of 2.164 (2) and 2.165 (2) Å, respectively. The CuII cations are displaced by −0.2045 (3) and 0.2029 (3) Å from the corresponding planes formed by the nearest four O atoms. In the mol­ecule, the dihedral angles between the planes of the benzene rings and the adjacent carboxyl­ate groups are 80.6 (2), 51.4 (2), 24.4 (2) and 32.5 (2)°, while the planes of the pyridine rings are oriented at a dihedral angle of 11.28 (10)°. In the crystal, bifurcated N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules, enclosing R22(8) and R44(8) ring motifs, into a three-dimensional network. The structure contains a solvent-accessible void of 72 Å3, but there is no solvent mol­ecule located within this void. The crystal studied was an inversion twin refined with a minor component of 0.488 (8).

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). It is thus of inter­est to determine the manner in which copper inter­acts with niacin and nicotinamide. In the structures of some complexes obtained from the reactions of CuII ions with NA, e.g. [Cu(sal)2(NA)2] (sal is salicylate) (Hoang et al., 1993[Hoang, N. N., Valach, F. & Melník, M. (1993). Z. Kristallogr. 208, 27-33.]) and [Cu(C7H3ClFO2)2(NA)2] (Hoang et al., 1995[Hoang, N. N., Valach, F. & Dunaj-Jurčo, M. (1995). Acta Cryst. C51, 1095-1097.]), NA is a monodentate ligand coordinating to CuII via its pyridine N atom. In its rare earth complexes, NA coordinates to the rare earth ion via only the O atoms of the substituents, not by the pyridine N atom (Poray-Koshits et al., 1976[Poray-Koshits, M. A., Aslanov, L. A. & Korytniy, E. F. (1976). Itogi Nauki Tekh. Kristallokhim. 11, 5-94.]). Coordination via the amide N atom may also occur. Hence, NA may form mol­ecular or polymeric structures affecting such properties of the compounds as their solubility.

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in CuII complexes of benzoic acid derivatives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis as in ZnII complexes of benzoic acid derivatives (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (née Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843.]). In this context, we synthesized a CuII-containing compound with 2,4,6-tri­methyl­benzoate (TMB) and NA ligands, namely tetra­kis­(μ-2,4,6-tri­methyl­benzoato-κ2O:O′)bis­[(nicotinamide-κN1)copper(II)], [Cu2(TMB)4(NA)2], and report herein its crystal structure.

[Scheme 1]

2. Structural commentary

The binuclear title complex, [Cu2(TMB)4(NA)2], contains two CuII atoms surrounded by four TMB and two NA ligands (Fig. 1[link]). The TMB groups act as bidentate bridging ligands. The Cu1⋯Cu2 [2.5990 (5) Å] distance is shorter than in [Cu2(C6H5COO)4(C10H14N2O)2] [2.613 (1) Å; Hökelek et al., 1995[Hökelek, T., Necefoǧlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.]], [Cu2(C8H7O2)4(C6H6N2O)2] [2.6375 (6)Å; Necefoğlu et al., 2010[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010). Acta Cryst. E66, m334-m335.]], [Cu2(C6H5COO)4(py)2] [py is pyridine; 2.681 (1) Å; Usubaliev et al., 1980[Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.]] and [Cu2(CH3COO)4(H2O)2] (2.64 Å; van Niekerk & Schoening, 1953[Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.]). In metallic copper, the Cu—Cu bond length is 2.55 Å (Lee, 1986[Lee, J. D. (1986). Inorganic Chemistry, 3rd ed., p. 379. London: van Nostrand Reinhold.]). The title complex has the smallest Cu⋯Cu distance after metallic copper. Therefore, a weak orbital inter­action may exist between the two Cu atoms.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

The average Cu—O distance is 1.972 (10) Å (Table 1[link]) and four O atoms (O1/O4/O5/O7 and O2/O3/O6/O7) of the bridging TMB ligands around each Cu atom (Cu1 and Cu2) form distorted square-planar arrangements. The Cu1 and Cu2 atoms lie 0.2045 (3) Å below and 0.2029 (3) Å above the corresponding least-squares planes formed by the nearest O atoms, respectively. The average O—Cu—O bond angles are the same (89.4°) for both of Cu atoms. The distorted square-pyramidal coordination around each Cu atom (Cu1 and Cu2) is completed by the N atoms (N3 and N1) of the NA ligands (Table 1[link]). The N3—Cu1⋯Cu2 and N1—Cu2⋯Cu1 angles are 176.46 (6) and 174.66 (7)°, respectively, and the dihedral angle between plane through atoms Cu1, O1, O2, C1, Cu2, O3, O4 and C11, and that through atoms Cu1, O5, O6, C21, Cu2, O7, O8 and C31 is 87.88 (3)°.

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9874 (18) Cu2—N1 2.165 (2)
Cu1—O4 1.970 (2) O1—C1 1.258 (4)
Cu1—O5 1.958 (2) O2—C1 1.253 (4)
Cu1—O7 1.967 (2) O3—C11 1.254 (3)
Cu1—N3 2.164 (2) O4—C11 1.258 (3)
Cu2—O2 1.9611 (18) O5—C21 1.262 (4)
Cu2—O3 1.9671 (18) O6—C21 1.248 (4)
Cu2—O6 1.983 (3) O7—C31 1.258 (4)
Cu2—O8 1.981 (2) O8—C31 1.268 (4)

The near equalities of the C—O bonds in the carboxyl­ate groups (Table 1[link]) indicate delocalized bonding arrangements, rather than localized single and double bonds. Bond lengths and angles are in good agreement with the values reported for other copper complexes: [Cu(CH3CO2)2(py)]2 (Barclay & Kennard, 1961[Barclay, G. A. & Kennard, C. H. L. (1961). J. Chem. Soc. pp. 5244.]; Hanic et al., 1964[Hanic, F., Štempelová, D. & Hanicová, K. (1964). Acta Cryst. 17, 633-639.]), [Cu(CH2ClCO2)2(2Me-py)]2 (2Me-py is 2-methyl­pyridine; Davey & Stephens, 1970[Davey, G. & Stephens, F. S. (1970). J. Chem. Soc. A, pp. 2803-2805.]), [Cu2(CH3CO2)4(pyrazine)] (Morosin et al., 1975[Morosin, B., Hughes, R. C. & Soos, Z. G. (1975). Acta Cryst. B31, 762-770.]) and [Cu(C6H5CO2)2(py)]2 (Speier & Fulop, 1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331.]).

The dihedral angles between planar carboxyl­ate groups O1/O2/C1, O3/O4/C11, O5/O6/C21 and O7/O8/C31 and the adjacent benzene rings A (C2–C7), B (C12–C17), C (C22–C27) and D (C32–C37) are 80.6 (2), 51.4 (2), 24.4 (2) and 32.5 (2)°, respectively, while those between rings A, B, C, D, E (N1/C41–C45) and F (N3/C47–C51) are A/B = 11.68 (12), A/C = 83.97 (12), A/D = 69.30 (11), A/E = 79.41 (11), A/F = 74.72 (10), B/C = 84.41 (12), B/D = 73.91 (13), B/E = 70.46 (11), B/F = 67.39 (10), C/D = 34.92 (13), C/E = 51.82 (11), C/F = 43.92 (12), D/E = 69.74 (11), D/F = 58.56 (10) and E/F = 11.28 (10)°.

3. Supra­molecular features

In the crystal, bifurcated N—H⋯On (n = nicotinamide) and C—Hpy⋯Oc (py = pyridine and c = carboxyl­ate) hydrogen bonds (Table 2[link]) link the mol­ecules, enclosing R22(8) and R44(8) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) into a three-dimensional network (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O10i 0.86 2.06 2.906 (4) 170
N4—H4A⋯O9ii 0.86 2.10 2.955 (4) 173
N4—H4B⋯O9iii 0.86 2.44 3.228 (4) 153
C50—H50⋯O8iii 0.93 2.54 3.448 (4) 166
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Part of the crystal structure viewed down [010]. Only inter­molecular N—H⋯O hydrogen bonds are shown as dashed lines, enclosing R22(8) and R44(8) ring motifs. Nonbonding H atoms have been omitted for clarity.

4. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 3[link]. N- and C-bound H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = kUeq(C,N), where k = 1.5 for methyl H atoms and k = 1.2 for NH2 and aromatic H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C10H11O2)4(C6H6N2O)2]
Mr 1024.11
Crystal system, space group Monoclinic, C2
Temperature (K) 296
a, b, c (Å) 27.9186 (7), 17.2843 (5), 10.7570 (3)
β (°) 98.204 (2)
V3) 5137.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.45 × 0.38 × 0.23
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.62, 0.91
No. of measured, independent and observed [I > 2σ(I)] reflections 64770, 12762, 9682
Rint 0.055
(sin θ/λ)max−1) 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.03
No. of reflections 12762
No. of parameters 626
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.27
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5232 Friedel pairs
Absolute structure parameter 0.488 (8)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

5. Synthesis and crystallization

The title compound was prepared by the reaction of CuSO4 (0.40 g, 2.5 mmol) in H2O (100 ml) and nicotinamide (0.61 g, 5 mmol) in H2O (25 ml) with sodium 2,4,6-tri­methyl­benzoate (0.93 g, 5 mmol) in H2O (150 ml). The mixture was set aside to crystallize at ambient temperature for three weeks, giving green single crystals.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Tetrakis(µ-2,4,6-trimethylbenzoato-κ2O:O')bis[(nicotinamide-κN1)copper(II)] top
Crystal data top
[Cu2(C10H11O2)4(C6H6N2O)2]F(000) = 2136
Mr = 1024.11Dx = 1.324 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 9983 reflections
a = 27.9186 (7) Åθ = 2.2–28.1°
b = 17.2843 (5) ŵ = 0.89 mm1
c = 10.7570 (3) ÅT = 296 K
β = 98.204 (2)°Block, green
V = 5137.7 (2) Å30.45 × 0.38 × 0.23 mm
Z = 4
Data collection top
Bruker SMART BREEZE CCD
diffractometer
12762 independent reflections
Radiation source: fine-focus sealed tube9682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 28.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 3737
Tmin = 0.62, Tmax = 0.91k = 2323
64770 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.2754P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
12762 reflectionsΔρmax = 0.65 e Å3
626 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 5232 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.488 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.239902 (12)0.411564 (19)0.30231 (3)0.03970 (9)
Cu20.280625 (12)0.30456 (2)0.18371 (3)0.04180 (10)
O10.20128 (7)0.42725 (13)0.13420 (18)0.0509 (6)
O20.22783 (7)0.32167 (13)0.04546 (18)0.0515 (6)
O30.32599 (7)0.29941 (16)0.34120 (17)0.0535 (5)
O40.28428 (8)0.37737 (14)0.45109 (19)0.0527 (6)
O50.29283 (9)0.47641 (15)0.2605 (2)0.0615 (6)
O60.31786 (9)0.39256 (15)0.1280 (2)0.0596 (7)
O70.19297 (7)0.33013 (14)0.3270 (2)0.0507 (6)
O80.23743 (8)0.23502 (14)0.2633 (2)0.0541 (6)
O90.44557 (8)0.12811 (17)0.2878 (2)0.0652 (6)
O100.06281 (8)0.55162 (17)0.2345 (3)0.0716 (7)
N10.31634 (9)0.21015 (16)0.1016 (2)0.0443 (6)
N20.46313 (10)0.06819 (19)0.1157 (3)0.0676 (8)
H2A0.49200.05710.15030.081*
H2B0.45340.05420.03960.081*
N30.20298 (9)0.50200 (15)0.3904 (2)0.0426 (6)
N40.04618 (10)0.60685 (19)0.4118 (3)0.0677 (8)
H4A0.01610.61230.38200.081*
H4B0.05670.62230.48670.081*
C10.19966 (11)0.3779 (2)0.0476 (3)0.0458 (7)
C20.16007 (13)0.38795 (19)0.0621 (3)0.0527 (8)
C30.11368 (14)0.3644 (2)0.0520 (4)0.0672 (10)
C40.07795 (15)0.3761 (2)0.1561 (4)0.0807 (12)
H40.04650.36000.15150.097*
C50.08796 (16)0.4107 (3)0.2648 (3)0.0781 (12)
C60.13336 (17)0.4347 (2)0.2702 (3)0.0790 (13)
H60.13990.45980.34240.095*
C70.17125 (14)0.4234 (2)0.1717 (3)0.0624 (9)
C80.10128 (15)0.3257 (3)0.0654 (4)0.1026 (17)
H8A0.06690.32740.06520.154*
H8B0.11720.35250.13810.154*
H8C0.11190.27290.06750.154*
C90.04713 (19)0.4217 (3)0.3750 (4)0.121 (2)
H9A0.01860.39520.35740.181*
H9B0.05700.40100.45020.181*
H9C0.04020.47590.38630.181*
C100.22098 (18)0.4523 (4)0.1810 (4)0.0955 (15)
H10A0.22780.44540.26520.143*
H10B0.24410.42400.12390.143*
H10C0.22300.50630.15970.143*
C110.31862 (10)0.33173 (18)0.4411 (3)0.0429 (7)
C120.35379 (10)0.3143 (2)0.5561 (2)0.0437 (7)
C130.40357 (10)0.3205 (2)0.5505 (3)0.0553 (8)
C140.43536 (11)0.3010 (3)0.6573 (3)0.0687 (10)
H140.46840.30580.65530.082*
C150.42023 (13)0.2751 (2)0.7651 (3)0.0631 (10)
C160.37164 (14)0.2692 (2)0.7671 (3)0.0649 (10)
H160.36090.25140.83990.078*
C170.33741 (11)0.2886 (2)0.6652 (3)0.0553 (9)
C180.42314 (14)0.3460 (3)0.4338 (4)0.0879 (14)
H18A0.40140.38280.38900.132*
H18B0.42620.30200.38120.132*
H18C0.45430.36960.45670.132*
C190.45624 (16)0.2522 (3)0.8763 (4)0.0939 (15)
H19A0.43990.24520.94820.141*
H19B0.48020.29200.89350.141*
H19C0.47160.20460.85830.141*
C200.28484 (13)0.2766 (3)0.6738 (4)0.0895 (17)
H20A0.28160.24660.74730.134*
H20B0.26980.24960.60050.134*
H20C0.26940.32590.67930.134*
C210.32081 (11)0.4560 (2)0.1842 (3)0.0495 (8)
C220.36131 (12)0.5106 (2)0.1680 (3)0.0508 (8)
C230.40471 (15)0.4835 (3)0.1295 (4)0.0757 (11)
C240.44281 (16)0.5350 (3)0.1284 (5)0.0941 (15)
H240.47130.51660.10360.113*
C250.44094 (15)0.6109 (3)0.1614 (4)0.0848 (13)
C260.39781 (15)0.6374 (3)0.1929 (4)0.0729 (11)
H260.39490.68960.21170.087*
C270.35870 (12)0.5894 (2)0.1974 (3)0.0606 (9)
C280.41129 (19)0.4012 (3)0.0869 (6)0.117 (2)
H28A0.40600.36600.15260.176*
H28B0.44360.39470.06760.176*
H28C0.38850.39060.01330.176*
C290.48412 (19)0.6644 (4)0.1659 (6)0.125 (2)
H29A0.49370.68180.25050.188*
H29B0.47560.70820.11240.188*
H29C0.51050.63710.13750.188*
C300.31381 (15)0.6275 (3)0.2358 (6)0.1002 (17)
H30A0.28540.60490.18910.150*
H30B0.31440.68190.21850.150*
H30C0.31340.61960.32400.150*
C310.20049 (11)0.2598 (2)0.3071 (3)0.0449 (8)
C320.16422 (12)0.2020 (2)0.3347 (3)0.0522 (8)
C330.13735 (14)0.2143 (2)0.4338 (4)0.0671 (10)
C340.10455 (18)0.1582 (3)0.4569 (4)0.0922 (14)
H340.08680.16620.52280.111*
C350.0967 (2)0.0922 (3)0.3890 (6)0.1039 (17)
C360.12263 (19)0.0821 (3)0.2899 (5)0.0980 (16)
H360.11730.03770.24100.118*
C370.15580 (15)0.1348 (2)0.2611 (4)0.0687 (10)
C380.14293 (17)0.2838 (3)0.5166 (4)0.0919 (14)
H38A0.17670.29250.54530.138*
H38B0.12620.27560.58750.138*
H38C0.12950.32810.47020.138*
C390.0593 (3)0.0313 (4)0.4179 (8)0.193 (4)
H39A0.06000.01220.36270.290*
H39B0.02750.05380.40550.290*
H39C0.06700.01450.50340.290*
C400.18033 (17)0.1189 (3)0.1461 (4)0.0982 (15)
H40A0.17880.16440.09460.147*
H40B0.16410.07710.09880.147*
H40C0.21350.10510.17230.147*
C410.36040 (10)0.18707 (19)0.1549 (3)0.0455 (7)
H410.37550.21400.22460.055*
C420.38439 (10)0.12515 (18)0.1110 (3)0.0427 (7)
C430.36146 (12)0.0844 (2)0.0096 (3)0.0565 (8)
H430.37660.04230.02180.068*
C440.31598 (13)0.1064 (2)0.0448 (3)0.0620 (9)
H440.29980.07920.11260.074*
C450.29488 (11)0.1698 (2)0.0032 (3)0.0515 (8)
H450.26430.18520.03470.062*
C460.43379 (11)0.10668 (19)0.1795 (3)0.0501 (8)
C470.15598 (10)0.51250 (18)0.3511 (3)0.0418 (7)
H470.14120.48090.28680.050*
C480.12797 (10)0.56738 (19)0.3998 (3)0.0446 (7)
C490.15054 (12)0.61396 (19)0.4959 (3)0.0533 (8)
H490.13320.65200.53130.064*
C500.19866 (13)0.6030 (2)0.5376 (3)0.0578 (9)
H500.21440.63310.60250.069*
C510.22351 (11)0.5469 (2)0.4825 (3)0.0504 (8)
H510.25630.54020.51130.060*
C520.07610 (11)0.5748 (2)0.3426 (3)0.0523 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03574 (17)0.0471 (2)0.03418 (17)0.01540 (16)0.00220 (12)0.00320 (16)
Cu20.03820 (18)0.0504 (2)0.03404 (16)0.01698 (16)0.00414 (12)0.00630 (16)
O10.0585 (12)0.0539 (15)0.0354 (10)0.0202 (11)0.0096 (9)0.0022 (9)
O20.0514 (12)0.0569 (15)0.0402 (11)0.0185 (11)0.0137 (8)0.0064 (10)
O30.0450 (11)0.0702 (15)0.0398 (10)0.0234 (12)0.0125 (8)0.0096 (11)
O40.0459 (12)0.0701 (15)0.0379 (11)0.0196 (11)0.0085 (9)0.0090 (10)
O50.0594 (14)0.0630 (16)0.0648 (15)0.0031 (12)0.0180 (12)0.0096 (12)
O60.0591 (14)0.0650 (17)0.0556 (14)0.0006 (11)0.0117 (11)0.0136 (12)
O70.0409 (11)0.0566 (15)0.0546 (13)0.0093 (10)0.0073 (10)0.0002 (10)
O80.0474 (13)0.0546 (14)0.0610 (14)0.0163 (11)0.0100 (11)0.0038 (11)
O90.0413 (12)0.0855 (18)0.0675 (16)0.0228 (12)0.0033 (10)0.0023 (14)
O100.0397 (12)0.094 (2)0.0800 (18)0.0205 (13)0.0049 (12)0.0113 (15)
N10.0402 (14)0.0470 (15)0.0444 (14)0.0123 (12)0.0014 (11)0.0111 (12)
N20.0439 (15)0.075 (2)0.086 (2)0.0193 (15)0.0162 (14)0.0060 (17)
N30.0347 (13)0.0517 (16)0.0399 (13)0.0110 (11)0.0000 (10)0.0049 (11)
N40.0443 (15)0.083 (2)0.079 (2)0.0186 (15)0.0207 (14)0.0020 (17)
C10.0449 (17)0.0522 (19)0.0370 (15)0.0074 (15)0.0050 (12)0.0058 (14)
C20.063 (2)0.0490 (19)0.0398 (16)0.0163 (15)0.0152 (14)0.0035 (13)
C30.063 (2)0.066 (2)0.063 (2)0.0056 (19)0.0241 (17)0.0057 (18)
C40.070 (2)0.070 (3)0.087 (3)0.008 (2)0.040 (2)0.003 (2)
C50.099 (3)0.061 (2)0.058 (2)0.024 (3)0.043 (2)0.009 (2)
C60.116 (4)0.068 (3)0.0424 (19)0.020 (2)0.026 (2)0.0018 (17)
C70.080 (2)0.061 (2)0.0410 (16)0.013 (2)0.0097 (15)0.0024 (16)
C80.066 (2)0.138 (5)0.095 (3)0.022 (3)0.017 (2)0.039 (3)
C90.132 (4)0.113 (4)0.091 (3)0.038 (4)0.077 (3)0.015 (3)
C100.118 (4)0.114 (4)0.055 (2)0.002 (3)0.012 (2)0.013 (2)
C110.0367 (15)0.0481 (18)0.0405 (15)0.0096 (13)0.0058 (11)0.0015 (13)
C120.0389 (14)0.0513 (19)0.0367 (13)0.0109 (14)0.0093 (11)0.0003 (14)
C130.0410 (16)0.068 (2)0.0523 (17)0.0044 (15)0.0076 (13)0.0041 (16)
C140.0374 (16)0.090 (3)0.072 (2)0.0075 (19)0.0146 (14)0.018 (2)
C150.062 (2)0.070 (2)0.0477 (19)0.0130 (18)0.0232 (16)0.0085 (16)
C160.071 (2)0.079 (3)0.0398 (17)0.010 (2)0.0087 (15)0.0056 (17)
C170.0466 (16)0.074 (3)0.0427 (16)0.0091 (16)0.0047 (12)0.0017 (16)
C180.056 (2)0.134 (4)0.072 (3)0.020 (3)0.0045 (19)0.002 (3)
C190.087 (3)0.111 (4)0.069 (3)0.028 (3)0.040 (2)0.009 (2)
C200.054 (2)0.150 (5)0.065 (2)0.006 (2)0.0123 (19)0.023 (3)
C210.0439 (17)0.061 (2)0.0411 (16)0.0079 (16)0.0030 (13)0.0019 (16)
C220.0495 (17)0.059 (2)0.0427 (16)0.0067 (16)0.0032 (14)0.0028 (15)
C230.076 (3)0.081 (3)0.076 (3)0.000 (2)0.030 (2)0.005 (2)
C240.073 (3)0.097 (4)0.123 (4)0.001 (3)0.050 (3)0.008 (3)
C250.065 (2)0.099 (4)0.091 (3)0.014 (2)0.015 (2)0.013 (3)
C260.075 (3)0.072 (3)0.070 (2)0.005 (2)0.002 (2)0.001 (2)
C270.0500 (19)0.071 (3)0.055 (2)0.0028 (18)0.0093 (15)0.0002 (18)
C280.109 (4)0.096 (4)0.165 (5)0.016 (3)0.085 (4)0.014 (4)
C290.095 (4)0.124 (5)0.163 (6)0.040 (3)0.040 (4)0.010 (4)
C300.059 (2)0.064 (3)0.173 (5)0.008 (2)0.001 (3)0.016 (3)
C310.0452 (18)0.055 (2)0.0322 (14)0.0157 (15)0.0033 (12)0.0054 (13)
C320.0571 (19)0.052 (2)0.0453 (17)0.0112 (16)0.0001 (14)0.0084 (15)
C330.069 (2)0.076 (3)0.059 (2)0.003 (2)0.0191 (18)0.0084 (19)
C340.102 (3)0.104 (4)0.079 (3)0.004 (3)0.040 (3)0.015 (3)
C350.119 (4)0.089 (4)0.110 (4)0.030 (3)0.039 (3)0.011 (3)
C360.116 (4)0.069 (3)0.110 (4)0.019 (3)0.019 (3)0.003 (3)
C370.071 (2)0.064 (2)0.070 (2)0.003 (2)0.0060 (19)0.001 (2)
C380.102 (3)0.105 (4)0.080 (3)0.003 (3)0.052 (3)0.012 (3)
C390.249 (10)0.116 (6)0.240 (10)0.080 (6)0.123 (9)0.005 (6)
C400.102 (3)0.103 (4)0.091 (3)0.011 (3)0.017 (3)0.051 (3)
C410.0357 (15)0.0547 (19)0.0455 (16)0.0095 (14)0.0040 (12)0.0031 (14)
C420.0355 (14)0.0430 (16)0.0519 (17)0.0049 (13)0.0140 (13)0.0034 (14)
C430.059 (2)0.0456 (19)0.067 (2)0.0119 (16)0.0185 (17)0.0113 (16)
C440.058 (2)0.067 (2)0.059 (2)0.0052 (18)0.0034 (16)0.0252 (18)
C450.0437 (16)0.064 (2)0.0456 (16)0.0121 (16)0.0026 (13)0.0119 (15)
C460.0408 (16)0.0447 (18)0.067 (2)0.0086 (14)0.0162 (15)0.0073 (16)
C470.0399 (15)0.0433 (17)0.0415 (15)0.0073 (13)0.0031 (12)0.0060 (13)
C480.0370 (15)0.0455 (17)0.0534 (18)0.0042 (14)0.0136 (13)0.0031 (14)
C490.0557 (19)0.0428 (18)0.065 (2)0.0053 (15)0.0224 (16)0.0139 (16)
C500.062 (2)0.057 (2)0.0554 (19)0.0052 (17)0.0093 (16)0.0178 (16)
C510.0388 (16)0.062 (2)0.0492 (17)0.0019 (15)0.0005 (13)0.0077 (15)
C520.0390 (16)0.0495 (19)0.070 (2)0.0109 (14)0.0142 (15)0.0038 (17)
Geometric parameters (Å, º) top
Cu1—Cu22.5990 (4)C19—H19C0.9600
Cu1—O11.9874 (18)C20—H20A0.9600
Cu1—O41.970 (2)C20—H20B0.9600
Cu1—O51.958 (2)C20—H20C0.9600
Cu1—O71.967 (2)C21—C221.502 (5)
Cu1—N32.164 (2)C22—C231.415 (5)
Cu2—O21.9611 (18)C22—C271.403 (5)
Cu2—O31.9671 (18)C24—C251.362 (7)
Cu2—O61.983 (3)C24—C231.388 (6)
Cu2—O81.981 (2)C24—H240.9300
Cu2—N12.165 (2)C25—C291.514 (6)
O1—C11.258 (4)C26—C251.375 (6)
O2—C11.253 (4)C26—C271.377 (6)
O3—C111.254 (3)C26—H260.9300
O4—C111.258 (3)C27—C301.523 (6)
O5—C211.262 (4)C28—C231.515 (6)
O6—C211.248 (4)C28—H28A0.9600
O7—C311.258 (4)C28—H28B0.9600
O8—C311.268 (4)C28—H28C0.9600
O9—C461.222 (4)C29—H29A0.9600
O10—C521.236 (4)C29—H29B0.9600
N1—C411.342 (4)C29—H29C0.9600
N1—C451.336 (4)C30—H30A0.9600
N2—H2A0.8600C30—H30B0.9600
N2—H2B0.8600C30—H30C0.9600
N3—C471.333 (4)C31—C321.482 (5)
N3—C511.323 (4)C32—C331.404 (5)
N4—H4A0.8600C32—C371.406 (5)
N4—H4B0.8600C34—C331.380 (6)
C1—C21.508 (4)C34—C351.356 (7)
C2—C31.377 (5)C34—H340.9300
C2—C71.402 (5)C35—C361.382 (7)
C3—C41.404 (5)C35—C391.547 (7)
C3—C81.512 (6)C36—H360.9300
C4—H40.9300C37—C361.366 (6)
C5—C41.377 (6)C37—C401.522 (5)
C5—C61.343 (6)C38—C331.491 (6)
C5—C91.535 (5)C38—H38A0.9600
C6—H60.9300C38—H38B0.9600
C7—C61.400 (5)C38—H38C0.9600
C7—C101.493 (6)C39—H39A0.9600
C8—H8A0.9600C39—H39B0.9600
C8—H8B0.9600C39—H39C0.9600
C8—H8C0.9600C40—H40A0.9600
C9—H9A0.9600C40—H40B0.9600
C9—H9B0.9600C40—H40C0.9600
C9—H9C0.9600C41—C421.381 (4)
C10—H10A0.9600C41—H410.9300
C10—H10B0.9600C42—C431.377 (5)
C10—H10C0.9600C42—C461.502 (4)
C12—C111.496 (4)C43—C441.374 (5)
C12—C131.404 (4)C43—H430.9300
C12—C171.392 (4)C44—H440.9300
C13—C141.390 (4)C45—C441.379 (5)
C13—C181.505 (5)C45—H450.9300
C14—H140.9300C46—N21.321 (4)
C15—C141.364 (5)C47—H470.9300
C15—C161.364 (5)C48—C521.496 (4)
C15—C191.502 (5)C48—C471.379 (4)
C16—H160.9300C48—C491.389 (5)
C17—C161.388 (4)C49—C501.368 (5)
C17—C201.498 (5)C49—H490.9300
C18—H18A0.9600C50—C511.374 (5)
C18—H18B0.9600C50—H500.9300
C18—H18C0.9600C51—H510.9300
C19—H19A0.9600C52—N41.317 (4)
C19—H19B0.9600
O1—Cu1—Cu282.47 (6)H19B—C19—H19C109.5
O4—Cu1—Cu285.23 (6)C17—C20—H20A109.5
O5—Cu1—Cu284.10 (7)C17—C20—H20B109.5
O7—Cu1—Cu284.47 (7)C17—C20—H20C109.5
N3—Cu1—Cu2176.46 (6)H20A—C20—H20B109.5
O4—Cu1—O1167.66 (9)H20A—C20—H20C109.5
O5—Cu1—O192.42 (10)H20B—C20—H20C109.5
O7—Cu1—O186.28 (9)O5—C21—C22116.5 (3)
O5—Cu1—O487.16 (10)O6—C21—O5123.8 (3)
O7—Cu1—O491.69 (10)O6—C21—C22119.6 (3)
O5—Cu1—O7168.56 (10)C23—C22—C21121.1 (3)
O1—Cu1—N393.99 (9)C27—C22—C21121.3 (3)
O4—Cu1—N398.31 (9)C27—C22—C23117.5 (3)
O5—Cu1—N396.28 (10)C22—C23—C28123.0 (4)
O7—Cu1—N395.14 (9)C24—C23—C22118.7 (4)
O2—Cu2—Cu186.03 (6)C24—C23—C28118.3 (4)
O3—Cu2—Cu183.25 (7)C23—C24—H24118.1
O6—Cu2—Cu183.53 (7)C25—C24—C23123.8 (4)
O8—Cu2—Cu183.33 (7)C25—C24—H24118.1
N1—Cu2—Cu1174.66 (7)C24—C25—C26116.9 (4)
O2—Cu2—O3169.03 (9)C24—C25—C29122.4 (4)
O2—Cu2—O691.44 (10)C26—C25—C29120.7 (5)
O3—Cu2—O689.65 (11)C25—C26—C27122.3 (4)
O8—Cu2—O6166.79 (10)C25—C26—H26118.8
O2—Cu2—O888.92 (9)C27—C26—H26118.8
O3—Cu2—O887.55 (10)C26—C27—C22120.7 (4)
O2—Cu2—N198.31 (9)C26—C27—C30115.9 (4)
O3—Cu2—N192.28 (9)C22—C27—C30123.4 (4)
O6—Cu2—N199.40 (9)C23—C28—H28A109.5
O8—Cu2—N193.61 (10)C23—C28—H28B109.5
C1—O1—Cu1122.58 (19)C23—C28—H28C109.5
C1—O2—Cu2120.58 (19)H28A—C28—H28B109.5
C11—O3—Cu2123.63 (18)H28A—C28—H28C109.5
C11—O4—Cu1121.18 (18)H28B—C28—H28C109.5
C21—O5—Cu1123.2 (2)C25—C29—H29A109.5
C21—O6—Cu2121.9 (2)C25—C29—H29B109.5
C31—O7—Cu1122.6 (2)C25—C29—H29C109.5
C31—O8—Cu2122.2 (2)H29A—C29—H29B109.5
C41—N1—Cu2119.8 (2)H29A—C29—H29C109.5
C45—N1—Cu2122.4 (2)H29B—C29—H29C109.5
C45—N1—C41117.6 (3)C27—C30—H30A109.5
C46—N2—H2A120.0C27—C30—H30B109.5
C46—N2—H2B120.0C27—C30—H30C109.5
H2A—N2—H2B120.0H30A—C30—H30B109.5
C47—N3—Cu1117.9 (2)H30A—C30—H30C109.5
C51—N3—Cu1124.7 (2)H30B—C30—H30C109.5
C51—N3—C47117.4 (3)O7—C31—O8123.6 (3)
C52—N4—H4A120.0O7—C31—C32118.8 (3)
C52—N4—H4B120.0O8—C31—C32117.5 (3)
H4A—N4—H4B120.0C33—C32—C31120.3 (3)
O1—C1—C2116.5 (3)C33—C32—C37119.2 (3)
O2—C1—O1125.7 (3)C37—C32—C31120.5 (3)
O2—C1—C2117.8 (3)C32—C33—C38123.6 (4)
C3—C2—C1119.8 (3)C34—C33—C32118.1 (4)
C3—C2—C7121.3 (3)C34—C33—C38118.3 (4)
C7—C2—C1118.8 (3)C33—C34—H34118.2
C2—C3—C4117.6 (4)C35—C34—C33123.6 (4)
C2—C3—C8121.8 (3)C35—C34—H34118.2
C4—C3—C8120.6 (4)C34—C35—C36117.4 (4)
C3—C4—H4118.9C34—C35—C39121.7 (5)
C5—C4—C3122.2 (4)C36—C35—C39120.8 (6)
C5—C4—H4118.9C35—C36—H36118.8
C4—C5—C9119.4 (5)C37—C36—C35122.5 (5)
C6—C5—C4118.6 (3)C37—C36—H36118.8
C6—C5—C9122.0 (4)C32—C37—C40123.3 (4)
C5—C6—C7122.7 (4)C36—C37—C32119.2 (4)
C5—C6—H6118.7C36—C37—C40117.5 (4)
C7—C6—H6118.7C33—C38—H38A109.5
C2—C7—C10121.6 (3)C33—C38—H38B109.5
C6—C7—C2117.6 (4)C33—C38—H38C109.5
C6—C7—C10120.8 (4)H38A—C38—H38B109.5
C3—C8—H8A109.5H38A—C38—H38C109.5
C3—C8—H8B109.5H38B—C38—H38C109.5
C3—C8—H8C109.5C35—C39—H39A109.5
H8A—C8—H8B109.5C35—C39—H39B109.5
H8A—C8—H8C109.5C35—C39—H39C109.5
H8B—C8—H8C109.5H39A—C39—H39B109.5
C5—C9—H9A109.5H39A—C39—H39C109.5
C5—C9—H9B109.5H39B—C39—H39C109.5
C5—C9—H9C109.5C37—C40—H40A109.5
H9A—C9—H9B109.5C37—C40—H40B109.5
H9A—C9—H9C109.5C37—C40—H40C109.5
H9B—C9—H9C109.5H40A—C40—H40B109.5
C7—C10—H10A109.5H40A—C40—H40C109.5
C7—C10—H10B109.5H40B—C40—H40C109.5
C7—C10—H10C109.5N1—C41—C42123.0 (3)
H10A—C10—H10B109.5N1—C41—H41118.5
H10A—C10—H10C109.5C42—C41—H41118.5
H10B—C10—H10C109.5C41—C42—C46116.9 (3)
O3—C11—O4124.9 (3)C43—C42—C41118.3 (3)
O3—C11—C12116.8 (2)C43—C42—C46124.8 (3)
O4—C11—C12118.3 (3)C42—C43—H43120.2
C13—C12—C11119.1 (3)C44—C43—C42119.5 (3)
C17—C12—C11120.4 (2)C44—C43—H43120.2
C17—C12—C13120.4 (3)C43—C44—C45118.6 (3)
C12—C13—C18122.5 (3)C43—C44—H44120.7
C14—C13—C12117.8 (3)C45—C44—H44120.7
C14—C13—C18119.7 (3)N1—C45—C44123.0 (3)
C13—C14—H14118.5N1—C45—H45118.5
C15—C14—C13122.9 (3)C44—C45—H45118.5
C15—C14—H14118.5O9—C46—N2123.0 (3)
C14—C15—C19120.6 (4)O9—C46—C42120.4 (3)
C16—C15—C14117.9 (3)N2—C46—C42116.5 (3)
C16—C15—C19121.5 (4)N3—C47—C48124.0 (3)
C15—C16—C17122.9 (3)N3—C47—H47118.0
C15—C16—H16118.5C48—C47—H47118.0
C17—C16—H16118.5C47—C48—C49117.4 (3)
C12—C17—C20122.6 (3)C47—C48—C52118.1 (3)
C16—C17—C12118.1 (3)C49—C48—C52124.5 (3)
C16—C17—C20119.2 (3)C48—C49—H49120.5
C13—C18—H18A109.5C50—C49—C48118.9 (3)
C13—C18—H18B109.5C50—C49—H49120.5
C13—C18—H18C109.5C49—C50—C51119.3 (3)
H18A—C18—H18B109.5C49—C50—H50120.4
H18A—C18—H18C109.5C51—C50—H50120.4
H18B—C18—H18C109.5N3—C51—C50123.0 (3)
C15—C19—H19A109.5N3—C51—H51118.5
C15—C19—H19B109.5C50—C51—H51118.5
C15—C19—H19C109.5O10—C52—N4122.6 (3)
H19A—C19—H19B109.5O10—C52—C48120.1 (3)
H19A—C19—H19C109.5N4—C52—C48117.3 (3)
O1—Cu1—Cu2—O210.92 (9)C1—C2—C3—C4179.0 (3)
O1—Cu1—Cu2—O3171.40 (11)C1—C2—C3—C82.2 (6)
O1—Cu1—Cu2—O680.98 (10)C7—C2—C3—C40.9 (6)
O1—Cu1—Cu2—O8100.30 (10)C7—C2—C3—C8179.7 (4)
O4—Cu1—Cu2—O2168.21 (10)C1—C2—C7—C6177.6 (3)
O4—Cu1—Cu2—O39.47 (11)C1—C2—C7—C101.0 (5)
O4—Cu1—Cu2—O699.89 (10)C3—C2—C7—C60.6 (5)
O4—Cu1—Cu2—O878.84 (10)C3—C2—C7—C10177.1 (4)
O5—Cu1—Cu2—O2104.16 (10)C2—C3—C4—C50.8 (6)
O5—Cu1—Cu2—O378.16 (11)C8—C3—C4—C5179.6 (4)
O5—Cu1—Cu2—O612.25 (11)C6—C5—C4—C30.8 (6)
O5—Cu1—Cu2—O8166.47 (10)C9—C5—C4—C3180.0 (4)
O7—Cu1—Cu2—O276.04 (10)C4—C5—C6—C72.4 (7)
O7—Cu1—Cu2—O3101.64 (10)C9—C5—C6—C7178.5 (4)
O7—Cu1—Cu2—O6167.94 (10)C2—C7—C6—C52.3 (6)
O7—Cu1—Cu2—O813.33 (9)C10—C7—C6—C5178.9 (4)
Cu2—Cu1—O1—C116.1 (2)C13—C12—C11—O349.5 (4)
O4—Cu1—O1—C112.1 (6)C13—C12—C11—O4130.2 (3)
O5—Cu1—O1—C199.8 (2)C17—C12—C11—O3127.3 (3)
O7—Cu1—O1—C168.8 (2)C17—C12—C11—O453.0 (5)
N3—Cu1—O1—C1163.7 (2)C11—C12—C13—C14177.5 (3)
Cu2—Cu1—O4—C1110.9 (2)C11—C12—C13—C181.6 (6)
O1—Cu1—O4—C1115.0 (6)C17—C12—C13—C140.7 (5)
O5—Cu1—O4—C1173.4 (2)C17—C12—C13—C18178.4 (4)
O7—Cu1—O4—C1195.2 (2)C11—C12—C17—C16176.5 (3)
N3—Cu1—O4—C11169.3 (2)C11—C12—C17—C200.4 (6)
Cu2—Cu1—O5—C2111.1 (3)C13—C12—C17—C160.2 (5)
O1—Cu1—O5—C2171.1 (3)C13—C12—C17—C20176.4 (4)
O4—Cu1—O5—C2196.6 (3)C12—C13—C14—C151.2 (6)
O7—Cu1—O5—C2112.1 (7)C18—C13—C14—C15177.9 (4)
N3—Cu1—O5—C21165.4 (3)C16—C15—C14—C130.7 (6)
Cu2—Cu1—O7—C3113.6 (2)C19—C15—C14—C13177.8 (4)
O1—Cu1—O7—C3196.4 (2)C14—C15—C16—C170.3 (6)
O5—Cu1—O7—C3112.6 (7)C19—C15—C16—C17178.9 (4)
O4—Cu1—O7—C3171.4 (2)C12—C17—C16—C150.8 (6)
N3—Cu1—O7—C31169.9 (2)C20—C17—C16—C15177.0 (4)
O1—Cu1—N3—C4735.0 (2)O6—C21—O5—Cu10.3 (5)
O1—Cu1—N3—C51146.3 (3)C22—C21—O5—Cu1176.7 (2)
O4—Cu1—N3—C47144.1 (2)O5—C21—C22—C23153.9 (3)
O4—Cu1—N3—C5134.6 (3)O5—C21—C22—C2722.3 (5)
O5—Cu1—N3—C47127.9 (2)O6—C21—C22—C2322.6 (5)
O5—Cu1—N3—C5153.4 (3)O6—C21—C22—C27161.2 (3)
O7—Cu1—N3—C4751.6 (2)C21—C22—C23—C24173.5 (4)
O7—Cu1—N3—C51127.1 (3)C21—C22—C23—C287.8 (6)
Cu1—Cu2—O2—C19.9 (2)C27—C22—C23—C242.8 (6)
O3—Cu2—O2—C122.1 (7)C27—C22—C23—C28175.9 (4)
O6—Cu2—O2—C173.5 (2)C21—C22—C27—C26174.1 (3)
O8—Cu2—O2—C193.3 (2)C21—C22—C27—C305.8 (6)
N1—Cu2—O2—C1173.2 (2)C23—C22—C27—C262.2 (5)
Cu1—Cu2—O3—C1111.8 (3)C23—C22—C27—C30177.8 (4)
O2—Cu2—O3—C110.4 (8)C25—C24—C23—C220.5 (8)
O6—Cu2—O3—C1195.4 (3)C25—C24—C23—C28178.3 (5)
O8—Cu2—O3—C1171.7 (3)C23—C24—C25—C262.5 (8)
N1—Cu2—O3—C11165.3 (3)C23—C24—C25—C29176.6 (5)
Cu1—Cu2—O6—C2118.6 (3)C27—C26—C25—C243.2 (7)
O2—Cu2—O6—C21104.4 (3)C27—C26—C25—C29175.9 (4)
O3—Cu2—O6—C2164.6 (3)C25—C26—C27—C220.9 (6)
O8—Cu2—O6—C2113.0 (6)C25—C26—C27—C30179.1 (4)
N1—Cu2—O6—C21156.9 (3)O7—C31—C32—C3332.4 (4)
Cu1—Cu2—O8—C3118.5 (2)O7—C31—C32—C37146.7 (3)
O2—Cu2—O8—C3167.6 (2)O8—C31—C32—C33148.2 (3)
O3—Cu2—O8—C31102.0 (2)O8—C31—C32—C3732.6 (4)
O6—Cu2—O8—C3124.1 (6)C31—C32—C33—C34179.0 (4)
N1—Cu2—O8—C31165.9 (2)C31—C32—C33—C380.1 (6)
O2—Cu2—N1—C41168.5 (2)C37—C32—C33—C341.8 (5)
O2—Cu2—N1—C4515.9 (3)C37—C32—C33—C38179.3 (4)
O3—Cu2—N1—C4114.4 (3)C31—C32—C37—C36179.1 (4)
O3—Cu2—N1—C45161.2 (3)C31—C32—C37—C403.7 (6)
O6—Cu2—N1—C4175.6 (3)C33—C32—C37—C361.8 (6)
O6—Cu2—N1—C45108.8 (3)C33—C32—C37—C40175.5 (4)
O8—Cu2—N1—C41102.1 (3)C35—C34—C33—C320.3 (8)
O8—Cu2—N1—C4573.5 (3)C35—C34—C33—C38179.3 (5)
Cu1—O1—C1—O214.3 (4)C33—C34—C35—C361.3 (9)
Cu1—O1—C1—C2165.4 (2)C33—C34—C35—C39179.6 (6)
Cu2—O2—C1—O10.7 (4)C34—C35—C36—C371.4 (9)
Cu2—O2—C1—C2179.6 (2)C39—C35—C36—C37179.6 (6)
Cu2—O3—C11—O47.4 (5)C32—C37—C36—C350.1 (8)
Cu2—O3—C11—C12172.9 (2)C40—C37—C36—C35177.3 (5)
Cu1—O4—C11—O35.7 (4)N1—C41—C42—C431.5 (5)
Cu1—O4—C11—C12174.0 (2)N1—C41—C42—C46179.3 (3)
Cu2—O6—C21—O516.6 (5)C41—C42—C43—C440.3 (5)
Cu2—O6—C21—C22159.6 (2)C46—C42—C43—C44179.5 (3)
Cu1—O7—C31—O83.9 (4)C41—C42—C46—O922.0 (4)
Cu1—O7—C31—C32176.79 (19)C41—C42—C46—N2156.7 (3)
Cu2—O8—C31—O714.5 (4)C43—C42—C46—O9157.2 (3)
Cu2—O8—C31—C32164.9 (2)C43—C42—C46—N224.1 (5)
Cu2—N1—C41—C42177.1 (2)C42—C43—C44—C450.9 (6)
C45—N1—C41—C421.3 (5)N1—C45—C44—C431.1 (6)
Cu2—N1—C45—C44175.6 (3)C49—C48—C47—N30.2 (5)
C41—N1—C45—C440.0 (5)C52—C48—C47—N3177.5 (3)
Cu1—N3—C47—C48179.3 (2)C47—C48—C49—C500.4 (5)
C51—N3—C47—C480.5 (5)C52—C48—C49—C50178.0 (3)
Cu1—N3—C51—C50178.9 (3)C47—C48—C52—O1022.2 (5)
C47—N3—C51—C500.2 (5)C47—C48—C52—N4158.1 (3)
O1—C1—C2—C379.3 (4)C49—C48—C52—O10155.3 (3)
O1—C1—C2—C798.9 (4)C49—C48—C52—N424.4 (5)
O2—C1—C2—C3100.5 (4)C48—C49—C50—C510.8 (5)
O2—C1—C2—C781.3 (4)C49—C50—C51—N30.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10i0.862.062.906 (4)170
N4—H4A···O9ii0.862.102.955 (4)173
N4—H4B···O9iii0.862.443.228 (4)153
C50—H50···O8iii0.932.543.448 (4)166
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBarclay, G. A. & Kennard, C. H. L. (1961). J. Chem. Soc. pp. 5244.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (née Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843.  Google Scholar
First citationDavey, G. & Stephens, F. S. (1970). J. Chem. Soc. A, pp. 2803–2805.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHanic, F., Štempelová, D. & Hanicová, K. (1964). Acta Cryst. 17, 633–639.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationHoang, N. N., Valach, F. & Dunaj-Jurčo, M. (1995). Acta Cryst. C51, 1095–1097.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHoang, N. N., Valach, F. & Melník, M. (1993). Z. Kristallogr. 208, 27–33.  CrossRef Web of Science Google Scholar
First citationHökelek, T., Necefoǧlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationLee, J. D. (1986). Inorganic Chemistry, 3rd ed., p. 379. London: van Nostrand Reinhold.  Google Scholar
First citationMorosin, B., Hughes, R. C. & Soos, Z. G. (1975). Acta Cryst. B31, 762–770.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010). Acta Cryst. E66, m334–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPoray-Koshits, M. A., Aslanov, L. A. & Korytniy, E. F. (1976). Itogi Nauki Tekh. Kristallokhim. 11, 5–94.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds